

### **In-Plant Trainings**

Virtual Platform Session 1 The Basics



11111111

# What is an In-Plant Training?

- In-Plant Trainings (INPLTs) are specialized workshops by Better Plants experts that teach participants to identify, implement, and replicate energysaving projects.
- The aim is to help manufacturing plants enhance efficiency and lower energy usage.
- Before Covid, Better Plant partners conducted three-day on-site training sessions, inviting others to participate.
- In response to Covid challenges, we shifted to eight 2-hour virtual training sessions but have since returned to in-person sessions while still offering virtual options.
- Through Better Plants, industrial organizations set efficiency targets and receive technical support and national recognition for their efforts.





### The Facilitator

- 45 years in Industry, primarily in the auditing, consulting, training and system design fields.
- Specialty consists of Compressed Air Systems (oil flooded and oil free), Vacuum Systems, Contaminate Removal, System Design and Energy Management.
- Compressed air challenge instructor Fundamentals, Advanced and AirMaster
- Department of Energy (energy savings) expert on compressed air systems
- Vice-Chair for ASME Standard EA-4-2010 "Energy Assessment for Compressed Air Systems"
- Member of International Standards Organization (ISO) technical committee for Air Compressors and compressed air systems energy management;/SC6/WG4
- CAGI Certified Compressed Air System Specialist











### **Assessment Process**

### Prepare

Learn how to gather information

### Participate

 Find out what to expect and how to make the most of the assessment through examples, quizzes, homework.

### Implement

 Take action on the opportunities identified in this training and start saving energy.

### Communicate

 Share the success from your assessment with other plants and multiply benefits throughout your company





### Agenda

- Week 1 Compressed Air Systems Basics & Software Tools
- Week 2 Compressor Types and Ventilation
- Week 3 Compressor Controls
- Week 4 Air Treatment
- Week 5 Distribution System
- Week 6 Demand Side and Inappropriate Uses
- Week 7 System Volume vs Storage
- Week 8 Wrap Up Presentations (example, next slides)







### **Compressed Air Systems VINPLT: Close out Presentation**



11111111

### Company Name: OwensCorning Facility Name: OwensCorning Apeldoorn (NL) Participant Name(s): Hans Berkman





Energy Efficiency & Renewable Energy

### Block Diagram of the Compressed Air System





| Nr:      | Туре            | Operati<br>ng<br>hours | Year | Max<br>pressur<br>e | Remakrks<br>remarks | Needed maintanacne<br>Benodigd bijzonder<br>onderhoud   |
|----------|-----------------|------------------------|------|---------------------|---------------------|---------------------------------------------------------|
| Comp. 1  | GA4<br>5<br>VSD | 103.000                | 2010 | 13 bar              | variable            | Overhaul needed, replacement recommended by Atlas Copco |
| Comp. 2  | GA4<br>5+       | 85.500                 | 2010 | 8 bar               | Variable            | Overhaul needed, replacement recommended by Atlas Copco |
| Comp. 3  | GA7<br>5        | 55.000                 | 2002 | 8 bar               | Back-up             | water cooled<br>unreliable , lot of oil leakages        |
| Comp. 4  | GA7<br>5<br>VSD | 56.000                 | 2016 | 13 bar              | Main                | overhaul overdue                                        |
| dryer 1  | FD<br>450       | 202.000                | 2004 | 14,5 bar            |                     |                                                         |
| dryer 2  | FD<br>510<br>A  | 54.000                 | 2016 | 14 bar              |                     |                                                         |
| Filter 1 | DD<br>520<br>F  | 220.000                | 2000 | 16 bar              |                     |                                                         |
| Filter 2 | PD<br>520<br>F  | 220.000                | 2000 | 16 bar              |                     |                                                         |





## Savings Opportunities in Compressor Controls

- Install more flow and pressure measurements
- Eliminate peak loads , e.g from pigged lines
- Enlarge buffer capacity for reducing impact of pigged lines
  - Because the piping is quite long it uses a lot of CA in a shirt time , sometimes both line are active at the same time
- Make CA visible in the AspenTech data system
- Limit CA usage of vacuum cleaners as long they are in use





### Savings Opportunities in Pressure Setpoints

- Lower pressure setpoint for pigged lines, transport will take more time but it's possible
- Lower pressure setpoints for some diaphragm pumps when time is no issue
- Limit air usage for camera's (no restrictions now)





# Savings Opportunities in Compressed Air Distribution Systems

We already had a company in for a leakage survey, as soon as the report is available start fixing the leakages

Start restricting new equipment or process driven with CA

Test quantm pump at a position where a diaphragm pump is 24/7 in use





### Savings Opportunities in Compressed Air Users

- Reduce number of users Try to reduce simultaneously use Create a CA cost mindset
- Look for alternatives , perhaps there is E driven equipment now





# Tips Learned from this Training

- Awareness is very important
- Measuring show you the opportunities
- Start looking for leakages immediately
- Get in control
- Stop seeing CA as a quick and simple energy source
- Make a decent roadmap for improvements
  - Share improvements
  - Secure the improvements





# Next Steps or Action Items after the Compressed Air VINPLT

### • What are your next steps to implement opportunities?

- Overhauling of compressed air supply system
- Switch to quantm pumps if possible
- Find an other source for the needed air for the pigged lines
- What are you planning to do after the VINPLT?
  - Share learnings with more people in the plant for creating more awareness
  - Set up a compressed air usage dashboard
- Lessons learned?
  - A lot, we have a long way to go, for years there was no focus on CA at all, the motto " was too much is not too little" and when you have not enough you are in trouble





### **Questions and Answers**



- Will there be a follow up session
- Can we share more best practice cases
- It will take time to digest all the shared information

•







### **Compressed Air Systems Basics**

### **Compressed Air System Energy Savings**





### Compressed Air Systems Approach plant efficiency: energy >> product

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.







