

Process Heating Virtual Training Session 1

11111111

What is a Virtual Training?

- In-Plant Trainings (INPLTs) are specialized workshops by BP experts that teach participants to identify, implement, and replicate energy saving projects.
- The aim is to help manufacturing plants enhance efficiency, lower energy usage, and operational cost.
- Before Covid, BP partners conducted 3-day on-site training sessions, inviting others to participate.
- In response to Covid challenges, we shifted to eight 2-hour virtual training sessions but have since returned to in-person sessions while still offering virtual options.
- Through BP, industrial organizations set efficiency targets and receive technical support and national recognition for their efforts.

What's your main driver for wanting to attend PH Virtual Training? (select one or more):

- A Reducing operational cost
- B Improve energy productivity and achieve goals
- c Improving environmental performance
- D Gain knowledge

Thank You to Our Participants

Group Leader, MEERA Group (ORNL)

Rutgers, The State University of New Jersey – PhD (Mech. Eng.), 2009

Sachin Nimbalkar, PhD, CEM

- Rutgers, The State University of New Jersey M.S. (Mech. Eng.), 2005
- Government College of Engineering Pune, India B.E. (Mech. Eng.), 2001 ۲

Professional Experience

Education

- Group Leader, Manufacturing Energy Efficiency Research & Analysis, 2020 present
- Group Leader, Energy Efficiency Research & Analysis, 2017 2020
- Technical Account Manager, DOE's Better Plants Program, 2010 present
- UT-ORNL Joint Assistant Professor in the Department of Industrial and Systems Engineering (ISE), University of Tennessee, Knoxville, 2015 - 2021
- R&D Staff in Energy and Transportation Science Division (ETSD), ORNL, 2008 2017 ٠
- Graduate Research Assistant, Center for Advanced Energy Systems, Rutgers University, 2003 –2008

Other Qualifications & Affiliations

- Certified Energy Manager, Association of Energy Engineers (2025-present) ۲
- DOE's Industrial Qualified Specialist in Process Heating, Steam, and Pumping systems •
- Member, DOE's Process Heating Steering Committee, 2009 2012 •
- Member, DOE's Steam Steering Committee, 2010 2012
- Member, Sigma Xi (Oak Ridge, Tennessee Chapter), 2010–present
- Member of the American Society of Mechanical Engineers (ASME), 2010-present
- Member of the Society of Manufacturing Engineers (SME), 2018-present

- Week 1 Introduction & Process Heating Overview (April 2)
- Week 2 Process Heating Basics (April 11)
- Week 3 PH Assessment Methodology & Demo on DOE's MEASUR Tool (April 16)
- Week 4 PH Diagnostic Equipment and Data Collection Form (April 23)
- Week 5 Energy Efficiency Opportunities in Process Heating Systems (April 28)
- Week 6 Assessment & Analysis of MEASUR Data for Finding Opportunities (May 7)
- Week 7 PH VT Results Discussion and Review of Final Presentations (May 14)
- Week 8 Process Heating VT Wrap-up Presentations (May 21)

Training Module # 1 Process Heating Systems Overview

Energy Efficiency & Renewable Energy

Outline

- Major Energy Use Systems
- What is Process Heating?
- Why Industrial Process Heating is Important?
- Overview of Industrial Process Heating
- DOE Resources on Process Heating

Process heating accounts for **what %** of all process energy (energy applied to convert material into products) used in the U.S. manufacturing sector? (select only one):

System Focus Targets Major Energy Consumers

Data sources: DOE <u>Manufacturing Energy and Carbon Footprints</u>, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2018; C. McMillan, <u>Manufacturing Thermal Energy Use in 2014</u>. 2019. National Renewable Energy Laboratory. dx.doi.org/10.7799/1570008; AMO <u>Thermal Process Intensification Workshop Report</u>

What is Process Heating?

