

Let's quickly address some of the Homework responses

- What's the compression ratio of the single stage compressor below?
 - 13.5 psia inlet pressure
 - 113.5 psia discharge pressure
- assuming 1 atm=13.5 psia, that would be 0 psig inlet and 100 psig discharge

```
\frac{113.5}{13.5} = 8.4 Ratios
```


- Dust wearing inlet modulation valve
- Leaks
- Cold Weather freezing condensate lines
- Compressor loading and unloading frequently
- No wet tank
- Loud screech at 90 to 95% load
- Water in the lines during different times of the year
- losing oil and I think it's mixing with water on the oil/water separator

- Compressor room is too warm. Poorly ventilated.
- No bypass piping at filter housing. Causes us to shutdown system to change filters.
- Optimizing compressed air energy use (main compressor in use with two backup compressors)
- Pressure drops at point of use
- Compressor left running during non-operating times
- Potentially oversized receiver tank
- Humidity, loss of pressure, contamination (oil)

- High inlet temperature Usually on cooling of oil or cooling of interstage/discharge coolers
- Water in the system What solenoids activated systems are people using at compressors, receivers and dryers?
- Dirt/clogged coolers What options of cleaning solutions other companies utilizing?
- Motor overload
 - Note: Air-cooled screw compressors are used

- Dryer desiccant power looks like crushed in powered form, which might not be fully drying the air
- There is a continuous hissing sound of our Dryer, so we are not sure of the dryer if it is cycling properly or not.
- We are not sure how much flow each compressor is putting out? One compressor has a rating of 1468 CFM @ 125 PSI and another has 1572 ACFM. But we have put on a flowmeter after dryer which displays close to 1550 CFM. So, we are not sure if our compressors even putting out what they are supposed to? Should we pout flowmeters at discharge of each compressor?

- Condensate traps are insufficient, especially in those shops where centralized package units have been installed.
- The Pressure Drop at dryer end is greater than 6~8 psi probably due to inadequate reduction in dryer inlet and outlet.
- Auto Drain Trap on Wet Receiver gets blocked frequently.
- Line distribution losses are very high throughout the facility.
- We are using black iron piping for our air system which can develop a lot rust overtime.

- All condensate traps on dry receivers and moisture separators are bypassed (every single one). This leads to wasted compressed air blowing to atmosphere with condensed water.
- When I ask operations why the traps are bypassed, they tell me: "They don't work. If we don't bypass them, water level builds up in the separator and receiver then we get wet air or we trip an interlock on high water level." The irony is over decades we have added compressed air users, but we have not added one molecule of compressed air capacity. So we don't have air to waste. Yet we waste it.

Load/No-load Control Curve

This graph shows the effect of receiver size on the part load power of a lubricant injected rotary screw compressor with load/unload controls

₽

Rotary Screw

Moisture Content during a 40 HOUR WEEK

- Typical 25 hp compressor produces about 100 SCFM (Standard Cubic Feet Per Minute) at 100 psig.
- During a 40-hour week the compressor would discharge approximately 240,000 SCF into the plant piping system.
- 100 standard cubic feet/min x 60 minutes x 40 hours = 240,000 scf

The Aftercooler Must Work!

Capacity	100	cfm
	102	psi (g)
	80	°F
Air Usage	100	cfm

Water Remaining in Compressed Air

Dewpoint

127°F

98°F

87°F

37°F

-40°F

Gallons

Week

76.4

32.6

23.7

4.3

0.09

Annum

3975.0

1693.0

1232.8

225.9

4.8

8.8.0	+	-		17 1	
IVIE					1.5
		-	~		

Imperial Units

Drying Method

No Treatment

After Cooler

Deliquescent

Refrigerant

Desiccant

Drying Method	Dewpoint	Litres Week	Litres Annum
No Treatment	53°C	347.5	18068.2
After Cooler	37°C	148.0	7695.4
Deliquescent	26°C	107.8	5603.7
Refrigerant	3°C	19.7	1026.6
Desiccant	-40°C	0.4	22.0

Ē

The Aftercooler Must Work!

Capacity	100	cfm
	102	psi (g)
	80	°F
Air Usage	100	cfm

Imperial Units					35
Drying Method	Dewpoint	Gallons Week	Gallons Annum		
No Treatment	154°F	145.2	7552.5		30,
After Cooler	98°F	32.6	1693.0	Ŀ,	
Deliquescent	87°F	23.7	1232.8	ed A	25
Refrigerant	37°F	4.3	225.9	ess	
Desiccant	-40°F	0.09	4.8	mpr	20
Metric Units				C L	20
Drying Method	Dewpoint	Litres Week	Litres Annum	ntenti	15
No Treatment	68°C	660.2	34329.5	ပိ	
After Cooler	37°C	148.0	7695.4	/atel	10
Deliquescent	26°C	107.8	5603.7	5	
Refrigerant	3°C	19.7	1026.6		5

0.4

-40°C

22.0

Water Remaining in Compressed Air

Desiccant

Ē

Moisture Content

- Assume at the aftercooler outlet, the air is 80°F and saturated.
- Each scf contains 1.42 grains of moisture vapor at 80°F.
- The air surrounding the airlines is 70°F.
- Is this 10°F reduction in temperature enough to cause appreciable condensation ??

MOISTURE CONTENT

- At 80°F there is 1.42 grains per standard cubic foot.
- At 70°F a standard cubic foot of free air will still hold 1.03 grains of moisture vapor at 100% relative humidity.
- Making a difference of .39 grains per cubic foot.
- Multiply this by 240,000 standard cubic feet/week.

