

September 10th, 2025 Oak Ridge, TN

Week 6: Utility Billing Review

Utility Bill Analysis
Virtual InPLT

Common questions, water bills, initial findings

Week 5 Homework Questions – Water

- 1) Find your water and sewer rate tariffs
- 2) Add water data to VERIFI
- 3) Do an analysis on your water usage in VERIFI
- 4) Try to use MEASUR to identify your water flows

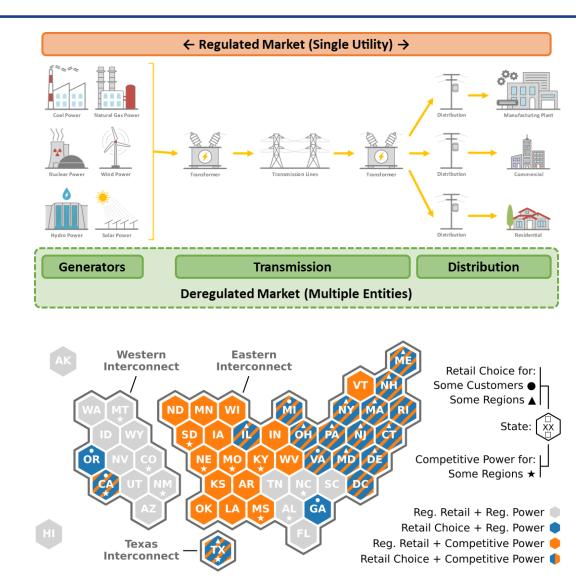
Utility Bill Analysis V-InPLT Agenda

- Week 1 Markets, Tariffs, and Consumption
- Week 2 Demand, Power Factor, and Load Factors
- Week 3 Interval Data, Demand Management, and Costs
- Week 4 Natural Gas Bills Analysis
- Week 5 Water Bills Analysis
- Week 6 Review and Partner Cast Studies

All about utility bills!

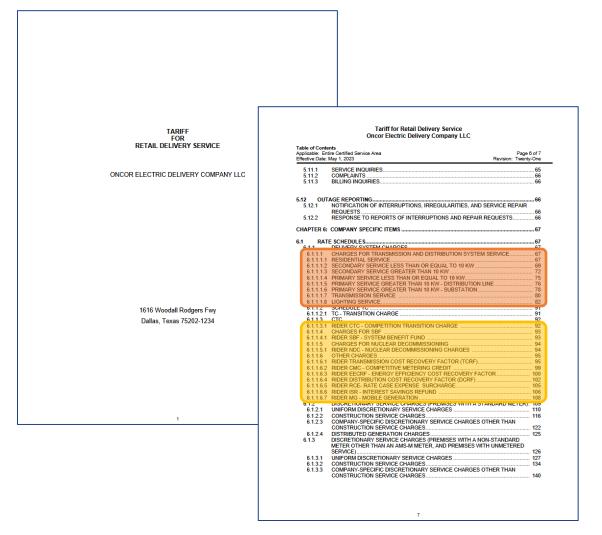
What is electrical energy?

- Electricity is a form of energy from the flow of electric charge through a conductor
- Most electricity is made by converting a primary fuel (e.g., coal, natural gas) to steam that spins a generator
- Approximately 60% of all electricity comes from fossil fuels
- Generation and distribution loses mean saving 1 kWh at saves approximately 2.5 kWh in primary generation
- Electricity is distributed from generators to end customers through the grid



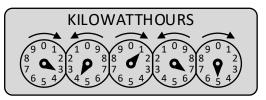
How does deregulation affect me?

- Deregulation of electricity has happened in 15 states + DC
- Provides more choices for who provides your power
- Competition is designed to drive down prices but does come with some additional risk
- Can have separate bills for transmission, delivery, and generation of your power

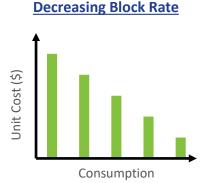


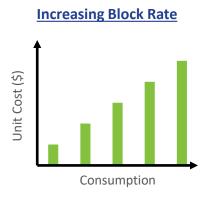
What is a rate tariff?