Supplies heat to materials for further processing using:

- Furnaces
- Ovens
- Heaters
- Thermal oxidizers
- Dryers
- Kilns
- Boilers
- Other heating equipment

Industrial Heat Demand by Industry

Data sources: DOE <u>Manufacturing Energy and Carbon Footprints</u>, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2018; C. McMillan, <u>Manufacturing Thermal Energy Use in 2014</u>. 2019. National Renewable Energy Laboratory. dx.doi.org/10.7799/1570008; AMO <u>Thermal Process Intensification Workshop Report</u>

Why Industrial Process Heating is Important?

- Process heat is the application of heat in industry to manufacture materials, goods, and products.
- Every single major industry uses process heat, but the thermal needs are exceptionally heterogeneous and expensive.
- Over 90% of process heat is generated from the unabated burning of fossil fuels.
- One-third of energy consumed for process heating is ultimately lost as waste heat.
- Industrial heat is a large and increasing issue.
- NG, coal, and fuel oil combustion produce criteria air pollutants like NOx, CO, PM that impact health.

U.S. Energy-related Emissions: ~11% is Attributable to Industrial Heat

2020 Energy-Related CO₂ Emissions by U.S. Economic Sector

2020 Estimated Industrial: Manufacturing Energy-Related CO₂ Emissions by Source

To decarbonize industry, we must decarbonize heat

Sources: EIA Annual Energy Outlook (2021); IEDO 2018 Manufacturing Energy and Carbon Footprints (2022)

Process Heating Systems are Exceptionally Heterogeneous

Thermal processes and systems are <u>essential</u> and <u>pervasive</u> in industry, but every major industrial subsector uses heat in <u>different ways</u>...

Temperature Range for Commonly Used Processes

Major Process Heating Operations

(Source: Process Heating Sourcebook)

Process	Application	Equipment	Industry
Agglomeration - Sintering	Metals Production	Various Furnace Types, Kilns Microwave	Primary Metals
Calcining	Lime Calcining	Various Furnace Types	Cement, Wallboard, Pulp and Paper Manufacturing, Primary Metals
Curing and Forming	Coating, Polymer Production, Enameling	Various Furnace Types, Ovens, Kilns, Lehrs, Infrared, UV, Electron Beam, Induction	Ceramics, Stone, Glass, Primary Metals, Chemicals, Plastics, Rubber
Drying	Water and Organic Compound Removal	Fuel-Based Dryers, Infrared, Resistance, Microwave, Radio- Frequency	Stone, Clay, Petroleum Refining, Agricultural and Food, Pulp and Paper, Textiles
Forming	Extrusion, Molding	Various Ovens and Furnaces	Rubber, Plastics, Glass
Fluid Heating	Food Preparation, Chemical Production, Reforming, Distillation, Cracking, Hydrotreating, Visbreaking	Various Furnace Types, Reactors, Resistance Heaters, Microwave, Infrared, Fuel-based Fluid Heaters, Immersion Heaters	Agricultural and Food, Chemical Manufacturing, Petroleum Refining
Heating and Melting – High-Temperature	Casting, Steelmaking, Glass Production	Fuel-Based Furnaces, Kilns, Reactors, Direct Arc, Induction, Plasma, Resistance	Primary Metals, Glass
Heating and Melting – Low-Temperature	Softening, Liquefying, Warming	Ovens, Infrared, Microwave, Resistance	Plastics, Rubber, Food, Chemicals
Heat Treating	Hardening, Annealing, Tempering	Various Fuel-Based Furnace Types, Ovens, Kilns, Lehrs, Laser, Resistance, Induction, Electron Beam	Primary Metals, Fabricated Metal Products, Transportation Equipment, Glass, Ceramics
Incineration/Thermal Oxidation	Waste Handling/Disposal	Incinerators, Thermal Oxidizers, Resistance, Plasma	Fabricated Metals, Food, Plastics and Rubber, Chemicals
Metals Reheating	Forging, Rolling, Extruding, Annealing, Galvanizing, Coating, Joining	Various Furnace Types, Ovens, Kilns, Heaters, Reactors, Induction, Infrared	Primary Metals, Fabricated Metal Products, Transportation Equipment
Separating	Air Separation, Refining, Chemical Cracking	Distillation, Membranes, Filter Presses	Chemicals
Smelting	Steelmaking and Other Metals (e.g., Silver)	Various Furnace Types	Primary Metals
Other Heating Processes	Food Production (including Baking, Roasting, and Frying), Sterilization, Chemical Production	Various Furnace Types, Ovens, Reactors, Resistance Heaters, Microwave, Steam, Induction, Infrared	Agricultural and Food, Glass, Ceramics, Plastics, Rubber, Chemicals