EQUALS 93,600 GRAINS OF MOISTURE CONDENSING IN ONE WEEK BECAUSE OF A 10 DEGREE REDUCTION IN TEMPERATURE!!

MOISTURE CONTENT

- 7000 grains of water equals one pound or one pint
- 93,600 divided by 7000 equals 13.4 pounds or 13 pints

Just a 10° F drop in temperature will allow 13 pints (1.625 gallons) of water to condense into the piping system in 40 hours!

Even with this amount of water removed, the RH is still 100% and the dew point down stream of the aftercooler is now 70° F

Is the Separator and Trap Even Working?

Is the Separator and Trap Even Working?

Quick Review on Flowmeters

Types of Meters - Comparisons

Better

Plants

						↔	
	Thermal	Vortex	DP – Orifice plate	DP – Insertion	Coriolis	Turbine/ rotary displacement	Clamp on ultrason ic
Mass flow	Yes	Optional	Optional	Optional	Yes	Optional	Optional
Meter run	20D	15D	15D	20D	0D	10D	20D
Pressure loss	Low	Medium/hig h	high	Low	Low	Low	Low
Dirty air	Fouling	OK	Clogging	Fouling/Clog	Internal fouling	Faillure	OK
Wet Air	Spikes	OK, spikes	OK	OK, orientation	Yes, but affects reading	Faillure	Spikes
Range	1:250	1:10	1:10	1:10	1:100	1:100	1:100
Accuracy	2%	2%	2%	2%	0.5 1%	0.51 %	1%
Purchase price	\$	\$	\$	\$S	\$\$\$\$	\$\$	\$\$\$
Maintenance	Medium	Low	Medium	Medium	Low	High	Low

Orifice Plate Flow Meters

These meters are another carry over from fluid engineering.

They operate on the physics of a pressure drop being created as a medium flows through an orifice.

The problem with these meters is just that; they, themselves are a pressure drop.

Differential Pressure Technology

- Speed of air creates differential pressure signal over the positive and negative port.
- Low speeds do not generate a stable Dif. Pressure.

Differential Pressure Technology

- Unique sensitivity in the lower measuring range: Measures from as little as 2 m/s and thus covers the complete operating range of variable speed drive (VSD) compressors
- Particularly suitable for extremely high flow rates
- Flow, total consumption, temperature and pressure
- Measurement at high temperatures, max. temperature 180°C (356°F)
- Installation via 1/2" ball valve under pressure.

Min and Max Flow per Pipe Size

- DP flow meters have a min and max flow range. Below the minimum range the flow meter will read flaky or no flow, we call this the dead zone, 0 to 20 m/sec (0 to 65 ft/sec).
- In different pipe sizes this dead zone will have a different Q min, see the tables below.

	Schedule 40 Standard Seamless Carbon Steel Pipe						Schedule	10 Standard	Seamless Ca	rbon Steel Pi	pe		
Size (inch)	DN	ID (inch)	ID (mm)	Min flow (scfm)	Max flow (scfm)	Min flow (m³₀/hr)	Max flow (m³n/hr)	ID (inch)	ID (mm)	Min flow (scfm)	Max flow (scfm)	Min flow (m ³ n/hr)	Max flow (m³n/hr)
2	50	2,1	52,5	92	917	156	1559	2,2	54,8	100	999	170	1697
3	80	3,1	77,9	202	2021	343	3434	3,3	82,8	228	2282	388	3877
4	100	4,0	102,3	348	3481	591	5913	4,3	108,2	390	3897	662	6621
6	150	6,1	154,1	790	7899	1342	13420	6,4	161,5	868	8678	1474	14743
8	200	8,0	202,7	1368	13678	2324	23238	8,3	211,6	1490	14897	2531	25309
10	250	10,2	259,1	2234	22341	3796	37957	10,4	264,7	2332	23316	3961	39612
12	300	11,9	303,2	3060	30604	5199	51994	12,4	314,7	3296	32965	5601	56006
16	400	15,0	381,0	4832	48316	8209	82087	15,6	396,8	5242	52420	8906	89058
20	500	18,8	477,8	7599	75994	12911	129110	19,6	496,9	8219	82191	13964	139638

Flow Meter Location

Picture	Description	Upstream length²	Downstream length ²	Effect
	Single elbow	30 * D1	10 * D1	Distorted flow profile
	Complex feed-in situation (header)	40 * D1	10 * D1	Flow profile will be distorted
	Double elbow, multiple elbows following each other	40 * D1	10 * D1	Distorted profile + swirl
	Diameter change from small to large (gradual or instant)	40 * D1	5 *D1	Jet shaped flow
	Diameter change from large to small (gradual change, between 7 and 15 degrees)	10 * D1	5 * D1	Flattened flow profile

Ē

F

DP Insertion Flow Meters

- Insertion style Differential Pressure meter for saturated compressed air flow measurements.
- A differential pressure flow sensor measures bidirectional flow, pressure, temperature and total flow simultaneously.
- They are intended for use in high velocity applications where there is a continuous flow over a minimum value, such as compressor efficiency monitoring.