- A rate tariff is your specific pricing structure that sets the terms of your utility contract
- You can usually find your rate tariff with an internet search or by asking your utility to provide it
- Rate tariffs are complicated legal documents, but you can work through them!
- Being on the right rate tariff is extremely important to avoid unnecessary energy charges

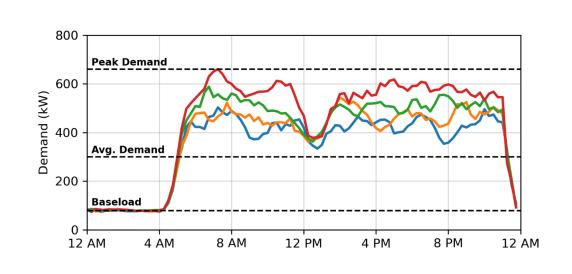


Electricity Consumption (kWh) Charges


- Consumption (usage) is the total amount of electricity you use during a billing period
- Consumption is measured in kWh which is 1 kW of power sustained for 1 hour
- Consumption demands on your usage and your billing period
- Calendarization normalizes for inconsistent billing periods
- Your rate tariff sets the structure for your consumption charges

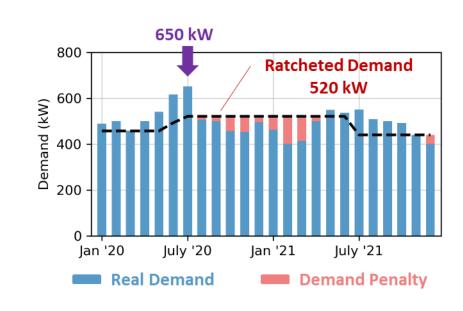


= 34,165 kWh



What is Electrical Demand?

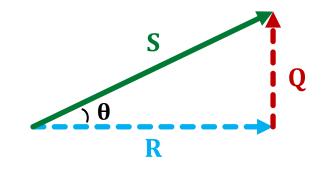
- Electrical demand is the average electricity used over a specified time window
- Measured in kW or kVA depending on your rate tariff
- Demand can be measured using block, lagged, or rolling intervals
- There are many kinds of demand including average, baseload, peak, and coincident peak
- Your utility bills based on your peak demand!
- Billed demand is an adjustment to your peak demand



Difference Between Billed and Real Demand?

- Real Demand is from the meter during from the billing period
- Billed Demand is an adjustment to your real demand based on different clauses in your rate structure
 - Billed Demand ≥ Real Demand
- A Ratchet Clause sets a minimum billed demand based on past usage "at least 80% of maximum real demand from the past year"
- Avoiding ratchet penalties means preventing large spikes in demand





What is Power Factor?

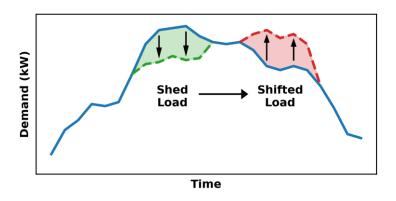
- PF is a number between 0.0 and 1.0
- Utilities penalize consumers for having low PF
- There are two types of power:
 - Real Power (R) Does actual work!
 - 2) Reactive Power (Q) Does no work!
- Real and reactive power are related through the PF triangle
- Low PF means your utility must deliver extra **Apparent Power (S)**

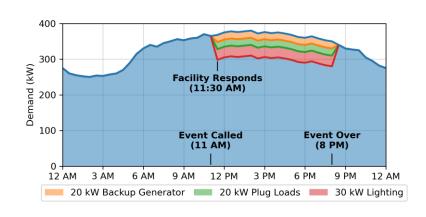
How Do You Correct Bad Power Factor?

- Nearly all facilities have low PF due to large, partially loaded motors in their production process
- Motors are just big coils of wire and act like large inductors
- Can install capacitors outside your facility or at the equipment to

counteract too much inductance

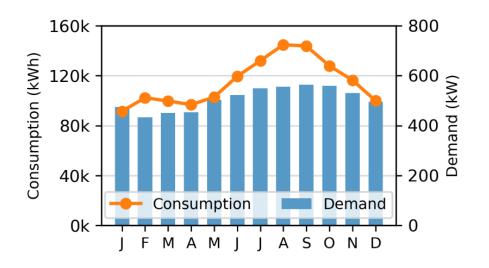
- Fix baseload phase difference with static (\$) capacitors
- Fix remaining difference with dynamic (\$\$) capacitors