# **Treasure Hunt**

What am I looking for?

#### **Treasure Hunt**

The prime consideration for any compressed air system is the ability to generate air with the least amount of energy.

Having done this, the next consideration is to transmit energy from the point of generation to the point of use with the least loss.

The final consideration is to eliminate waste and use the least amount of air for the production process.



Compressor manufacturers spend a great deal of money to obtain optimum efficiency of their individual products.....

.....only to see much of the energy savings squandered in a poorly designed and managed system.





### What Are My Goals?

#### **Produce more efficiently**

- Improve Compressor Control
- Discharge Pressure?



#### Use less compressed air

- Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
- What is the Pressure at End Uses
- How does compressed air support production?

Understanding how compressed air is used is the single most important step to effective management.





### Look from the System Level Approach

- Improve Compressor Control
- Reduce System Pressure
- Reduce Air Demand





# What Do I Look For?

# Produce more efficiently

- Improve Compressor Control response.
- Discharge Pressure?
- Use less compressed air
  - Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
  - What is the Pressure at End Uses
  - How does compressed air support production?
    - Understanding how compressed air is used is the single most important step to effective management.





# Why Should You be Interested in Optimizing?

- Because compressed air optimization will have a huge impact on your bottom line.
- Compressed Air accounts for 10%-15% (at a minimum) of a company's electrical costs.







### Compressed Air Versus Other Energy Sources



Where does the air go after it leaves the compressor room?

- You may be surprised, in most industrial plants, only 50% of the compressed air generated supplies productive air use.
- The other 50% is consumed by various losses.
- The losses are

| Artificial Demand | Leakage  | Poor Applications |
|-------------------|----------|-------------------|
| (10-15%)          | (20-30%) | (5-10%)           |





### Where does the air go?







### Not very efficient!







### Not very efficient!

### Heat/Light Ratio

The small difference in **light/heat output** per watt (for the most efficient lamps of each type) constitutes *the entire basis* for the idea of 'energy saving' lamps.







Friday 24 April 15





Equipment cost and maintenance cost represent only a small part of the total cost of operating a compressed air system.



Electrical cost usually exceeds 75% of the total operating expense. Electricity

Equipment Maintenance







- Kilowatt hours represent the amount billed by the utility company for electricity usage.
  A business or individual is charged based on the kilowatts consumed each hour.
- Occasionally, the power usage of compressors is Brake Horsepower (BHP) rather than kilowatts (kW). To convert BHP to kW, multiply the BHP value by 0.746. For instance, 100 BHP would equal 100 \* 0.746 = 74.6 kW.







- The service factor represents the portion of the horsepower rating that the motor can sustain over time.
- Therefore, a motor with a service factor of 1.15 is able to run continuously at 115% of its rated horsepower.
- For instance, a motor rated at 50 horsepower with a service factor of 1.15 could deliver 57.5 brake horsepower (bhp) continuously, whereas a compressor powered by a 50 hp motor with a 1.30 service factor could operate at 65 brake horsepower continuously.
- Utilizing more brake horsepower will result in higher operational costs.







• The cost of power equals the brake horsepower being used by the compressor times the conversion factor of .746 times the hours the compressor is run times the cost of electricity divided by the motor's efficiency. If it's a 93% efficient motor, you want to plug in .93 into this formula.

*BHP*×.746×*hours*×*electricity rate* 

motor efficiency

• For example, let's use a 200 hp compressor running 10% into the SF. The brake horsepower is 220. The compressor runs 8,000 hours in a year. The blended electricity rate is 10 cents per kilowatt hour. And the motor efficiency is 96%.

$$\frac{220 \times .746 \times 8000 \times .10}{.96} = \$136,766$$





Annual Electricity Cost (measurement formula) Much more accurate!

| full load amps) x (voltage) x (1.732) x pf x hours x rate |                                    |  |  |  |  |  |  |
|-----------------------------------------------------------|------------------------------------|--|--|--|--|--|--|
| 1,000                                                     |                                    |  |  |  |  |  |  |
| <u>Where:</u>                                             | ·                                  |  |  |  |  |  |  |
| full load amps                                            | = average of three phases          |  |  |  |  |  |  |
| voltage                                                   | = line to line voltage             |  |  |  |  |  |  |
| pf                                                        | = power factor (typ .87 full load) |  |  |  |  |  |  |
| hours                                                     | = annual hours of operation        |  |  |  |  |  |  |
| rate                                                      | = electricity cost in \$/kWh       |  |  |  |  |  |  |

The full load amps and voltage are the measured values Get power factor (pf) from motor manufacturer





## Compressed Air Versus Other Energy Sources

- 1 hp air motor = 7-8 hp of electrical power
  - 30 scfm @ 90 psig is required by the air motor
  - 6 7 bhp at compressor shaft required for 30 scfm
  - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5-day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194







## What Measurements Should I Record?

# Produce more efficiently

- Improve Compressor Control
- Discharge Pressure?
- Use less compressed air
  - Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
  - What is the Pressure at End Uses
  - How does compressed air support production?
    - Understanding how compressed air is used is the single most important step to effective management.





### Where Do I Start?

# First, lets have a look at opportunities in the compressor room.....





# **Centrifugal Controls**














Warnings







# **Proper Ducting**

#### **Poor Ducting Design**







# **Proper Ducting**

#### Intake Pipe Design







# Proper Drainage







#### **Reduce Pressure at Source**







## **Artificial Demand**



A leak consumes 42% more air at 120 psig than at 80 psig adding to the artificial demand on the system..