Compressor Controls

Compressor Control Types

- Start/Stop
- Load/Unload
- Modulating
- Variable Displacement
- Variable Speed

Performance Curves

Various Compressor Control Performance Curves

Per cent Capacity (Flow Out)

Basic Compressor Design (Air Inlet Controls)

Air Inlet Controls / Regulation Types "their differences"

Part Load Performance of Various Regulation Types

	Modulation Control	Rotor Length Adjustment	Full Load / No Load	VSD
% Capacity	% Bhp	% Bhp	% Bhp	% Input kW
100	100	100	100	100
90	97	93	92.5	90
80	94	85	85	80
70	91	78	77.5	70
60	88	72	70	61
50	85	67	62.5	53
40	82	64	55	43.5
30	79	55	47.5	35
20	76	45	40	26
10	73	35	32.5	
0	70	25	25	

Inlet Throttling

Capacity Control by Inlet Throttling

- Atmospheric pressure 14.7 psia
- Intake pressure 9.0 psia
- Discharge pressure 114.7
- Compression ratio: 114.7/9.0 = 12.7 to 1
- End Result?? Increased internal leakage due to a higher compression ratio

Capacity Control by Inlet Throttling

- Varies capacity by throttling (restricting) the inlet flow
- Provides a relatively stable output pressure
- Energy hog... least efficient
- Every 10% reduction in capacity yields only a 3% reduction in power(BHP)
- At zero capacity, power remains at 70% of full load power

Inlet Valve Modulation

- The example shows a discharge pressure range of 100 - 110 psig.
- As discharge pressure rises from 100 to 110 psig, a proportional pressure regulator provides a control pressure from 0 - 30 psig, to progressively close the inlet valve.
- As the inlet valve closes, the absolute pressure at the inlet of the air end is reduced.

Inlet Valve Modulation

- This reduces the mass flow of air entering the air end in direct proportion to the absolute pressure.
- However, the reduced inlet pressure, with increasing discharge pressure, results in increasing pressure ratio.
- At 40% capacity the pressure ratio will be 124.7/5.88 = 21.21.
- This is why there is not much reduction in the power

requirement.

- Valves progressively opens ports connecting the compression chamber back to the compressor intake in response to rising discharge pressure.
- This allows some of the intake air to be returned to the compressor inlet before it gets compressed and uses power
- This progressive opening of by-pass ports has the effect of shortening the length of the rotors after the lobes seal without choking the intake and increasing the compression ratio

Ē

Original Version

- UP TO 55% TURN DOWN

Load/No-load Control Curve

This graph shows the effect of receiver size on the part load power of a lubricant injected rotary screw compressor with load/unload controls

Load/Unload and Storage Size

- It is falsely assumed that a straight line, from full load bhp to unloaded bhp, represents the actual power requirement in this mode of operation.
- Sump blow down times will vary by machine size, but typically this takes in the range of 20 to 60 seconds to prevent foaming of the lubricant with the potential of excessive lubricant carry-over.
- In many cases, the system pressure will fall and the compressor will re-load before the fully unloaded power is realized.

Capacity Control by Load/No-Load

- During blow-off, the compressor is still running against significant back pressure and consuming a lot of power
- Bigger sump vessels lead to longer blow-off times and more energy consumption

Capacity Control by Load/No-Load

Variable Speed Compressors

- The most common VSD is the variable frequency drive, which converts 60 Hz alternating current to direct current and then reconverts it to the proper frequency required to turn the drive motor at the desired speed.
- The variable frequency drive is less efficient at full load compared to modulation controls because the electrical conversions usually consume an additional two to four percent more energy.
- Compressor discharge pressure can be held to within +/- 1
- In order to provide efficient VSD regulation over the complete range of the customer's air profile, the VSD operational flow from min to max, needs to be sized so it will always be in its turndown range.

員

Losses – VSD vs Fixed Speed

Losses – VSD vs Fixed Speed

Variable Speed Compressors

 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the range of the VSD from min to max needs to be sized greater than the load/no load machine

Variable Speed Compressors and Control Gap

This system can provide a steady operating pressure throughout the flow range of the system as long as the system is properly controlled with a master controller.

How do I know my flow patterns to size a VSD Correctly?

Flow Histogram Mean=658.2, Standard Deviation=124.469, Skewness=-0.238556

How do I know my flow patterns to size a VSD Correctly?

40% 37.0% 35% 30% 25% Frequency 20% 15% 14.1% 13.4% 12.5% 10% 10.3% 10.2% 5% 2.3% 0 10000 12000 13000 1000 2000 3000 4000 5000 6000 1000 8000 000 17000 14000 ,5000 16000 1000 18000 0

Total Cold Mill Flow Mean=11019, Standard Deviation=2290.25, Skewness=-0.158592

Control Gap and Position

 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the cfm of the VSD needs to be greater than the load/no load machine

Centrifugal Compressor Control

- Performance is affected by inlet conditions and cooling water temperature
- Characteristic curve is determined by impeller design
- Two conditions should be avoided:
 - Surge (flow reversal)
 - Choke (excessive flow vs. frame design)
- Inlet throttle valves modulate the compressor to reduced flow and power but are limited by surge condition
- Blow-off valves control capacity below throttling limit

=

I

Centrifugal Compressor Control

- Centrifugal compressor, "seal air" refers to a pressurized air supply used to maintain a seal between the rotating shaft and the compressor casing, preventing the process gas from escaping into the atmosphere;
- It's a pressurized air barrier that helps keep the high-pressure gas contained within the compressor by creating a positive pressure against the rotating shaft seals.
- No, not all centrifugal compressors require seal air, but some do use dry gas seals that require seal gas.
- Some use wet seals, which use oil, or dry seals, which use a mechanical barrier. Dry gas seals require seal gas to operate

Building the Profile

Ē

Centrifugal Compressor Control Common Terms

How do I know how to size Centrifugal to my flow Patterns?

- Plant has 8000 cfm peak demand, 5800 cfm average demand, and 3000 cfm minimum demand during weekends at operating pressure of 100 psig.
- Two 4000 cfm centrifugals with a 30% turndown to 2800 cfm

How do I know how to size Centrifugal to my flow Patterns?