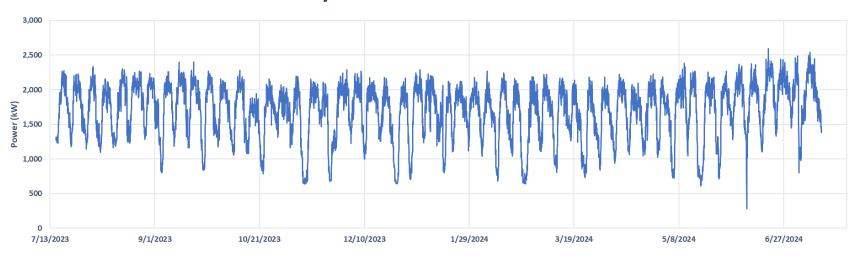
Basics of demand management

- There are two main demand management strategies
 - Load Shedding
 - 2) Load Shifting
- Many utilities offer demand response programs to incentivize load shedding during high grid stress
- Often you can get paid for participating in a demand response program, even if you are not actually called on to shed load!



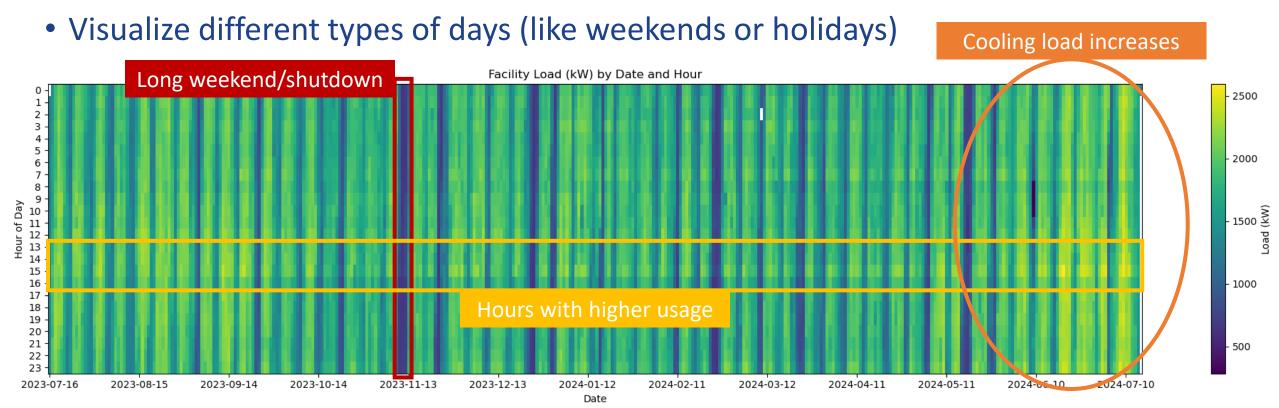
Load Factors are a Simple Way to Track Demand

- Electrical Load Factor is the ratio of monthly kWh consumption to the maximum possible consumption
- Production Load Factor is the ratio of monthly kWh consumption to the maximum operating consumption
- ELF and PLF can help identify spikes in demand and equipment being left on outside of operating hours



What is demand interval data?

- Digitally captured electrical load measurements
- Time increments more granular than bills (e.g., 15-minutes)
- Question to ask before analyzing interval data...
 - Do you need to aggregate meters?
 - How does your rate tariff set your demand interval?
 - Are the units the same as your bills?

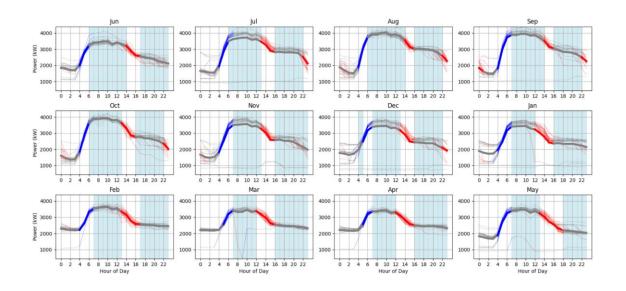


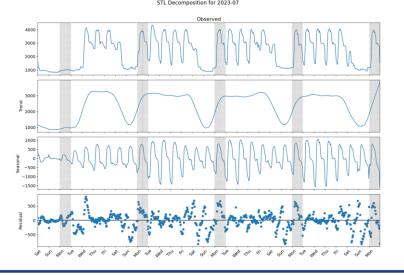
Analyzing demand data is all about visuals