Characteristics of Common Industrial Processes that Require Process Heating and Estimated Energy Use

Process heating operation	Description/example applications ¹²	Typical temperature range (F) ^B	Estimated (2010) U.S. energy use (TBtu) ¹⁴
Fluid heating, boiling, and distillation	Distillation, reforming, cracking, hydrotreating; chemicals production, food preparation	150–1000°	3,015
Drying	Water and organic compound removal	200-700°	1,178
Metal smelting and melting	Ore smelting, steelmaking, and other metals production	800-3000°	968
Calcining	Lime calcining	1500-2000°	395
Metal heat treating and reheating	Hardening, annealing, tempering	200-2500°	203
Non-metal melting	Glass, ceramics, and inorganics manufacturing	1500-3000°	199
Curing and forming	Polymer production, molding, extrusion	300-2500°	109
Coking	Cokemaking for iron and steel production	700–2000°	88
Other	Preheating; catalysis, thermal oxidation, incineration, softening, and warming	200-3000°	1,049
Total			7,204

Process Heating Systems

- Majority (more than 70%) of all heat supplied to heating equipment is through controlled combustion of fuels.
- Heating system efficiency is governed by process parameters, selection of proper combustion system, design of the furnaces or ovens and use of waste heat recovery system.
- Emissions from combustion and interaction of combustion products with the load (charge) are major considerations in equipment design and operation.

The following industries use steam as a major source of process heat (select two):

Α	Iron and steel	
В	Petroleum Refining	
С	Forest products	Yes!
D	Food and beverages	Yes!

Fired Systems

Energy Use as a Percentage of Total Energy End Use

Steam Systems

Energy Use as a Percentage of Total Energy End Use

Process Heating System Components

Process Heating Systems and Energy Supply Used by Industry

Energy Sources

- Fuels (gas, oil, coal etc.)
- Electricity
 - Resistance heating
 - Induction
 - Arc Plasma
- Steam
- Hot fluids (oil, water etc.)

Thermal Processes used in Manufacturing

- 1. Steam Generation
- 2. Fluid Heating
- 3. Calcining
- 4. Drying
- 5. Heat Treating
- 6. Metal Heating
- 7. Metal and Non-metal Melting
- 8. Smelting, Agglomeration, etc.
- 9. Curing and Forming
- **10. Other Heating**

Industrial Decarbonization Pillars (Source: DOE's Decarbonization Roadmap)

ENERGY

Industrial Decarbonization Roadmap

DOE/EE-2635 September 2022

Better

Plants

United States Department of Energy Washington, DC 20585

Energy Efficiency	Industrial Electrification	Low-Carbon Fuels, Feedstocks, and Energy Sources (LCFFES)	Carbon Capture, Utilization, and Storage (CCUS)
Energy efficiency advancements minimize industrial energy demand, directly reducing the GHG emissions associated with fossil fuel combustion.	Industrial process technologies that utilize electricity for energy, rather than combusting fossil fuels directly, enable the sector to leverage advancements in low-carbon electricity from both grid and onsite generation sources.	Substitution of low- and no-carbon fuels and feedstocks for fossil fuels can further reduce combustion-associated emissions for industrial processes.	This multi-component strategy for mitigating difficult-to-abate emissions involves capturing generated CO ₂ before it can enter the atmosphere; utilizing captured CO ₂ whenever possible; and storing captured CO ₂ long-term to avoid atmospheric release.
 Energy efficiency technology examples: Energy management approaches Thermal integration of process heat Smart manufacturing Improved technologies and processes; system integration 	 Industrial electrification technology examples: Electrification of process heat (e.g., heat pumps) Electrification of hydrogen production for industrial process use 	LCFFES technology examples: • Fuel-flexible processes • Clean hydrogen fuels and feedstocks • Biofuels and biofeedstocks • Concentrating solar power • Nuclear	 <u>CCUS technology examples:</u> Post-combustion chemical absorption of CO₂ CO₂ pipelines and other CCUS supportive infrastructure

https://www.energy.gov/sites/default/files/2022-09/Industrial%20Decarbonization%20Roadmap.pdf

Poll Question # 4

What type of thermal processes your facility hosts (select multiple):

What type of projects have you already implemented for improving energy efficiency and reducing scope 1 emissions from your process heating systems?