- During peak demand of 8000 cfm, both compressors will run at full load.
- When the flow demand is reduced to the average demand of 5800 cfm, the two centrifugal compressors will close the inlet guide valve and run in its turndown range without exhausting any compressed air to atmosphere.

How do I know how to size Centrifugal to my flow Patterns?

- During the weekend, when the demand reaches to minimum flow of 3000 cfm, one centrifugal compressor will stop and only one compressor will run in its turndown range.
- With this combination, the centrifugal compressors will work most efficiently and save a plant significant energy.
- If flow drops below min flow of the centrifugal, a rotary screw can be added to assist with keeping the plant operating and allowing the centrifugal to stay out of blow down.

Centrifugal vs VSD Turndown

Ē

Inlet Guide Vanes - Open

■

Inlet Guide Vanes - Closed

F

Centrifugal Compressor Control

The relationship of flow and pressure for dynamic compressors is different from that of positive displacement machines.

Effects on dynamic compressor performance

- Inlet pressure
- Inlet air temperature
- Cooling water temperature

INLET TEMPERATURE CHANGE – EFFECT ON AIR OUTPUT

DISCHARGE PRESSURE CHANGE – EFFECT ON AIR OUTPUT

Inlet Pressure Effects On Dynamic Compressor Performance

Inlet pressure

Cooling Water Effects On Dynamic Compressor Performance

Cooling water temperature

Cooling Water Effects On Dynamic Compressor Performance

- Mass flow is determined in the first stage of cooling. That is the air that is delivered to the 2nd and 3rd stages.
- The cooler the air delivered, the more mass flow. The hotter the air delivered, the less mass flow. Manufacturers can redraw the performance curve on a centrifugal with various water temperatures so you can actually see the difference in flow.

Cooling water temperature

Inlet Air Temperature Effects On Dynamic Compressor Performance

Curve showing air compressor performance at a 34°F inlet,60% RH, 77°F Coolant and 125 psig discharge pressure:

Ē

Curve showing air compressor horse power at a 34°F inlet,60% RH, 77°F Coolant and 125 psig discharge pressure:

Curve showing air compressor performance at a 104°F inlet,100% RH, 77°F Coolant and 125 psig discharge pressure:

Ē

Curve showing air compressor horsepower at a 104°F inlet, 100% RH, 77°F Coolant and 125 psig discharge pressure:

Ē

Multiple Compressor Controls

- Maintains a consistent air pressure in the network within tight parameters.
- Simple installation process.
- Compatible with various types of compressors.
- Improved service intervals lead to reduced maintenance costs.
- Option for prioritizing old machines over new ones.
- Staggered start times: Avoid starting two or more machines simultaneously to prevent high current spikes.
- Base load compressors can pre-fill a network to mitigate load peaks.

Multiple Compressor Control

- Very simple user interface = minimum user training.
- Machines are used more efficiently.
- Energy reduction = immediately saves money.
- Full compressor & network status feed- back.
- Programmable pressure schedule.
- PC monitoring & analysing possibilities.

Cascade Compressor Control

Master Controls

Master Control Basics

Cascaded Pressure Switches Vs Master

- Primary function: Stabilize pressure regardless of demand
- Most compressor controls cause 3-10 psi swings
- Multiple compressors can compound the system pressure swings
- Pressure/flow controllers typically hold pressure to production within ± 1% of set point
- The following graph is from a system with 9 compressors totaling over 6,000 hp – pressure is set at 79 psig

- The compressor discharge pressure varies about 10 psi as the trim compressor loads and unloads to meet plant demand.
- The pressure to the plant is kept at a constant 79 psig.

Best Practice with Pressure Flow Controller

Ē

 A typical block diagram of a pressure/flow controller in a compressed air system with one point of entry (single compressor room)

Primary Storage

Controls Summary

Create a control strategy:

- ✓ Know how your controls work
- ✓ Realize the pros and cons of different controls
- ✓ Recognize how controls affect part load efficiency
- ✓ Understand how storage affects the effectiveness of control strategies

Logtool, and the MEASUR Tool

Why AIRMaster+?

- ~90% of energy input to compressor never reaches tools (waste heat, drying, etc.)
- Leaks +pressure drops remove air energy before reaching tools-sometimes >50%
- Poor or improperly adjusted controls leave several compressors operating a part load
- System assessments can be an arduous task using spreadsheets that must be modified for each job
- MEASUR provides a systematic approach to assessing compressed air systems, analyzing collected data, and reporting results

What Can This Tool Help Me With?

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

What Can This Tool Help Me With?

Produce more efficiently

- Improve Compressor Control
- Type of Compressor Control

Use less compressed air

- Reduce System Pressure
- Reduce Air Demand
- How does compressed air support production?

Compressed Air Versus Other Energy Sources

- 1 hp air motor = 7-8 hp of electrical power
 - 30 scfm @ 90 psig is required by the air motor
 - 6 7 bhp at compressor shaft required for 30 scfm
 - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194

■

MEASUR Features

- MEASUR is an open-source software tool used to analyze industrial compressed air systems:
- Simulates existing and modified compressed air system operation
- Models part load system operation
- Assigns electrical utility energy schedules
- Enters 24-hour metered airflow or power data
- Is not a substitute for an experienced auditor!

Energy Efficiency Measures

- 1. Reduce Air Leaks
- 2. Improve End Use Efficiency
- 3. Reduce System Air Pressure
- 4. Use Unloading Controls

- 5. Adjust Cascading Set Points
- 6. Use Automatic Sequencer
- 7. Reduce Run Time
- 8. Add Primary Receiver Volume

Why LogTool?

- LogTool is a public domain tool developed by SBW Consulting with support from the Compressed Air Challenge[™].
- It is designed to assist in the analysis of compressed air system performance measurements.
- It was a companion tool for Airmaster+ available from the US DOE and CAC.