Analysis: Display the whole year by color

Actions to take:

Identify certain hours that have patterns





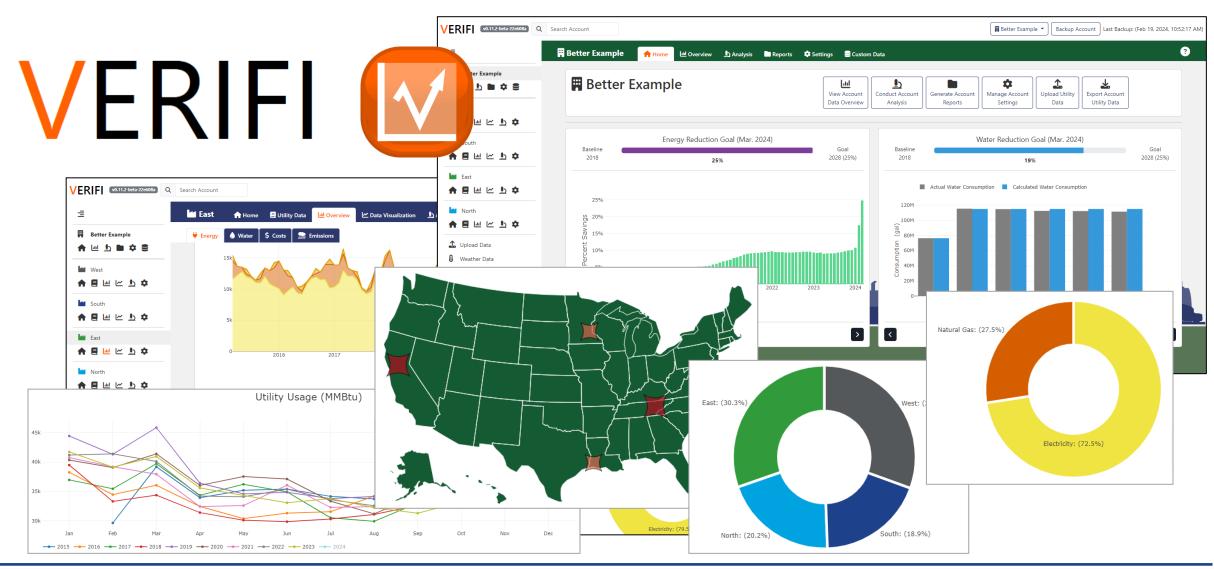
Key Takeaways from Interval Data Visualization

- Interval data cannot be properly used without informative visualizations
- Integrating interval data with production data can be useful when determining large energy consumers at a facility
- Successful data analysis will lead to informed observations and conversation on the production floor
- Large seasonal trends indicate needs to analyze cooling systems
- Verify the numbers on your bills. Utilities make mistakes

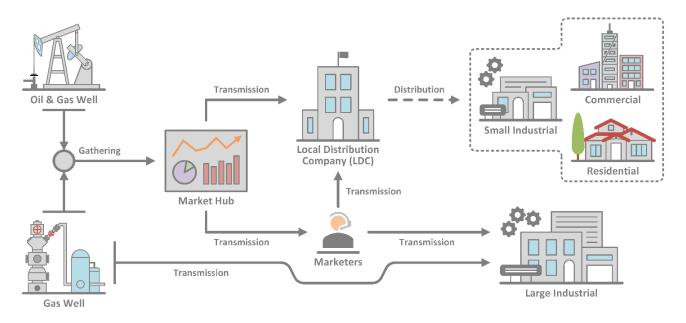
Cost of Electricity

 Blended Cost lumps consumption, demand, fixed, and other charges into a single \$/kWh rate

- Simple but cannot be used to estimate demand reduction opportunities
- Marginal Cost is the cost of purchasing or saving the next/last unit of electricity on your bills


- Separate costs for consumption and demand
- Requires a deeper knowledge of your rate structure
- Need to be careful with block rates!
- Which cost to use will depends on the type of analysis or project!

VERIFI for Utility Bill Analysis



Who Can I Buy Gas From?