Energy efficiency technologies **Energy storage** F Α Waste Heat Recovery Carbon Capture and utilization B F Electrification of thermal processes Hydrogen-based technologies С G Smart manufacturing & IOT **Biomass utilization** D н

Energy Efficiency of Process Heating Systems

Energy efficiency improvement measures or actions can be implemented through the following categories of actions:

- Operations
- Maintenance
- Retrofits
- Use of new technologies (process or equipment)

Steps to Improve Thermal Efficiency

Analyze energy use distribution

- How much energy is used and where is it going?
- Identify areas of possible energy savings and measures
 - Where can we reduce energy loss and save energy
 - What measures/actions can be taken to reduce energy loss and improve energy efficiency?
 - How many of these measures are practical?

Estimate effect of energy-saving measures

How much energy is saved?

Select appropriate energy measures

- What measures give the best energy savings?
- Develop an action plan

Major Areas for Energy Savings Potential

- 1. Load/charge material
- 2. Material handling
- 3. Heat supply/heat generation (combustion system, electric, & other)
- 4. Furnace exhaust and heat recovery
- 5. Furnace-oven walls
- 6. Furnace openings and doors
- 7. Water or air cooling
- 8. Control system
- 9. Auxiliary systems

10.Other losses (i.e., atmosphere, makeup air, ex-filtration of gases etc.)