LogTool is Designed To:

- Import data which is exported from different types of data loggers.
- Select logger data channels and modify their properties.
 - e.g., name, type, units, etc.
- View data values for one or more logger channels.
- Display trend plots on one or two Y axis.
- Display scatter plots.
- Display daytype plots in the format that is needed for AIRMaster+

MEASUR Main Menu

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators. Get started with one of the following options.

If you need help at any point along the way, click on a 🗾 User Manual icon.

Box Plant Company Example

Baseline Info

- 200 hp baseloaded compressor rated 1014 acfm using modulated inlet control
- 250 hp trim compressor rated 1269 acfm using modulated inlet control operating at 40% output
- Production is 24/6 with Sundays off
- Average flow during Monday to Saturday is 1500 cfm
- Baseline energy is 2,587,516 kWh or \$174,657 using \$.0675/kWh
- Leakage is estimated to be about 600 cfm based on leak down test

Baseline Info

- Air Operated Diaphragm Pumps (AOD) are in use and can be replaced with electric driven pumps made to pump heavy viscous fluids such as glue
- 3-inch pipe is used in the compressor room to handle almost 1500 scfm of flow. This is borderline undersized and is creating additional pressure drop.
- Both compressors must run to support production. Neither one by itself can run production. There is no redundancy at this plant for compressed air.

CHAPTER 4

Compressed Air Distribution (Systems)

Table 4.7 Loss of Air Pressure Due to Friction

	Equivalent	t											
Cu ft	Cu ft				Nom	inal Di	ameter	In					
Free Air	Compresse	d			1,011		anneter,						
Per Min	Air	1/. 3/.		1	1.17	1.17	2	2	4	6	0	10	12
	Per Min	1/2	5/4	1	1 1/4	1 1/2	2	2	4	0	0	10	12
10	1.28	6.50	99. (0.28				· · · · · · · · ·					
20	2.56	25.9	3.90	1.11	0.25	0.11							
30	3.84	58.5	9.01	2.51	0.57	0.26							
40	5.12		16.0	4.45	1.03	0.46							
50	6.41		25.1	9.96	1.61	0.71	0.19						
60	7.68		36.2	10.0	2.32	1.02	0.28						
70	8.96		49.3	13.7	3.16	1.40	0.37						
80	10.24		64.5.	17.8	4.14	1.83	0.49						
90	11.52		82.8	22.6	5.23	2.32	0.62						
100	12.81			27.9	6.47	2.86	0.77						
125	15.82			48.6	10.2	4.49	1.19						
150	19.23			62.8	14.6	6.43	1.72	0.21					
175	22.40				19.8	8.72	2.36	0.28					
200	25.62				25.9	11.4	3.06	0.37					
250	31.64				40.4	17.9	4.78	0.58					
300	38.44				58.2	25.8	6.85	0.84	0.20				
350	44.80					35.1	9.36	1.14	0.27				
400	51.24					45.8	12.1	1.50	0.35				
450	57.65					58.0	15.4	1.89	0.46				
500	63.28					71.6	19.2	2.34	0.55				
600	76.88						27.6	3.36	0.79				
700	89.60						37.7	4.55	1.09				
800	102.5						49.0	5.89	1.42				
900	115.3						62.3	7.6	1.80				
1 000	128.1						76.9	93	2.21				
1,500	192.3							21.0	4.9	0.57			
2,000	256.2						*	37.4	8.8	0.99	0.24		

LogTool Trend Plot

Better Plants

U.S. DEPARTMENT OF

LogTool Trend Plot

U.S. DEPARTMENT OF

EN

Bleed Down Test Calculation

Cfm Leakage =	[V x (P1 - P2) x 1.25]/(T x	(14.7)				
Where	V=	453.9	Cu ft				
	P1=	118.66	Psig				
	P2 =	59.33	Psig				
	T =	3.50	Minute				
Cfm Leakage =	654.34						
% Leakage =	Measured c	fm leakage/t	otal cfm	output c	of plant c	ompress	ors
% Leakage =	32.3%	Assuming 4	cfm/hp a	nd total	HP of 45	50	

Leakage (cfm free air) =
$$\left[\frac{V_{cf} \times (P_1 - P_2)}{T_m \times P_a}\right] \times 1.25$$

Bleed Down Using MEASUR

Total System Volume

Atmospheric Pressure

Normal Operating Pressure

Test Pressure

Time

Leakage

453.9	ft ³
14.7	psia
118.66	psig
59.33	psig
3.5	min

654.27 CFM

LogTool Trend Plot

🖏 Import/Manage Logger Data in: IP LogTool.mdb	×	
Logger File Type Select Logger Data Files Fo Pace Pocket Logger Software HOBDware for Windows FLUKE Hydra Logger DP 3000 Configuration Software SULLAIR LogAir Software Ranger Pronto For Windows Wonderware ActiveFactory Unknown Logger Software V 	Help File Status	
Channels in Files Checked for Import		
Charinels in Files Checked for Import Import File Name Longer ID Longer Name Ch # Name Tupe Unite Period	Sustem	
Import Checked Channels Check All Channels		
Logger Channels Imported to this MUB File	Internal (see)	
Delete Name Type Onits Period System Start End N Wet Tank Pressure psig Not Assigned = 1/11/2019/11/40/51 1/22/2019/14/		
Dru Tank Pressure T nsig T Not Assigned T Not Assigned T 1/11/2018 11:43:14 1/23/2018 14:	36.23 3	
40 inch pre feed Pressure - psig - Not Assigned - Not Assigned - 1/11/2018 12:12:03 1/23/2018 15:	05:12 3	
40 inch main header Pressure 👻 psig 🔍 Not Assigned 🖵 Not Assigned 🖵 1/11/2018 12:15:25 1/23/2018 15:	08:34 3	
🔲 🔲 Exit Conveyor Pusht Pressure 👻 psig 📼 Not Assigned 📼 Not Assigned 📼 1/11/2018 12:22:10 1/23/2018 15:	15:19 3	
📃 🔲 Waste Water 🛛 Pressure 🖵 psig 🖵 Not Assigned 🖵 Not Assigned 🖵 1/11/2018 12:05:48 1/23/2018 14:	58:57 3	
□ 200 QNW Power - kW - Not Assigned - Not Assigned - 1/11/2018 11:35:38 1/23/2018 14:	29:59 3	
📃 🔲 250 QNW Power 💌 kW 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 11:31:38 1/23/2018 14:	24:47 3	
Delete Checked Channels		