Deregulation is complex but offers lots flexibility for buyers:

- Large gas customer can purchase gas directly from gas producers
- Marketers are third-parties who purchase gas and sell to consumers
- Market Hubs are central pricing points where NG is traded daily
- Consumers may receive multiple bills

Natural Gas Pricing and Contracts

- Pricing for physical natural gas has two primary components:
 - **Commodity Price:** The price of gas at a specific trading point
 - **Basis Cost:** Price differential between the point of sale and delivery
- The benchmark price of natural gas in the US is the Henry Hub in Erath, Louisiana
- Basis cost can be positive or negative depending on the relative cost of natural gas between hub and delivery
- Both the commodity price and basis cost can be fixed by your contract to hedge against price volatility

Forecasting Natural Gas Usage

- De-regulation has opened some gas markets to new suppliers that may offer more competitive pricing
- Using markets to find cheaper gas can generate large cost savings
- May have an option to Pre-Buy your natural gas at a cheaper rate
- Requires an accurate estimate your future gas usage:
 - Estimated natural gas is purchased at a base rate (\$\$)
 - Additional gas is more expensive (\$\$\$) than the base rate if you underestimate your usage
 - Excess gas is sold back at a cheaper rate (\$) than the base rate if you overestimate your usage

Natural Gas Consumption Charges

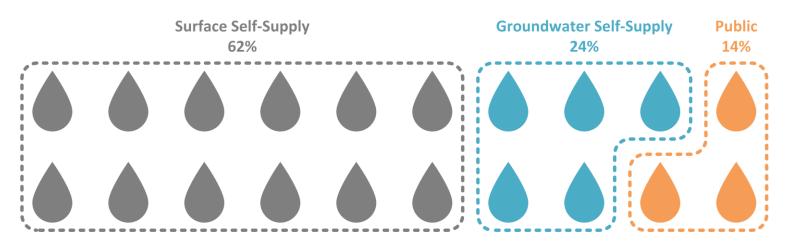
- Natural gas consumption or usage is the total amount of gas your facility uses in its operations
- Can be billed by volume or energy content of the gas
- Common units: CCF, MCF, M³, therms, MMBtu, etc.
- Billed on a \$/unit rate set by your tariff
- Can appear on multiple bills as gas cost, purchase cost, usage cost, commodity cost, etc.

https://commons.wikimedia.org/wiki/File:Gas_meter_2.jpg

Optimum Rate Selection

- Energy usage characteristics shift over time
 - Operations change
 - Product mix change
 - Operating hour change
- It is a best practice to check if your operation qualifies for a better rate
- Understanding your usage, available rate structures, and billing is critical to evaluate your options

Rate Schedule	Requirements	Rates	
Small General Service	< 2,000 therms	Service Charge: \$145/month Fixed distribution charge: \$0.091202/therm Gas cost: \$0.54936/therm	
Medium General Service	≥ 2,000 therms < 50,000 therms	Service Charge: \$300/month Fixed distribution charge: \$0.044966/therm Gas cost: \$0.54706/therm	
Large General Service	≥ 50,000 therms	Service Charge: \$450/month Fixed distribution charge: \$0.041131/therm Gas cost: \$0.55016/therm	

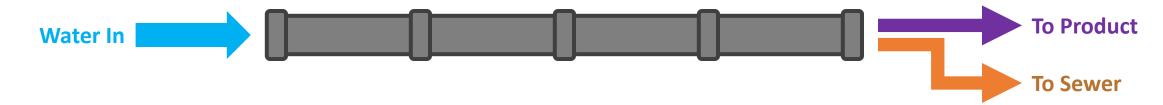


What do we usually use water for?

- The United States uses ≈400 billion gallons of water per day
- Industrial water usage accounts for 5-6% of total usage
- A large majority of industrial water is from self-supplied sources
- Any water sourced or discharged to a *Public System* will have a billing structure associated with that usage

Water Consumption Charges

- Water consumption or Usage is the total amount (volume) of water your facility uses to operate or make product
- Common units gallons, cubic feet, liters, cubit meters, etc.
- Billed at a \$/volume rate that will be set by your rate tariff
- Can appear on your bill as water charge, water cost, usage charge, etc.



Sewer Charges

- Facilities are not just billed for their incoming water
- Utilities also charge for water disposal with Sewer Fees
- Sewer fees can be >50% of total water utility cost
- Every facility has an incoming consumption meter, not all facilities have an outgoing *Sewer Meter*
- Without a sewer meter, utilities will assume that...