U.S. DEPARTMENT OF

Homework #1 – Complete the Pre-Screening Form

Plant Long /	PI	ant Info & Energy Sources	Fur	rnace	Rated Capa	city	Elect	rical Auxil	liary Equ	ipment	
Concervitions Prain Name Prain Na		Plant - General Information	Company Name	Plan	nt - General Information						
Periode Period	Company Name		Plant Name				0	Plant - Gener	ral Information		
Pedeci Pe	Plant Name			Furn	anna Dra Annanamant		Company Name Plant Name				
Fland Fundage	Product		Furnace	Fum	lace - Pre-Assessment		Furnace				
Print-Context Name Funce - Pre-Assessment (Auclian) Equipment Context Name Context Name Electrical Equipment with moon rated power 4 load Faulty Addess Data Collection Funce - Pre-Assessment (Auclian) Equipment State 2p Control to Table Data Collection Prefered Unit? (Magetal CostUnts Energy The d'Optartion Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy The d'Optartion Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy The d'Optartion Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy The d'Optartion Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy The d'Optartion Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy The d'Optartion Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy CostUnts Energy Funce - Pre-Assessment (Auclian) Equipment Prefered Unit? (Magetal CostUnts Energy Rate Capacity used % Imagetal Prefered Unit? (Magetal Fuil Finity Source Equipment <t< th=""><th></th><th></th><th>Furnace</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			Furnace								
Contait Processes Packages Contraits Processes Packages Control Processes Packages P	Contract Name	Plant - Contact Information	Description				F	urnace - Pre-Assessm	nent (Auxiliary Equipr	ment)	
Control notes	Contact Name	Contrast Frant	L					atriaal Equipment with	known roted newer	9 lood	
Facility Address Functor Type	Lontact Phone	Lontact Email	Data Collection				Equipment	Duty Cycle (%)	Total Connected	Rated Capacity	-
State Zp Country Tipe of Operation Preferred Unit? Imperial Cost Unit Energy Preferred Unit? Preferred Unit? Preferred Unit? Pre	Facility Address		Eurnace Type					2 33, 3, 5, 5, 6, 6, 7,	Power (hp)	(%)	
State 2p Country Pred Optile Time hrs Preterred Units [Energy Source Energy Source Tp Please Submit Pre-Screening Forms by April 9th Bi Bi </td <td>_</td> <td></td> <td>Type of Operation</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	_		Type of Operation								_
Preferred Unis? Impend Cost Unis? Impend Cost Unis? Impend Cost Unis? Impend P Perferred Unis? Impend Perferred I	State	Zip Country		hea							4
Energy Souce The Please Submit Pre-Screening Forms by April 9th Image: Content of Steam Made Made <td>Preferred Units?</td> <td>Imperial Cost Units Energy</td> <td>Heat Cycle Time</td> <td>nis</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>	Preferred Units?	Imperial Cost Units Energy	Heat Cycle Time	nis							4
#5 Rated capacity used % Image: Construction of the second of the	Energ	P y Source Type		•		_					-
#5	Energ #1 #2 #3 #4	^{y Source} Type Please S	ubmit Pro	e-S	creening	g Form	s by Ap	ril 9th	1.8	nower factor	
#0 Fuel Energy Source Fuel Energy Source Image: Condition Notes Image: Condit Notes Image: Condition Notes	Energ #1 #2 #3 #4 #4 #5	^{y Source} Type Please S	ubmit Pro	e-S	creening	g Form	s by Ap	ril 9th	nt, & Supply Voltage	power factor Average Current	- - - - - - - - - - - - - - - - - - -
Electricity Energy Source Electricity used during collectir KWh Fuel Flow Rate Fuel Heating Value Fuel Energy Rate MMBtu/hr Derating Condition Notes Beaching Condition Notes Steam Flow Rate Ib/hr Steam Flow Rate Ib/hr Steam Flow Rate Ib/hr Ib/hr<	Energ #1 #2 #3 #4 #5 #6 #7	^{y Source} Type Please S	ubmit Pro	e-S	creening	g Form	s by Ap	ril 9th	nt, & Supply Voltage (V)	power factor Average Current (A)	Power Factor
Equipment Notes Electricity used during collecti- kWh Image: Collection Notes Image: Collection No	Energ #1	P Please S	Rated capacity used Fuel Energy Source	e-S %	creening	g Form	s by Ap	Duty Cycle (%)	nt, & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)
Operating Condition Notes Heat Content of steam Btu/lb Steam Flow Rate Ib/hr	Energ #1 #2 #3 #4 #5 #6 #7 #8 #6	y Source Type Please S	Rated capacity used Fuel Energy Source Electricity Energy Source	e-S *		g Form	s by Ap	Duty Cycle (%)	nt, & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)
Uperating Condition Notes Heat Content of steam Blubb Image: Condition Notes	Energ #1 #2 #3 #4 #5 #6 #7 #8 Equipment Notes	y Source Type Please S	Rated capacity used Rated capacity used Fuel Energy Source Electricity Energy Source Electricity used during coll Fuel Flow Rate Fuel Heating Value Eucli Energy Pate	e-S %		g Form	s by Ap	Duty Cycle (%)	nt, & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)
Steam Flow Rate ID/hr	Energy #1 #2 #3 #4 #5 #6 #7 #8 Equipment Notes	y Source Type Please S	Rated capacity used Fuel Energy Source Electricity Energy Source Electricity used during coll Fuel Flow Rate Fuel Flow Rate Fuel Heating Value Fuel Energy Rate	e-S %		g Form	s by Ap	Duty Cycle (%)	nt, & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)
	Energy #1 #2 #3 #4 #5 #6 #7 #8 Equipment Notes	y Source Type Please S	Rated capacity used Rated capacity used Fuel Energy Source Electricity Energy Source Electricity used during coll Fuel Flow Rate Fuel Flow Rate Fuel Energy Rate Heat Content of Steam	e-S %		g Form	s by Ap	Duty Cycle (%)	It, & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)
Data Collection time hr	Energy #1 #2 #3 #4 #5 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #7 #8 #6 #6 #6 #6 #6 #6 #6 #6 #6 #6 #6 #6 #6	y Source Type Please S	Rated capacity used Rated capacity used Fuel Energy Source Electricity Energy Source Electricity used during coll Fuel Flow Rate Fuel Heating Value Fuel Energy Rate Heat Content of steam Steam Flow Rate	e-So % Ilecti kWh Btu/lb Ib/hr		g Form	s by Ap	Duty Cycle (%)	It & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)
Operating Hours hr	Energ #1 #2 #3 #4 #5 #6 #7 #8 Equipment Notes	y Source Type Please S	Rated capacity used Rated capacity used Fuel Energy Source Electricity Energy Source Electricity used during coll Fuel Flow Rate Fuel Flow Rate Fuel Energy Rate Heat Content of steam Steam Flow Rate Data Collection time	e-S % Ilecti kWh MMBtu/h Btu/lb Ib/hr hr		g Form	s by Ap	ril 9th	nt, & Supply Voltage (V)	power factor Average Current (A)	Power Factor (%)