LogTool Main Menu

LagTool v2 − □ ×
File Tools Help
Eile Eile Create a New Database (.MDB File) Help
D:\WEEC 2018\International Paper Company
Import Logger Data
Trend Scatter DauTupe
Trend Scatter DavType
View Y1 Y2 X Y Include Name Type Units Period System Start End Interval (sec.)
Data 🔽 🗖 🔽 🔽 Wet Tank Pressure 🔽 psig 🔽 Not Assigned 🔽 Not Assigned 🔽 1/11/2018 11:46:51 1/23/2018 14:40:00 3
Data 🔽 🗖 🗖 🗖 Dry Tank Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 11:43:14 1/23/2018 14:36:23 3
Data 🔽 🗖 🗖 🗖 🗶 40 inch pre feed Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 12:12:03 1/23/2018 15:05:12 3
Data 🔽 🗖 🗖 🗖 🗶 40 inch main head Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 12:15:25 1/23/2018 15:08:34 3
Data 🔽 🗖 🗖 🗖 Exit Conveyor Pusl Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 12:22:10 1/23/2018 15:15:19 3
Data 🔽 🗖 🗖 🗖 Waste Water Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 12:05:48 1/23/2018 14:58:57 3
Data 🔽 🔽 🔽 200 QNW Power 💌 kW 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 11:35:38 1/23/2018 14:29:59 3
Data 🔽 🔽 🔽 250 QNW Power 💌 kW 💌 Not Assigned 💌 Not Assigned 🔽 1/11/2018 11:31:38 1/23/2018 14:24:47 3
Trend Scatter DavTvpe

Enter LogTool Data Into AIRMaster

Better

Plants

DayType Profiles

DayType Profiles

DayType Profiles

LogTool Scatter Plot

Scatter Plot: Right-Click for Action Menu

MEASUR Tool

MEASUR Tool

Compressed Air Calculators

Compressed Air Reduction This calculator is used to quantify the energy savings associated with reducing compressed air usage.

Compressed Air Pressure Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air system pressure.

Actual to Standard Airflow

The calculator converts ACFM (Actual cubic feet per minute) to SCFM (Standard cubic feet per minute) and vice versa for the given conditions using either ASME standard conditions or CAGI/ISO standard conditions.

Leak Loss Estimator - Bag Method

Estimates the leakage losses in a compressed air system using the bag method

Pneumatic Air Requirement

Estimate the quantity of air required by a specific single acting or a double acting piston cylinder compressor

Compressed Air - Leak Survey

Used to quantify the energy savings associated with reducing compressed air leaks.

MEASUR Tool

Receiver Tank Sizing

Calculate the required size of the receiver tank

Usable Air Capacity

Estimate the quantity of compressed air that is available for use

Pipe Sizing

Determine pipe diameter when the volumetric flow velocity, pressure, and design velocity are known

Velocity in the Piping

Estimate the velocity of compressed air throughout system piping

System Capacity

Determine total capacity of compressed air system or specific pipes and receiver tanks

Operation Costs

Estimate the cost of operation of the compressor in both fully and partially loaded instances

Ĺ	Data Explorat	tion	Setup	Day Type Analysis Visualization			a 🕹 🗐 🏠
1	Import Data	2 Select Header Row	3 Refine Data 4 Map	Date and Time			
	Select a header row	and advance to the next file					
	Apply my sele	ections for all datasets					
	International_Pap	er_Co_inside_200hp_QSI1.csv	International_Paper_Co_outside_QSI	_n250h.csv			
	Select Header Row	,					
	0	Plot Title: International Paper Co i	inside 200hp QSI1				
	۲	#			Date Time, GMT-07:00	200hp QSI1000, kW	
	0	1			01/11/18 11:35:38 AM	179.256	
	0	2			01/11/18 11:35:41 AM	179.159	
	0	3			01/11/18 11:35:44 AM	179.061	
	0	4			01/11/18 11:35:47 AM	178.964	
	0	5			01/11/18 11:35:50 AM	179.159	
	0	6			01/11/18 11:35:53 AM	179.256	
	0	7			01/11/18 11:35:56 AM	179.451	
	0	8			01/11/18 11:35:59 AM	179.354	
	0	9			01/11/18 11:36:02 AM	179.451	

Data Expl	oration	*	Setup Day Type An	alysis Visualization		A 🕹 🗐 1
1 Import Data	2 Select Header Row	3 Refine Data	4 Map Date and Time			
Mark the column	is to be used for analysis and advanc	e to the next file				
Apply my	selections for all datasets					
International	Paper_Co_inside_200hp_QSI1.csv	International_Paper_C	o_outside_QSI_n250h.csv			
Column Name			Use Column	Alias	Display Unit	
#				#	+Add	
Date Time, GN	IT-07:00			Date Time, GMT-07:00	+Add	
200hp QSI100	0, kW		2	200hp QSI1000, kW	+Add	