## How Acoustic Camera Leak Detection Works

- The acoustic camera uses microphones and sophisticated signal processing and software to identify the loudest source of noise when many sources are present.
- It allows the user to pinpoint sound leaks in walls, doors, and floors and target the leak



















# Imager Vs. Conventional Ultrasonic Leak Detector



- With acoustic imager type, multiple microphones enable the inspection of an expansive area from a distance.
- A conventional Ultrasonic Leak Detector inspects plants point by point looking for leaks in each hose, coupling, trap, drain, valve and gasket.
  - How can I test the accuracy of my leak detector?





# Leakage Losses

Better Plants



| gallon size     | Time to fill (seconds) | scfm        |
|-----------------|------------------------|-------------|
| <b>50</b>       | 10                     | 40.10695187 |
| <sup>4</sup> 50 | 60                     | 6.684491979 |
| 50              | 120                    | 3.342245989 |
| 30              | 2                      | 120.3208556 |
| ž 50            | 15                     | 26.73796791 |
| 2               |                        | #DIV/0!     |



#### Leak Loss Estimator - Bag Method

Estimates the leakage losses in a compressed air system using the bag method



# Reduce Pressure at Source (Cont'd)













#### Reduce Pressure at Source (Cont'd)



A.....











## System Pressure Profile



















Better

lants

#### **Compressed Air Plant**





GY

**Better** lants

#### Data Collection Can Be Interpreted





#### Data Collection Can Be Interpreted







#### Data Collection Can Be Interpreted



Interval data (4 seconds) for System (Not Assigned) and Periods (Baseline) 1/23/2022 7:41:01 PM to 1/23/2022 11:07:34 PM

#### Localized Pressure Drawdown During CIP



#### AIRMaster+ , LogTool and MEASUR

# A IRMaster\*

AIRMaster+ is but one tool in a large portfolio of Compressed Air Challenge offerings designed to assist the end user in improving the performance of compressed air systems. AIRMaster+ allows for objective and repeatable compressed air system assessment results and can be used to improve the performance and efficiency of operation. However, AIRMaster+ is not meant to replace an experienced auditor in the evaluation of a compressed air system. AIRMaster+ is intended to model airflow and associated electrical demands as seen by the supply side of the system. AIRMaster+ does not model the dynamic effects of the distribution and end uses. Such issues should be addressed through consultation with an experienced auditor before implementing efficiency recommendations.

> Developed for the U.S. Department of Energy by the Washington State University Energy Program copyright 2000 WSU



LogTool v2 Version 2.0.80

> LogTool is a public domain tool available from SBW Consulting, Inc. and the Compressed Air Challenge (CAC). LogTool was developed in part with funding from CAC. It is designed to assist in the analysis of compressed air system performance measurements. It is a companion tool for AIRMaster+, also available from the CAC.

> > Continue



<u>Continue</u>





### **AIRMaster+ Features**

- AIRMaster+ is a Windows-based software tool used to analyze industrial compressed air systems:
- Simulates existing and modified compressed air system operation
- Models part load system operation
- Assigns electrical utility energy schedules
- Enters 24-hour metered airflow or power data
- Is not a substitute for an experienced auditor!
- 30 years old and has been replaced by the MEASUR Tool





## **MEASUR** Features

- MEASUR includes a series of tools that help users analyze energy use and savings opportunities in industrial compressed air systems.
- It can baseline existing and model future system operations improvements and evaluate energy and dollar savings from many energy efficiency measures (EEM's).
- MEASUR can be used in a variety of ways of analyze and optimize your facilities' energy performance.
- You can conduct assessments of systems, track equipment inventory, and do quick calculations with over 70 different calculators.





# LogTool is Designed To:

- Import data which is exported from different types of data loggers.
- Select logger data channels and modify their properties.
  - e.g., name, type, units, etc.
- View data values for one or more logger channels.
- Display trend plots on one or two Y axis.
- Display scatter plots.
- Display daytype plots in the format that is needed for AIRMaster+
- The previous charts were all created from LogTool





#### Box Plant Example:









| 🖏 Import/Manage Logger Data in: IP LogTool.mdb     |                                                                                                                        | ×                  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|
| Logger File Type                                   | Logger Data Files<br>Start End Interval (sec.) File Sta                                                                | Help<br>tus        |
| Chan                                               | els in Files Checked for Import                                                                                        |                    |
| Import File Name Logger ID Logger Name             | Ch# Name Type Units Period                                                                                             | System             |
| Import Checked Channels Check All Channels Uncheck | All Channels<br>nannels Imported to this MDB File                                                                      |                    |
| Delete Name Type Units Per                         | od System Start End                                                                                                    | Interval (sec.)    |
| ▶ L Wet Tank Pressure ▼ psig ▼ Not Assign          | ed  Not Assigned  1/11/2018 11:46:51 1/23/2018 14:40:00                                                                | 3                  |
| Ury Lank Pressure - psig - Not Assign              | ea - Not Assigned - 1/11/2018 11:43:14 1/23/2018 14:35:23<br>ed - Not Assigned - 1/11/2018 12:12:03 1/23/2018 15:05:12 | 3                  |
| 40 inch main header Pressure - psig - Not Assign   | ed  Viot Assigned  Viot 1/11/2018 12:15:25 1/23/2018 15:08:34                                                          | 3                  |
| Exit Conveyor Pushe Pressure - psig - Not Assign   | ed - Not Assigned - 1/11/2018 12:22:10 1/23/2018 15:15:19                                                              | 3                  |
| 📃 🔲 Waste Water 🛛 Pressure 🖵 psig 🖵 Not Assign     | ed 🖃 Not Assigned 🖃 1/11/2018 12:05:48 1/23/2018 14:58:57                                                              | 3                  |
| 200 QNW Power - kW - Not Assign                    | ed 💌 Not Assigned 👻 1/11/2018 11:35:38 1/23/2018 14:29:59                                                              | 3                  |
|                                                    | ed 🔄 Not Assigned 🔄 1/11/2018 11:31:38 1/23/2018 14:24:47                                                              | U.S. DEPARTMENT OF |