Outline

- Major Energy Use Systems
- What is Process Heating?
- Why Industrial Process Heating is Important?
- Overview of Industrial Process Heating
- DOE Resources on Process Heating

DOE Resources on Process Heating

https://www.energy.gov/eere/amo/process-heating-systems

- Online Material
 - Process Heating Tip Sheets (11 tip sheets)
 - Sourcebook for Industry
 - Case Studies
 - Cheat Sheets
 - Pre-recorded webinars
- Software Tools
 - MEASUR PHAST and PH Calculators
 - PHASTEx Excel version

Process Heating Tip Sheets & Other Resources

The tip sheets and other resources can be downloaded from the AMO Process Heating site at <u>https://www.energy.gov/eere/iedo/process-heating-systems</u>.

- Preheated Combustion Air (recovery)
- Check Burner Air to Fuel Ratios (generation)
- Oxygen-Enriched Combustion (recovery)
- Check Heat Transfer Surfaces (transfer)
- Reduce Air Infiltration in Furnaces (containment)
- Furnace Pressure Controllers (generation)
- Reduce Radiation Losses from Heating Equipment (containment)
- Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (recovery)
- Load Preheating Using Flue Gases from a Fuel-Fired Heating System (recovery)
- Using Waste Heat for External Processes (recovery)
- Use Lower Flammable Limit Monitoring Equipment to Improve Oven Efficiency

MEASUR – Process Heating Module

Summary

- Major Energy Use Systems
- What is Process Heating?
- Why Industrial Process Heating is Important?
- Overview of Industrial Process Heating
- DOE Resources on Process Heating

Questions?

111111111

Process Heating - Highlights of Equipment used by the Industry

Steam Generation

- Water heating to produce steam at desired temperature & pressure:
 - Water Tube Boilers
 - Fire Tube Boilers
- Current level of efficiency 60% to 80%
- Fuels used Natural gas, by-product gas or liquids, fuel oil, coal
- Major industries using Steam Generation
 - Chemical, Food, Petroleum Refining, Pulp and Paper

Steam Generation – Commonly Used Boilers

Waste heat recovery boiler connected to a process heater or gas turbine for recovery of heat

Fuel Fired Boiler for process steam generation

Fluid Heating

- Heating of liquids using fired or unfired heating systems for raising their temperature & promoting chemical reactions or phase changes.
 - Fuel fired heaters
 - Steam heated systems
- Current level of efficiency 60% to 85%
- Fuels used Natural gas, by-product gas or liquids
- Major industries using Fluid Heating
 - Chemical, Food, Petroleum Refining, Pulp and Paper, Metals

Commonly Used Direct Fired Furnace Configurations

Other Type of Fluid Heating Systems

- Fired heaters for water, oil, or other liquid heating
- Air heaters used for drying and other applications
- Liquid or gas heating in heat exchangers using steam or waste heat (gases or liquids)
- Direct steam injection water heaters
- Direct contact water heaters using flue gases
- Immersion tubes

Calcining

- To heat material to high temperature, below melting or fusing temperature, causing loss of moisture, chemical reaction or oxidation:
 - Fuel fired rotary kilns
 - Vertical shaft calciners
 - Fluidized bed calciners
- Current level of efficiency 40% to 70%
- Fuels used Natural gas, by-product gas, liquids or solids, fuel oils or coal
- Method of Heating Direct fired
- Major industries using calcining:
 - Aluminum, Steel, Pulp and Paper, Chemical