Original Data		
#	Date Time, GMT-07:00	200hp QSI1000, kW
1	01/11/18 11:35:38 AM	179.256
2	01/11/18 11:35:41 AM	179.159

Data Exploratio	on 🕨	Set	Day Type Analysis Visualization		≙ ± <i>∎</i>
port Data	2 Select Header Row	3 Refine Data 4 Ma	p Date and Time		
 Timestamps ar Mark "Incluce Mark "Incluce 	re required for Day Type Analysis des Date" if the column contains des Time Only" if the column cor	s and time series data visualizations. Adv a date and time or a date only ntains a time only	ance ahead if you won't be working with ti	me data.	
Timestamp Help					
Apply my select	ctions for all datasets				
International_Paper	r_Co_inside_200hp_QSI1.csv	International_Paper_Co_outside_Q	SI_n250h.csv		
Column Name			Includes Date	Includes Time Only 🛛 😧	
Date Time, GMT-07:0	0				
ouside 250 hp, kW					
)ata Collection Inten	val				

Better

Plants

Data Exp		a 🕹 🗐 🌴				
Graph Data Table	Data: Total Aggregated Equipment Data 🔻			Day Types Day	Apply To Assessment	
		Total Aggregated Equipment Data (H	lourly Data Average)			
350 300 250 250 200 150 150 100 50 -50		Hourty			→ Jan 11, 2018 → Jan 12, 2018 → Jan 13, 2018 → Jan 14, 2018 → Jan 15, 2018 → Jan 16, 2018 → Jan 17, 2018 → Jan 19, 2018 → Jan 19, 2018 → Jan 21, 2018 → Jan 22, 2018 → Jan 23, 2018	
Day Types: 2 Janua Su Mo Tu U 1 2 7 8 9 14 15 16	 ★ Weekday ★ Weekend ★ Excluded + Add New Reset ary 2018 We Th Fr Sa 3 4 5 6 10 11 12 13 17 18 19 20 	Day Type Average Interval Hourly Select Columns for Total Aggregated Equipment I Apply my selections for all datasets International_Paper_Co_inside_200hp_QSI1.csv Column Name 200hp QSI1000, kW	Data: International_Paper_Co_outside_QSI_n250h.csv Include in Aggregated Data	Update Analysis	AIRMaster	
21 22 23 28 29 30	24 25 26 27 31		-			

Day Types

Dat	a Explo	ration						Setup	Day Type /	Analysis	Visualizati	on											≙ 🕹	8
Graph Data	Table	Data: Tota	al Aggregat	ed Equipr	nent Data	-												Display	Selected	Display All	Day Тур	bes Days	Apply To /	Assessment
Day Type S	Summari	es (Total)	Aggregate	d Equipr	nent Data	a)																		
Day type (0	1	2	3	1	-) 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Weekday	228.377	228.905	228.787	242.79	286.037	316.346	332.26	346.52	346.149	345.545	344.301	343.832	342.328	332.301	340.319	340.034	339.788	340.325	342.196	342.645	343.561	343.737	343.301	343.897
Neekend	344.453	337.26	294.106	242.105	230.29	142.398	141.889	141.907	142.721	142.478	142.019	141.54	140.985	140.712	140.507	139.788	139.802	140.537	141.008	141.615	141.356	140.843	141.28	141.524
Excluded	343.151	344.6	343.84	343.205	343.652	343.678	345.983	345.427	344.92	343.188	342.499	343.677	341.853	340.265	338.766	343.887	344.11	343.776	347.291	347.341	349.506	349.346	349.406	350.719
																							Cop	y Table
																								-
Dav Summ	aries (To	otal Aggre	dated Edi	upment [Data)																			
,	0	1	3	2		5	c	7	0	0	10	11	12	12	14	15	16	17	10	10	20	21	22	22
Neekday	U		2	5	4	5	0	,	0	5	10		12	15	14	15	10		10	15	20	21	~~~~	23
Jan 12, 2018	350.503	3 350.457	349.767	350.922	2 349.44	4 350.735	350.126	349.697	348.726	347.911	348.143	348.613	346.908	343.422	343.798	343.359	343.994	344.688	346.835	347.03	350.133	349.088	350.24	350.696
an 15, 2018	-62.48	-62.481	-62.479	-62.48	135.60	7 340.068	340.692	346.157	347.243	347.519	348.732	347.609	345.048	343.513	341.95	341.139	340.554	341.815	343.719	344.359	345.83	346.652	346.369	346.135
an 16, 2018	347.61	347.97	347.122	346.24	347.54	1 347.869	347.655	346.948	347.811	345.907	343.795	343.826	342.966	340.637	341.396	342.32	341.424	341.937	343.92	343.374	343.997	345.062	343.421	344.827
an 17, 2018	344.128	344.633	344.586	344.25	346.29	6 347.187	345.95	346.432	344.017	345.032	342.959	343.33	341.718	340.763	341.098	341.488	341.749	342.284	344.047	344.131	344.641	344.578	344.717	345.682
an 18, 2018	344.129	344.662	345.205	345.692	2 346.33	9 346.123	346.506	345.632	345.089	344.363	341.707	339.446	338.237	279.357	336.221	335.939	335.253	335.215	337.038	338.875	338.816	338.304	338.122	337.499
an 19, 2018	337.229	339.573	339.789	338.72	7 339.59	5 339.627	341.793	339.637	339.3	338.219	336.391	336.754	336.199	334.947	336.405	335.468	334.589	335.592	337.082	337.984	338.112	338.727	336.751	339.25
an 22, 2018	-62.479	-62.48	-62.48	36.16	137.43	9 142.81	253.096	351.139	350.856	349.867	348.384	347.243	345.219	343.466	341.363	340.524	340.952	340.747	342.73	342.761	343.397	343.746	343.488	343.188
Veekend																								
an 13, 2018	351.026	349.585	351.782	351.00	1 351.89	4 352.74	351.297	351.961	352.383	352.372	349.311	346.937	345.905	345.548	344.381	343.145	343.407	344.375	346.107	344.937	346.216	345.54	345.22	346.343
an 14, 2018	347.315	5 344.282	2 341.634	338.81	7 289.6	-62.48	-62.481	-62.479	-62.48	-62.48	-62.482	-62.481	-62.48	-62.48	-62.48	-62.488	-62.483	-62.48	-62.48	-62.479	-62.479	-62.48	-62.48	-62.48
an 20, 2010	241 5	216 500	5 339.17	541.073	5 62 47	0 62.479	541.210	62.49	545.46Z	542.497	545.729	544.105	542.992	542.259	542.007	540.974	540.766	542.129	342.005 62.470	540.404 62.49	544.10Z	542.192	544.00	544.71Z
all 21, 2010	541.5	510.505	145.057	-02.470	-02.473	-02.470	-02.470	-02.40	-02.40	-02.470	-02.40	-02.40	-02.411	-02.415	-02.401	-02.40	-02.401	-02.470	-02.475	-02.40	-02.470	-02.40	-02.475	-02.40
Jan 11, 2018												346.218	345.07	343.465	342.276	343.887	344.11	343.776	347.291	347.341	349.506	349.346	349.406	350.719
Jan 23, 2018	343.151	344.6	343.84	343.20	5 343.65	2 343.678	345.983	345.427	344.92	343.188	342.499	341.135	338.636	337.064	335.257	10.001								
																							Cor	
																							Cop	y Table
								1								_	_	_	_	_	_	_	_	_
Day Typ	es: ×V	Veekday	X Weeker	d Exclu	ded +/	Add New	Reset	Day	Type Aver	age Interva	Hourly	~								Update A	nalysis			
, •,																								
J	anuary	2018						Sal	act Colum	as for Total	Addredate	ed Equipm	ent Data:											
0.1	T. 147-	T	0-					Jei	eet oorann			ee Edeibiii	one build.											U.S. D