# LogTool Main Menu

| La Log |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|-----------------|--------------------|----------|---|------|----|--------------|---|----------------|-----------------------|--------------------|-------------|------|--|--|--|--|--|--|--|--|
| File   | File Tools Help                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| C Oper | n/Cre                                                                          | ate D                                                                                                            | atab                                                                                                 | asel  | file to store l | ogger data         |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        | IUoen an Existing Database I MDB File II Create a New Database (MDB File) Help |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| Fi     | File IP LogTool.mdb                                                            |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| Fold   | Folder D:\WEEC 2018\International Paper Company                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        | Import Logger Data                                                             |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| Tr     |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        | Logger Data in: IP Log I ool.mdb                                               |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| View   | Y1                                                                             | Y2                                                                                                               | Х                                                                                                    | Υ     | Include         | Name               | Туре     |   | Uni  | ts | Period       |   | System         | Start                 | End                | Interval (s | ec.) |  |  |  |  |  |  |  |  |
| Data   | ☑                                                                              | 🔽 🗖 🔽 🔽 Wet Tank Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 🔽 1/11/2018 11:46:51 1/23/2018 14:40:00 3         |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| Data   |                                                                                |                                                                                                                  | □ □ Dry Tank Pressure ▼ psig ▼ Not Assigned ▼ Not Assigned ▼ 1/11/2018 11:43:14 1/23/2018 14:36:23 3 |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| Data   | ☑                                                                              | 🔽 🗖 🗖 🗖 40 inch pre feed Pressure 💌 psig 💌 Not Assigned 💌 Not Assigned 💌 1/11/2018 12:12:03 1/23/2018 15:05:12 3 |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| Data   |                                                                                |                                                                                                                  |                                                                                                      |       |                 | 40 inch main head  | Pressure | • | psig | •  | Not Assigned | • | Not Assigned 💌 | 1/11/2018 12:15:25    | 1/23/2018 15:08:34 | 3           |      |  |  |  |  |  |  |  |  |
| Data   | ☑                                                                              |                                                                                                                  |                                                                                                      |       |                 | Exit Conveyor Pusl | Pressure | • | psig | •  | Not Assigned | • | Not Assigned 💌 | 1/11/2018 12:22:10    | 1/23/2018 15:15:19 | 3           |      |  |  |  |  |  |  |  |  |
| Data   | ☑                                                                              |                                                                                                                  |                                                                                                      |       |                 | Waste Water        | Pressure | • | psig | •  | Not Assigned | • | Not Assigned 💌 | 1/11/2018 12:05:48    | 1/23/2018 14:58:57 | 3           |      |  |  |  |  |  |  |  |  |
| Data   |                                                                                |                                                                                                                  |                                                                                                      |       |                 | 200 QNW            | Power    | • | kW   | •  | Not Assigned | • | Not Assigned 💌 | 1/11/2018 11:35:38    | 1/23/2018 14:29:59 | 3           |      |  |  |  |  |  |  |  |  |
| Data   |                                                                                |                                                                                                                  |                                                                                                      |       | R               | 250 QNW            | Power    | • | kW   | •  | Not Assigned | • | Not Assigned 💌 | 1/11/2018 11:31:38    | 1/23/2018 14:24:47 | 3           |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        |                                                                                |                                                                                                                  |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
| r∪     | nche                                                                           | ck—                                                                                                              |                                                                                                      |       |                 |                    |          |   |      |    |              |   |                |                       |                    |             |      |  |  |  |  |  |  |  |  |
|        | Trei                                                                           | nd                                                                                                               | So                                                                                                   | atter | DayTyp          | e                  |          |   |      |    |              |   |                | Trend Scatter DavTvpe |                    |             |      |  |  |  |  |  |  |  |  |







### Enter LogTool Data Into AIRMaster

Better

lants





# DayType Profiles







# DayType Profiles







# DayType Profiles







# LogTool Trend Plot



# LogTool Trend Plot

**Better** 

lants



## LogTool Scatter Plot

Scatter Plot: Right-Click for Action Menu







### Create the baseline from the Data







# Enter LogTool Data Into AIRMaster

| DayTypeName | ChannelName | Hr_01 | Hr_02  | Hr_03  | Hr_04 | Hr_05 | Hr_06 | Hr_07 | Hr_08 | Hr_09 | Hr_10 | Hr_11 | Hr_12 | Hr_13 | Hr_14 | Hr_15 | Hr_16 | Hr_17 | Hr_18 | Hr_19 | Hr_20 | Hr_21 | Hr_22 | Hr_23 | Hr_24 |
|-------------|-------------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Monday      | 200 QNW     | 0.0   | 0.0    | 0.0    | 0.0   | 84.6  | 175.9 | 177.1 | 181.6 | 182.2 | 180.8 | 177.2 | 177.7 | 177.0 | 178.6 | 178.7 | 178.7 | 176.9 | 177.0 | 178.2 | 177.2 | 178.7 | 179.6 | 180.1 | 179.3 |
| Monday      | 250 QNW     | 0.0   | 0.0    | 0.0    | 0.0   | 83.8  | 164.2 | 163.6 | 164.5 | 165.0 | 166.7 | 171.6 | 169.9 | 168.1 | 164.9 | 163.3 | 162.5 | 163.6 | 164.8 | 165.6 | 167.1 | 167.1 | 167.0 | 166.2 | 166.9 |
| Production  | 200 QNW     | 178.1 | 178.3  | 177.9  | 177.1 | 177.7 | 178.1 | 178.0 | 177.9 | 177.7 | 178.1 | 177.3 | 177.2 | 177.2 | 168.0 | 174.9 | 175.7 | 175.7 | 175.8 | 177.5 | 177.4 | 178.4 | 179.0 | 179.1 | 179.8 |
| Production  | 250 QNW     | 166.5 | 166.8  | 167.5  | 168.3 | 168.5 | 168.5 | 168.4 | 168.0 | 168.1 | 167.1 | 166.4 | 166.1 | 165.0 | 167.1 | 165.9 | 164.7 | 164.5 | 165.2 | 165.0 | 165.8 | 165.3 | 164.5 | 164.2 | 164.4 |
| Sunday      | 200 QNW     | 181.8 | 180.5  | 179.2  | 177.0 | 154.2 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Sunday      | 250 QNW     | 165.6 | 163.8  | 162.4  | 161.8 | 143.1 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |             |       |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             |             |       |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             |             |       |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Date        | Day   | Day Ty | ре     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-11-2018 | Thu   | Exclud | ed Day | S     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-12-2018 | Fri   | Produc | tion   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-13-2018 | Sat   | Produc | ction  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-14-2018 | Sun   | Sunday | y      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-15-2018 | Mon   | Monda  | ау     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-16-2018 | Tue   | Produc | tion   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-17-2018 | Wed   | Produc | tion   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-18-2018 | Thu   | Produc | tion   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-19-2018 | Fri   | Produc | tion   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-20-2018 | Sat   | Produc | tion   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-21-2018 | Sun   | Exclud | ed Day | S     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-22-2018 | Mon   | Exclud | ed Day | S     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|             | Jan-23-2018 | Tue   | Exclud | ed Day | S     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |







### **MEASUR** Tool Calculators

#### **Compressed Air Calculators**



#### **Compressed Air Reduction**

Quantify the energy savings associated with reducing compressed air usage.



#### Compressed Air Pressure Reduction

Quantify the energy savings associated with reducing compressed air system pressure.



#### Compressed Air - Leak Survey

Quantify the energy savings associated with reducing compressed air leaks.



#### Actual to Standard Airflow

Converts acfm (Actual cubic feet per minute) to scfm (Standard cubic feet per minute) and vice versa for the given conditions using either ASME standard conditions or CAGI/ISO standard conditions.





### **MEASUR** Tool Calculators



#### **Bleed Test**

Estimate leak rate for the system. Also called a Dropdown test or a Pressure Decay test.



#### Leak Loss Estimator - Bag Method

Estimates the leakage losses in a compressed air system using the bag method



#### Pneumatic Air Requirement

Estimate the quantity of air required by a specific single acting or a double acting piston cylinder compressor



#### Receiver Tank Sizing

Calculate the required size of the receiver tank





### **MEASUR** Tool Calculators



#### Usable Air Capacity

Estimate the quantity of compressed air that is available for use



#### Pipe Sizing

Determine pipe diameter when the volumetric flow velocity, pressure, and design velocity are known



#### Velocity in the Piping

Estimate the velocity of compressed air throughout system piping



#### System Capacity

Determine total capacity of compressed air system or specific pipes and receiver tanks