Calcining - Rotary Kilns

- Rotary Kilns
 - Used for drying & calcining raw material.
 - Material flow can be counter-current or cocurrent to heating gases.
 - Heating system uses a variety of fuels such as natural gas, heavy oil, coal, by-product fuels, tires, etc. System includes exhaust gas clean-up step for emission control.
- Operating temperature
 - 2200°F to 2500°F
- Average efficiency
 - 30% to 50%

Calcining – Vertical Shaft Calciner

- Upper short counter-current zone where most of heat is distributed resulting in calcination of material.
- Counter current flow results in efficient use of heat.
- Lower, longer co-current zone where lesser amount of heat is distributed, resulting in less intensive reaction with temperatures controlled to complete calcination of larger, unfinished pieces, but avoiding over-burning of smaller pieces.

Fluidized Bed and Flash Calciners

Fluidized Bed Calciner

Flash Calciner

Drying

To remove moisture or liquid from materials:

- Fuel fired rotary kilns
- Fluidized bed dryers
- Steam heated dryer drums
- Direct air impingement dryers
- Infrared dryers
- Current level of efficiency 60% to 90%
- Fuels used Natural gas, by-product gas, liquids or solids, fuel oils or coal
- Major industries using Drying
 - Mining, chemical, pulp and paper, metal finishing, food industry

Drying - Drum Dryer

Steam-heated drum dryer for paper drying

Drying – Jet Impingement Drying

Floatation Drying Ovens with High Convection Jet Impingement Heating and Drying

Drying – Rotary Dryer

Photo courtesy of Drytech Engineering.

Spiral flights quickly move material out of feed section. Lifting flights elevate material to produce a curtain. Drum is supported by a riding ring.

Heat Treating

- To produce desired characteristics, such as hardness or softness in a material (metal) by controlled heating & cooling:
 - Indirectly heated furnaces (radiant tubes, muffle etc.)
 - Various configurations
 - Direct fired furnaces
 - Vacuum furnaces
 - Induction or other type of "spot" heating systems
- Current level of efficiency 30% to 50%
- Method of heating Direct or indirect heating, sometimes using prepared atmosphere
- Energy Source Natural gas & electricity
- Major industries using Heat Treating
 - Metals (Ferrous and non-ferrous)

Process Heating Equipment Used by The Heat-Treating Industry

Direct Fired Tempering and Homogenizing Furnaces

Metal Heat Treating - Indirectly heated heat-treating furnaces

Indirect heating using radiant tubes with a convection fan in a heat-treating furnace

Large pit furnace – direct fired with metal retort to isolate load from flue products

Courtesy: Surface Combustion

Induction Equipment for Metal Heat Treating and Heating

Horizontal Vacuum Furnace

Glass Annealing Systems

Metal Heating

- To raise temperature of metal without melting, fusing or changing chemical properties:
 - Direct fired furnaces
 - Various configurations
 - Induction heating systems
- Current level of efficiency 40% to 60%
- Energy Source Natural gas and electricity
- Major industries using Metal Heating
 - Steel, aluminum, other non-ferrous metals

Electrically-Heated Furnace

Notice:

- Electric heating element connections
- Lack of burners, vents, air-gas piping or flue gas vents or ducts

Reheating Furnaces

- Walking Beam Hearth
- Pusher
- Roller Hearth
- Rotary

Slab Reheating Furnace

Roller Hearth

Rotary Hearth

Walking Beam Walking Hearth

Pusher Furnace

Metal and Non-metal Melting

- To raise temperature of metal or non-metal to (or above) its melting temperature.
 - Direct fired furnaces
 - Various configurations
 - Induction heating systems
 - Electric arc furnaces
- Current level of efficiency 30% to 60%
- Energy Source Natural gas, coke and electricity
- Major Applications
- Metal Melting: Iron and steel, aluminum, other metals
- Non-Metal Melting: Glass