Incoming Water = Outgoing Water

Avoiding Sewer Treatment Charges

- Sewer meters ensure that you pay water disposal fees only for water that goes down the sewer
 - Good option for industries that consume a lot of water or that make products that contain water
- Evaporation Credits or Sewer Credits can also be used if metering is not present or feasible
 - Good options for cooling tower water
 - Requires documentation showing how evaporation rate is calculated or metering make-up water
- Some facilities may be able to treat their own water to avoid high sewer treatment fees

Types of sewer lines

- Pay attention to your water sources!
- Use your least expensive source or sewer as much as possible

Industrial Water

- Not as rigorously treated as regular municipal water
- Can be used as process water for nonsensitive products
- Costs less than municipal water

Industrial Sewer

- Longer and more involved treatment process needed
- Used when water is too contaminated for regular municipal treatment
- Costs more than municipal sewer

Wastewater Surcharges

- The Federal Clean Water Act regulates discharge of pollutants into all US waters
- Industrial facilities can either:
 - Pretreat wastewater to meet required limits before sending water through the municipal sewer system
 - -- OR --
 - Pay a surcharge for excessive waste in the discharge water sent to sewer system
- Regulated properties include:
 - Biochemical Oxygen Demand
 - Total Suspended Solids
 - Oil and Grease
 - Ammonia

Example Surcharge Calculation:

Pollutant	Tested (mg/L)	Limit (mg/L)	Cost (\$/lb)
Biochemical Oxygen Demand	300	200	\$0.35
Total Suspended Solids	250	175	\$0.17
Total Nitrogen	40	20	\$0.17
Total Phosphorus	20	10	\$0.45

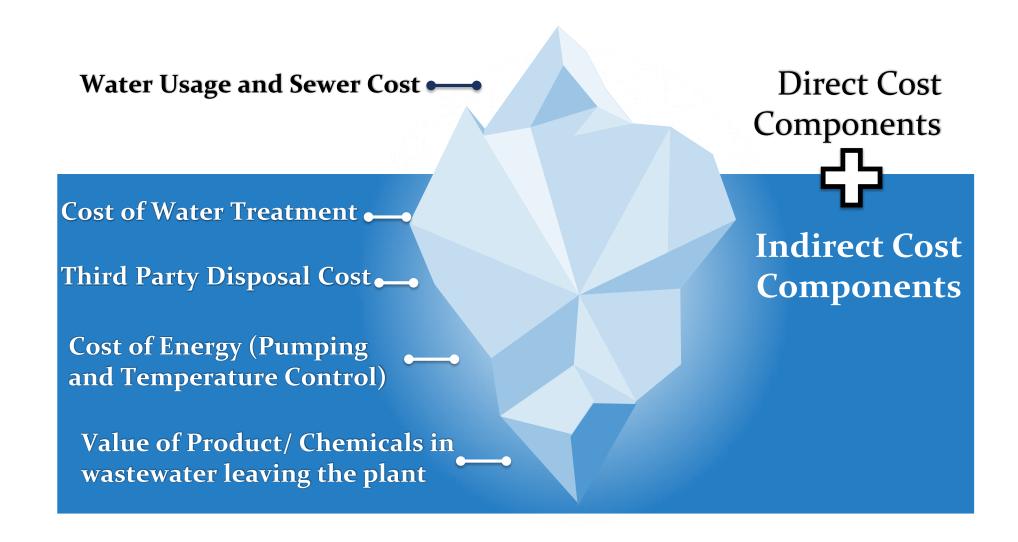
Average Sewer Usage: 600,000 gal/month

BOD: $$0.35/lb \times (300 - 200 \text{ mg/L}) \times 8.34 \times 0.6 \text{ MMgal} = 175.14

TSS: $\$0.17/lb \times (250 - 175 \text{ mg/L}) \times 8.34 \times 0.6 \text{ MMgal} = \63.80