| Data Exploration |             |             |           |           |           |         |         | Setup Day Type Analysis Visualization |         |         |         |         |         |         |         |         |         |         |            |            | ≙ 🕹      | 2 🐔     |            |           |
|------------------|-------------|-------------|-----------|-----------|-----------|---------|---------|---------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|------------|----------|---------|------------|-----------|
| Graph Dat        | a Table     | Data: Total | Aggregate | d Equipme | nt Data 👻 |         |         |                                       |         |         |         |         |         |         |         |         |         | Display | Selected [ | isplay All | Day Type | es Days | Apply To A | ssessment |
| Day Туре         | Summaries   | s (Total Aç | ggregated | Equipme   | ent Data) |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
|                  | 0           | 1           | 2         | 3         | 4         | 5       | 6       | 7                                     | 8       | 9       | 10      | 11      | 12      | 13      | 14      | 15      | 16      | 17      | 18         | 19         | 20       | 21      | 22         | 23        |
| Excluded         | 345.233     | 344.441     | 342.737   | 341.011   | 316.626   | 140.599 | 141.751 | 141.474                               | 141.22  | 140.354 | 140.009 | 208.291 | 207.075 | 206.017 | 205.018 | 140.7   | 140.813 | 140.648 | 142.405    | 142.431    | 143.513  | 143.433 | 143.463    | 144.12    |
| Production       | 344.656     | 345.067     | 345.346   | 345.418   | 346.18    | 346.584 | 346.363 | 345.848                               | 345.827 | 345.186 | 343.719 | 343.299 | 342.132 | 332.419 | 340.844 | 340.385 | 340.169 | 340.974 | 342.559    | 343.259    | 343.725  | 343.441 | 343.333    | 344.144   |
| Sunday           | 341.5       | 316.585     | 143.837   | -62.476   | -62.479   | -62.478 | -62.478 | -62.48                                | -62.48  | -62.478 | -62.48  | -62.48  | -62.477 | -62.479 | -62.481 | -62.48  | -62.481 | -62.478 | -62.479    | -62.48     | -62.476  | -62.48  | -62.479    | -62.48    |
| Monday           | -62.479     | -62.48      | -62.48    | -13.16    | 136.523   | 241.439 | 296.894 | 348.648                               | 349.049 | 348.693 | 348.558 | 347.426 | 345.133 | 343.489 | 341.657 | 340.832 | 340.753 | 341.281 | 343.225    | 343.56     | 344.614  | 345.199 | 344.928    | 344.662   |
|                  |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         | Сор        | y Table   |
|                  |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
| Day Sum          | maries (Tot | al Aggrega  | ated Equi | pment Da  | ata)      |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
|                  | 0           | 1           | 2         | 3         | 4         | 5       | 6       | 7                                     | 8       | 9       | 10      | 11      | 12      | 13      | 14      | 15      | 16      | 17      | 18         | 19         | 20       | 21      | 22         | 23        |
| Excluded         |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
| Jan 11, 2018     |             |             |           |           |           |         |         |                                       |         |         |         | 346.218 | 345.07  | 343.465 | 342.276 | 343.887 | 344.11  | 343.776 | 347.291    | 347.341    | 349.506  | 349.346 | 349.406    | 350.719   |
| Jan 23, 2018     | 343.151     | 344.6       | 343.84    | 343.205   | 343.652   | 343.678 | 345.983 | 345.427                               | 344.92  | 343.188 | 342.499 | 341.135 | 338.636 | 337.064 | 335.257 |         |         |         |            |            |          |         |            |           |
| Jan 14, 2018     | 347.315     | 344.282     | 341.634   | 338.817   | 289.6     | -62.48  | -62.481 | -62.479                               | -62.48  | -62.48  | -62.482 | -62.481 | -62.48  | -62.48  | -62.48  | -62.488 | -62.483 | -62.48  | -62.48     | -62.479    | -62.479  | -62.48  | -62.48     | -62.48    |
| Production       |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
| Jan 12, 2018     | 350.503     | 350.457     | 349.767   | 350.922   | 349.444   | 350.735 | 350.126 | 349.697                               | 348.726 | 347.911 | 348.143 | 348.613 | 346.908 | 343.422 | 343.798 | 343.359 | 343.994 | 344.688 | 346.835    | 347.03     | 350.133  | 349.088 | 350.24     | 350.696   |
| Jan 13, 2018     | 351.026     | 349.585     | 351.782   | 351.001   | 351.894   | 352.74  | 351.297 | 351.961                               | 352.383 | 352.372 | 349.311 | 346.937 | 345.905 | 345.548 | 344.381 | 343.145 | 343.407 | 344.375 | 346.107    | 344.937    | 346.216  | 345.54  | 345.22     | 346.343   |
| Jan 16, 2018     | 347.61      | 347.97      | 347.122   | 346.248   | 347.541   | 347.869 | 347.655 | 346.948                               | 347.811 | 345.907 | 343.795 | 343.826 | 342.966 | 340.637 | 341.396 | 342.32  | 341.424 | 341.937 | 343.92     | 343.374    | 343.997  | 345.062 | 343.421    | 344.827   |
| Jan 17, 2018     | 344.128     | 344.633     | 344.586   | 344.258   | 346.296   | 347.187 | 345.95  | 346.432                               | 344.017 | 345.032 | 342.959 | 343.33  | 341.718 | 340.763 | 341.098 | 341.488 | 341.749 | 342.284 | 344.047    | 344.131    | 344.641  | 344.578 | 344.717    | 345.682   |
| Jan 18, 2018     | 344.129     | 344.662     | 345.205   | 345.692   | 346.339   | 346.123 | 346.506 | 345.632                               | 345.089 | 344.363 | 341.707 | 339.446 | 338.237 | 279.357 | 336.221 | 335.939 | 335.253 | 335.215 | 337.038    | 338.875    | 338.816  | 338.304 | 338.122    | 337.499   |
| Jan 19, 2018     | 337.229     | 339.573     | 339.789   | 338.727   | 339.595   | 339.627 | 341.793 | 339.637                               | 339.3   | 338.219 | 336.391 | 336.754 | 336.199 | 334.947 | 336.405 | 335.468 | 334.589 | 335.592 | 337.082    | 337.984    | 338.112  | 338.727 | 336.751    | 339.25    |
| Jan 20, 2018     | 337.969     | 338.586     | 339.17    | 341.079   | 342.147   | 341.811 | 341.216 | 340.627                               | 343.462 | 342.497 | 343.729 | 344.185 | 342.992 | 342.259 | 342.607 | 340.974 | 340.766 | 342.729 | 342.885    | 346.484    | 344.162  | 342.792 | 344.86     | 344.712   |
| Sunday           |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
| Jan 21, 2018     | 341.5       | 316.585     | 143.837   | -62.476   | -62.479   | -62.478 | -62.478 | -62.48                                | -62.48  | -62.478 | -62.48  | -62.48  | -62.477 | -62.479 | -62.481 | -62.48  | -62.481 | -62.478 | -62.479    | -62.48     | -62.476  | -62.48  | -62.479    | -62.48    |
| Monday           |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         |            |           |
| Jan 15, 2018     | -62.48      | -62.481     | -62.479   | -62.48    | 135.607   | 340.068 | 340.692 | 346.157                               | 347.243 | 347.519 | 348.732 | 347.609 | 345.048 | 343.513 | 341.95  | 341.139 | 340.554 | 341.815 | 343.719    | 344.359    | 345.83   | 346.652 | 346.369    | 346.135   |
| Jan 22, 2018     | -62.479     | -62.48      | -62.48    | 36.16     | 137.439   | 142.81  | 253.096 | 351.139                               | 350.856 | 349.867 | 348.384 | 347.243 | 345.219 | 343.466 | 341.363 | 340.524 | 340.952 | 340.747 | 342.73     | 342.761    | 343.397  | 343.746 | 343.488    | 343.188   |
|                  |             |             |           |           |           |         |         |                                       |         |         |         |         |         |         |         |         |         |         |            |            |          |         | Cop        | y Table   |

Day Type Average Interval Hourly V

Update Analysis

– o ×

🛅 MEASUR

 Day Types:
 Excluded
 X Production
 X Sunday
 X Monday
 +Add New
 Reset

## MEASUR Tool Energy Efficiency Measures





Airflow (% Capacity)