Cupola Furnaces for Iron Melting

Metal Melting - Fuel Fired furnace for Aluminum Melting

Conventional Reverberatory Furnace Used for Aluminum Melting. Usually fuel (natural gas or fuel oil) fired with a holding zone

Typical burner firing for Reverberatory Furnace

Types of Induction Melting Furnaces

2 most common induction melting furnace designs are coreless & channel furnaces:

Coreless melting furnaces

- Use a refractory envelope to contain metal, & surround that by coil.
- Charge acts as single secondary turn, thereby producing heat through eddy current flow when power is applied to multi-turn primary coil.
- When metal melts, these electromagnetic forces also produce a stirring action.
- Mixing & melting rates can be controlled by carefully selecting frequency & power.

Induction channel furnaces

- Use an inductor, comprised of water-cooled coil as energy source.
- Channel is formed in refractory through coil & forms a continuous loop with metal in main part of furnace.
- Hot metal in channel circulates into main body of metal in furnace envelope & is replaced by colder metal.
- Unlike coreless induction furnace, a source of primary molten metal is required for startup of channel furnace.
- These furnaces do have lower surface turbulence within main metal bath.

Metal Melting - Induction Melting Furnaces

Coreless Induction Melter

Channel Induction Melter

Metal Melting - Electric Arc Furnace

Electric arc melting furnace with oxy-fuel burners and carbon injection to reduce electricity usage

Glass Melting Furnaces

Regenerative Gas Fired Melter

Electric Melting Furnace

Glass Melting Furnaces

Smelting and Agglomeration

- To fuse or melt materials to separate their metallic or non-metallic constituents (as in ore reduction).
 - Direct fired furnaces
 - Various configurations
- Current level of efficiency 30% to 50%
- Energy Source Natural gas, coke or by-product fuels
- Major industries using Smelting and Agglomeration
 - Iron and steel, aluminum, copper, mining

Smelting and Agglomeration Flash Smelting of Copper

Smelting and Agglomeration - Conventional Smelting Furnace (Copper smelting)

Curing and Forming

- To heat materials (commonly organics) to promote chemical change, to bond, fuse, to change shape, etc. without melting.
 - Direct fired ovens
 - Various configurations
 - Infra-red heating systems (gas or electric)
 - Hot liquid or steam heated systems
- Current level of efficiency 50% to 70%
- Energy Source Natural gas and electricity
- Major industries using Curing and Forming
 - Chemical (Plastic, polymers, paints etc.)
 - Iron and steel, aluminum coating and lamination

Curing and Forming - Infrared heating

Curing and Forming - Convection Ovens

Conveyor Type Drying Ovens with High Convection Recirculating Gases

Coil Coating – Drying Ovens with High Convection Recirculating Gases

Other Heating

- To heat material or equipment (i.e., Thermal Oxidizers, Ladle Heating, Tundish Heating, etc.)
 - Direct fired ovens
 - Various configurations
 - Infra-red heating systems (gas or electric)
 - Hot liquid or steam heated systems
- Current level of efficiency 50% to 70%
- Energy Source Natural gas, electricity or other
- Major industries using Other Heating
 - Various

Thermal Oxidizers

Thermal Oxidizers convert hydrocarbon air pollutants to carbon dioxide & water where time, temperature, & turbulence are important for destruction efficiency.

Thermal Oxidizers

Regenerative Thermal Oxidizer

Recuperative Thermal Oxidizer

Thermal Oxidizers convert air pollutants (Volatile Organic Compounds – VOCs) to carbon dioxide & water at temperatures ranging from 1,350 to 1,500 degree F.

Catalytic Oxidizers

Catalytic Oxidizers convert air pollutants (VOCs) to carbon dioxide & water at temperatures ranging from 500 to 650 degree F. Catalyst used is composed of precious metal deposited on either a monolith or pelleted substrate. Under normal operating conditions, catalyst life expectancy exceeds 10 years.

Other Heating - Ladle Heaters

Conventional ladle heating practice using open flame burner

Efficient ladle heater using forced air burners and, in some cases, recuperator to preheat combustion air