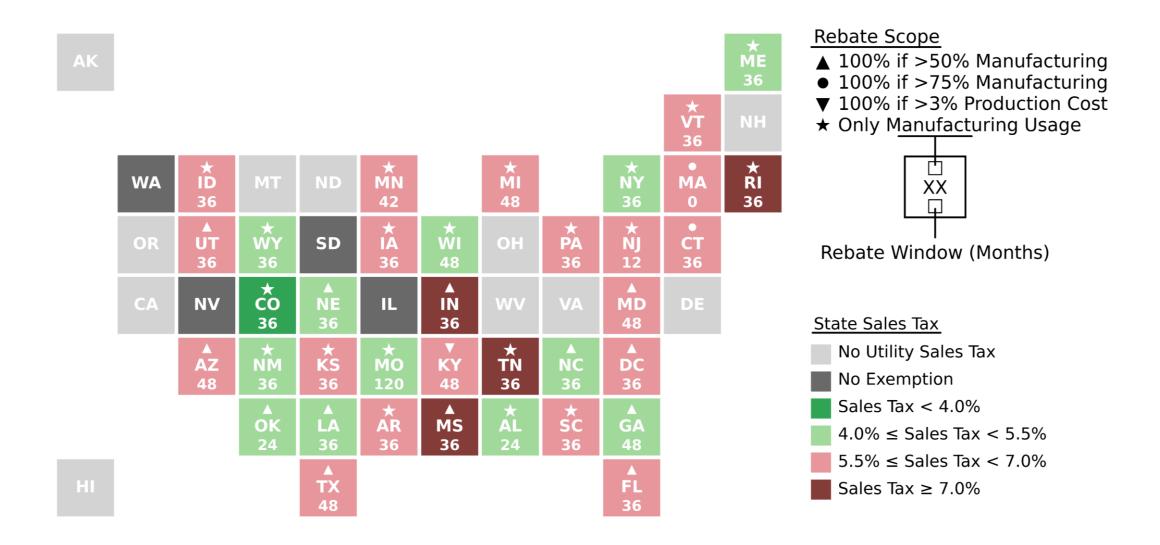
TN: $\$0.17/lb \times (40 - 20 \text{ mg/L}) \times 8.34 \times 0.6 \text{ MMgal} = \17.01

TP: $$0.45/lb \times (20 - 10 mg/L) \times 8.34 \times 0.6 MMgal = 22.52


Total Surcharge = BOD + TSS + TN + TP = \$278.47/month

Step 2. True Cost of Water

State Sales Tax Exemptions


- Nearly every state offers some kind of exemption for sales tax on utilities used for manufacturing
- This can be significant depending on your state and utility costs
- States will even let you reclaim previously paid sales tax!
 - Up to 48 months depending on statute of limitations
- Most states require a Predominate Use Study
 - Third party assessment to determine manufacturing energy usage
- Depending on the state, can receive up to 100% exemption for meters where >X% of energy is used towards manufacturing

Sales Tax Exemption

Better Plants[®] Examples from the Course

Beware of being on the wrong rate structure!

- ITAC visit to a manufacturer around 2010
- Multiple existing buildings were converted to office space
- Production moved to newly constructed buildings
- Did anyone check the rate structure for the old buildings?

New Average Demand: 1,200 kW New Average Consumption: 480,000 kWh

Monthly Charges	Large General (LGS)	General (GS)	
Customer	\$125.73	\$39.20	
Demand (per kW)	\$14.18 \$7.40		
Energy (per kWh)	\$0.0052	\$0.02210	
Minimum Demand	4,000 kW	500 kW	
Total	\$59,342	\$19,527	

~\$40,000 per month in extra cost!!!

Block rates can also be tied to your demand!

 Let's look at Indiana Michigan Power's industrial power tariff...

Tariff Code	Service Voltage	Demand Charge (\$/kW)	First 410 kWh per kW (¢/kWh)	Over 410 kWh per kW (¢/kWh)	Monthly Service <u>Charge (\$)</u>
327	Secondary	16.474	5.703	1.359	180.00
322	Primary	14.089	5.413	1.313	275.00
323	Subtransmission	10.825	5.333	1.296	275.00
324	Transmission	10.194	5.058	1.286	275.00

- Demand Charge = \$16.474/kW
- Service Charge = \$180.00
- But wait, what's going on with the consumption charge?

There are 2 blocks:

- Block 1 = \$0.05703/kWh
- Block 2 = \$0.01359/kWh
- Block 2 is >75% Cheaper
- For this tariff, the goal is to get into Block 2 as fast as possible!
- The cap for Block 1 is set by the monthly demand!
- Every 1 kW demand reduction is:
 - \$16.474 saved in direct demand cost
 - 410 kWh x \$0.04344/kWh = \$17.81 in indirect energy savings
 - Combined \$34.28/kW in savings!