# MEASUR Tool Energy Efficiency Measures

| SELECT POTENTIAL ADJUSTMENT                | PROJECTS                                                                         | MODIFICATION RESULTS | PERFORMANCE PROFILE                              | HELP NOTES                     |                              |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------|----------------------|--------------------------------------------------|--------------------------------|------------------------------|--|--|--|
| Select potential adjustment projects to ex | plore opportunities to increase efficiency and the effectiveness of your system. |                      | All Day Types -                                  |                                |                              |  |  |  |
|                                            | Add New Scenario                                                                 |                      | Baseline                                         | VSD                            |                              |  |  |  |
| Modification Name                          | VSD                                                                              |                      |                                                  |                                |                              |  |  |  |
| Reduce Air Leaks   Demand                  |                                                                                  | Percent Savings (%)  |                                                  | 32.5%                          |                              |  |  |  |
| Implementation Cost                        | 5000                                                                             | \$                   | Flow Reallocation Energy Savings                 |                                | 391 627 kWb                  |  |  |  |
| Leak Flow                                  | 600                                                                              | actm                 | Reduce Air Leaks Energy Savings                  |                                | 458,853 kWh                  |  |  |  |
| Leak Reduction                             | 50                                                                               | 70                   | Peak Demand                                      | 346.6 kW                       | 251.24 kW                    |  |  |  |
| Improve End Use Efficiency   Demand        |                                                                                  | Off 🗸                | Annual Energy                                    | 2,620,045 kWh                  | 1,769,565 kWh                |  |  |  |
| Deduce Custom Air Dressure La              |                                                                                  | 0.5                  | Annual Emission Output Rate                      | 1,051 (tonne CO <sub>2</sub> ) | 710 (tonne CO <sub>2</sub> ) |  |  |  |
| Reduce System Air Pressure   supply        |                                                                                  | Off 🗸                | Peak Demand Savings                              |                                | 95.36 kW                     |  |  |  |
| Reduce Run Time   supply                   |                                                                                  | Off 🗸                | Annual Energy Savings<br>Annual Emission Savings |                                | 341 (tonne CO <sub>2</sub> ) |  |  |  |
| Add Primary Receiver Volume   supply       |                                                                                  | Off 🗸                | Flow Reallocation Savings                        |                                | \$25 847 38                  |  |  |  |
|                                            |                                                                                  |                      | Reduce Air Leaks Savings                         |                                | \$43,361.61                  |  |  |  |
|                                            |                                                                                  |                      | Peak Demand Cost                                 | \$0.00                         | \$0.00                       |  |  |  |
|                                            |                                                                                  |                      | Annual Energy Cost                               | \$247,594.21                   | \$167,223.85                 |  |  |  |
|                                            |                                                                                  |                      | Annual Cost                                      | \$247,594.21                   | \$167,223.85                 |  |  |  |
|                                            |                                                                                  |                      | Peak Demand Cost Savings                         |                                | \$0.00                       |  |  |  |
|                                            |                                                                                  |                      | Annual Energy Cost Savings                       |                                | \$80.370.36                  |  |  |  |
|                                            |                                                                                  |                      | Annual Cost Savings                              |                                | \$80,370.36                  |  |  |  |













### **MEASUR** Tool







## Virtual Session 1 – The Basics

Let's leave the compressor room and have a look out in the demand.....

You'll have to keep coming back each week for this session and more.....











### Pressure?



- Imagine a closed container with air inside.
- Air, as a gas, is composed of molecules that you can imagine as round elastic balls.
- Molecules move in straight lines until they collide with neighboring molecules or the container wall.
- Molecules of gas hitting the wall impose a force on the wall.
- The amount of this impact force per area of the container inner walls is called pressure.





## Gas Theory



On a square inch of surface there are over two sextillion molecular impacts per second....that's 2 followed by 21 zeros!!!

ALL THIS TRANSLATES TO PRESSURE. AT SEA LEVEL THIS PRESSURE WOULD BE -- 14.69 PSIA; 29.92"HgA; 1013mBar; or 760 Torr





# Gas Theory (Daltons Law)



Dalton's Law of Partial Pressures

The "partial gas pressure law" primarily refers to Dalton's Law of Partial Pressures.

This states that in a mixture of nonreacting gases, the total pressure exerted by the mixture is equal to the sum of the partial pressures of each individual gas in the mixture;

Essentially, each gas contributes its own pressure as if it occupied the container alone.





## Gas Theory

- Air pressure relationship is explained by three scientific laws:
  - Boyle's Law explains that if air volume halves during compression, the pressure is doubled.
  - Charles' Law states that the volume of air changes in direct proportion to the temperature.
  - The First Law of Thermodynamics tells us that an increase in pressure equals a rise in heat and that compressing air creates a proportional increase in heat.
  - Collectively, these three laws explain that pressure, volume, and temperature are proportional. If you change one variable, then one or two of the others will also change, according to this equation:

$$\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}$$







- At sea level, atmospheric pressure is 14.7 psia
- psia stands for pounds per square inch (Absolute)







 In Death Valley, which is 500 feet below sea level, The air pressure is 14.94 psia







- On top of a 5,000-foot mountain, air pressure is only 12.2 psia
- Mount Everest is 29,000 feet above sea level, and the air pressure is 4.56 psia





### Pressure Terms

- psig is pounds per square inch gauge the pressure on the gauge or digital readout of the compressor's controller.
- At zero gauge, the pressure is at atmospheric pressure. If the gauge reads 100 psig, then that means the pressure is 100 pounds above ambient atmospheric pressure.
- psia is pounds per square inch absolute. This is the sum of the existing gauge pressure plus the atmospheric pressure. At sea level, a gauge showing 95 psig would have an absolute pressure of 109.5 psia.



14.5 + 95 = 109.5 psia







- Compress: To press together or force into a smaller space; condense
- Air: A colorless, odorless, tasteless gaseous mixture, mainly nitrogen (78%) and oxygen (21%) and 1-2% water vapor and, carbon dioxide and other gases
- When controlled, compressed air can be used to perform work.