Е

Setup Profile	Profile Summary Table Profile Summary Graphs											VSD Selected Scenario		iew / Add Scenarios									
SELECT POTENTIAL ADJUSTMENT PROJECTS													MODIFICATION RESUL	.TS PERFORMANCE PRO		FILE	HELP	NOTES					
Select poter	Select potential adjustment projects to explore opportunities to increase efficiency and the effectiveness of your system.																All Day Types -						
				A	dd Ne	w Sc	enario										Base	line	VSD	VSD			
Modification Name VSD																							
Reduce Run Time supply														1 ~	Percent Savings (%) ——			39.6%					
Implementation Cost 106700 \$																							
Day Туре						We	ekday	,							\sim	Flow Reallocation Energy Savings Reduce Air Leaks Energy Savings			391,627 kWh 585,745 kWh				
	Capacity acfm	Shutdown Timer	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	Reduce Run Time Energy Savings Peak Demand	ce Run Time Energy Savings — — Demand 346.6 kW			-233,967 kWh 273.86 kW			
200 hp QNW	933 acfm															Annual Energy	2,620	,045 kWh	1,876,639 kWh				
250 hp QNW	1261 acfm															Annual Emission Output Rate	1,050	,821 tonne CO ₂	752,664 tonne CO ₂				
New Compresso	r 1141 acfm															Annual Energy Savings			743 405 kWh				
Available Airflow		933	933	933	933	933	2,074	2,074	2,074	2,074	2,074	2,074	2,074	2,074	Annual Emission Savings — —		298,158 tonne CO ₂						
Required Airflow	1		705	708	709	775	907	1,085	1,347	1,526	1,527	1,524	1,524	1,521	1,513				A05.0.17				
Power, kW			159.5	159.7	159.8	164.1	172.7	244.1	300.9	357.7	357.8	357.6	357.6	357.4	344.2	Flow Reallocation Savings			\$25,847 \$55,352	.38 94			
															Reduce Run Time Savings			-\$22,109.88					
Reduce AIr Leaks Demand													Peak Demand Cost	\$0.00		\$0.00							
Implementation Cost 5000 \$											Annual Energy Cost	\$247	594.21	\$177,342.40									
Leak Flow 600 acfm									Annual Cost	\$247	594.21	\$177,342.40											
Leak Reduction 50 %										Annual Energy Cost Savings				\$70.251.80									
Improve End Use Efficiency Demand														Off ∽	Annual Cost Savings			\$70,251.80					
Reduce Syste	em Air Pre	essure	Supply											(Off ∽								
Add Primary I	Add Primary Receiver Volume supply Off ~																						

Next Week Session 4 – Air Treatment

- Compressed air must be dried. This is an undeniable statement of fact.
 - Today's modern industry can no longer tolerate the problems of wet, dirty compressed air.
 - Wet air causes rust, pitting, blockages, and freeze-ups, with resultant component failure and product rejection.
 - Wet air is a major contributor of downtime, causing millions of dollars of lost production.

Homework for Week 3 – Compressor Controls

- Explain each of the following control methods:
 - Start/Stop
 - Load/Unload
 - Modulating
 - Variable Displacement
 - Variable Speed
 - Sequencer
 - Master Compressor Controller?
 - Pressure Flow Control?

Questions?