How Much Does Low PF Cost?

Facility with average PF of 0.85

 $(PF_{avg} = 0.85)$

Utility requires a minimum PF of 0.95

 $(PF_{req}=0.95)$

Demand cost is \$8/kW with no ratchet clause

 $(C_d = \$8/kW)$

Average adjusted demand is 2,000 kW

 $(A_{ava} = 2,000 kW)$

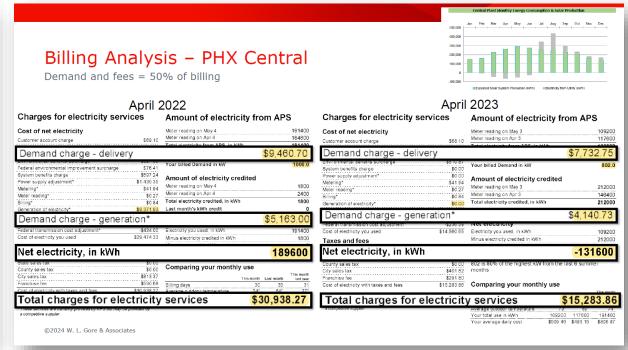
Average Real Demand (
$$R_{avg}$$
) = $A_{avg} \times \frac{PF_{avg}}{PF_{req}} = 1,790 \text{ kW}$

PF Penalty =
$$C_d \times (A_{avg} - R_{avg}) \times 12 = \$20, 160/yr$$

Utility Bill Verification and Calibration - Example

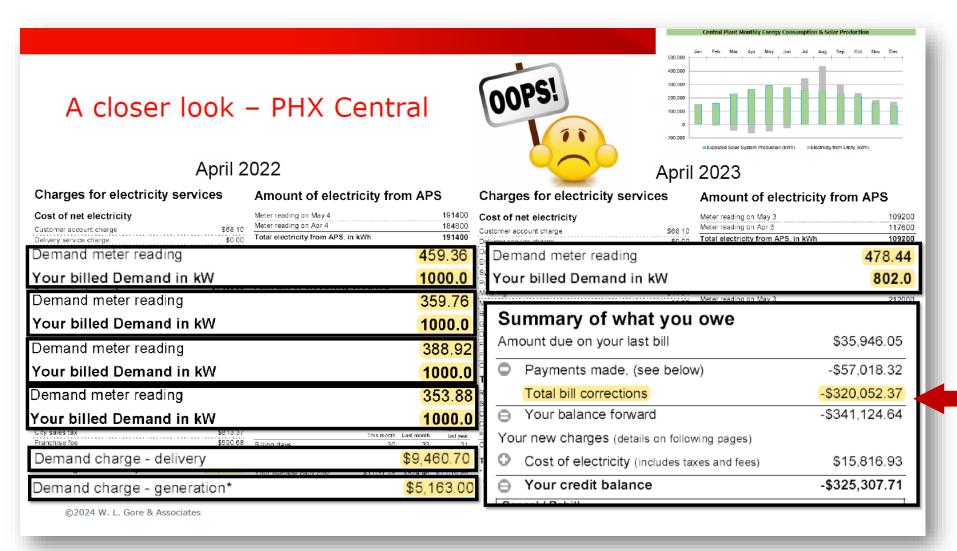
Taken from 2024 Better Buildings/Better Plants Summit

WL Gore installed 3 MW of solar PV at one of their facilities.



Utility Bill Verification and Calibration - Example

System wasn't generating the savings they expected


Performed a utility bill analysis

Utility Bill Verification and Calibration

- Found an incorrect billed demand
- Received major credits from their utility

Opportunity for Cheaper Water Source

- Manufacturing facility must cool boiler blowdown water before it can be sent down the sewer
- Currently using clean city water directly from domestic water line
- Opportunity to offset city water usage with blowdown water from cooling towers also sent to sewer
- Could save 125,000 gal of city water and \$1,625 in utility cost per year

Better Summary and Closeout

Thank you for attending!

Thank you!

- Please stay in touch if you have questions
- A course evaluation form will be sent out, please fill this out!
 - Your feedback really helps us to improve our offerings!
- There are more virtual trainings this year
- Energy Bootcamp @ORNL starts September 29
- All sessions have been recorded and can be found at https://bptraining.ornl.gov/

Open Time for Questions