# A Simple Example of Stored Energy

- A paint area in a body shop has a 5 HP compressor mounted on an 80-gallon air receiver.
- This receiver is pumped up to 175 psig.
- The air flow to the buffer which uses 18 SCFM at 90 PSIG, is regulated to 90 PSIG outflow from the regulator.
- The compressor delivers 12-13 SCFM at 90 psig but yet it runs the 18 SCFM sander OK.
- How can this work???
- The buffer uses more volume(scfm) than the compressor can deliver !!



U.S. DEPARTMENT OF



# A Simple Example

 With no receiver, the painter must install a second 5 hp compressor and therefore use twice the energy as before









- Step 1: Air is trapped in a cylinder, tank, or similar container
- Step 2: The space in that tank becomes smaller, which forces the air molecules closer together
- The now-compressed air remains trapped in this smaller state, waiting to expand again until it's ready for use.

© 2012 Encyclopædia Britannica, Inc.









- But pistons aren't the only way to force air into a smaller space. There are numerous styles of air compressors on the market, each with its advantages and disadvantages.
- For example, rotary screw air compressors use dual spinning screws to push air down and compress it:









- Rotary screw air compressors are chosen over reciprocating because they are compact, powerful, and can run continuously.
- Regardless of the mechanism used, air is always compressed by taking atmospheric air and squishing it down, so the molecules are condensed and pressurized.






# **Compressed Air Fundamentals**

#### Dynamic compressors can be axial or centrifugal.

- Centrifugal compressors are widely used and function based on a straightforward principle that transforms air velocity into higher air pressure.
- In these compressors, the rotating impeller boosts the speed of the incoming air. This increase in velocity is achieved through centrifugal force.
- The pressure and output capacity of a centrifugal compressor are directly proportional to the shaft's rotational speed that holds the impeller.







# **Compressed Air Fundamentals**



- Energy from compressed air is used to power pneumatic production equipment.
  - E.G.--air motors, actuators, instrumentation, tools, etc.
- To cool components or parts during fabrication
- To blow off waste material





# **Compressed Air Fundamentals**





- Process Air
- Compressed air is an integral part of a process, and/or comes in contact with product.
  - Chemicals
  - Pharmaceuticals
  - Food & Beverage
  - Aeration and agitation
  - Semiconductor & Electronics
  - Medical Breathing Air
- CDA Quality--means Clean, Dry, Air





# Which Contaminants do we find in compressed air?







# Which Contaminants do we find in compressed air?







# Compressed Air Quality

- As illustrated in the following table, a number of different air quality levels can be achieved.
- Care should be taken when using these terms and actual specifications for air quality should always be given.

| Quality        | Applications                                                                                          |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| Plant Air      | Air tools, general plant air                                                                          |  |  |  |  |
| Instrument Air | Laboratories, some paint spraying, powder coating, climate control                                    |  |  |  |  |
| Process Air    | Food and pharmaceutical process air, electronics                                                      |  |  |  |  |
| Breathing Air  | Some hospital air systems, diving tank refill stations, respirators for cleaning and/or grit blasting |  |  |  |  |





# ISO 8573-1 Compressed Air Quality Classes

 ISO 8573 provides detailed standards on air-quality classes for various levels of particulate, moisture, and lubricant contaminants.

ISO 8573-1:2010 Compressed Air Quality Classes

| Class | Max. Particle Size                                                   |         | Pressure      | Max Oil<br>Content |         |  |  |
|-------|----------------------------------------------------------------------|---------|---------------|--------------------|---------|--|--|
|       | (μm)                                                                 | (mg/m³) | (°C/°F)       | (g/m³)             | (mg/m³) |  |  |
| 0     | Specified by the equipment manufacturer/supplier and greater than of |         |               |                    |         |  |  |
| 1     | 0.1                                                                  | 0.1     | -70/-94       | 0.003              | 0.01    |  |  |
| 2     | 1                                                                    | 1       | -40/-40       | 0.12               | 0.1     |  |  |
| 3     | 5                                                                    | 5       | -20/-4        | 0.88               | 1       |  |  |
| 4     | 15                                                                   | 8       | 3/37          | 6                  | 5       |  |  |
| 5     | 40                                                                   | 10      | 7/45          | 7.8                | 25      |  |  |
| 6     |                                                                      |         | 10/50         | 9.4                |         |  |  |
| 7     |                                                                      |         | Not Specified |                    |         |  |  |

Note: the Class 0 certification was created in response to industry needs for oil-free air. Stating Class 0 without an agreed specification will mean it is not in accordance with the standard. Class 0 air purity is best achieved at the point of use to minimize cost.





# Air Quality

- The air quality level required is a function of the dryness and contaminant level required by the end-uses, and is accomplished with separating, filtering and drying equipment.
- For certain applications, more than one class may be considered.
- Ambient conditions will influence the selection, especially dew point.
- Point of use equipment manufacturers should be consulted to determine their specific needs.





# **Capacity Ratings and Corrections**

- Before beginning a discussion of compressor ratings, a couple of often misused terms need to be understood.
- SCFM Standard Cubic Feet per Minute
  - A standard cubic foot of air is the amount of air in one cubic foot of volume when the air is at standard conditions of pressure, temperature and relative humidity.
  - There are a number of different standards:
  - The most common is air at sea level (14.5 PSIA)
  - 68° F and a relative humidity of 0%





# **Capacity Ratings and Corrections**

- ASME Standard
- Pressure 14.7 PSIA
- Temperature 68° F
- R/H 36%

- ISO, CAGI, Pneurop Standard
  - Pressure
  - Temperature
  - R/H

- 14.5 PSIA
- 68° F
- 0%





### Ratings

- In the industry, there are four different capacity definitions for CFM.
  - Free Air Delivery (FAD CFM)
  - Actual Cubic Feet per Minute (ACFM)
  - Inlet Cubic Feet per Minute (ICFM)
  - Standard Cubic Feet per Minute (SCFM)







# **Definitions and Formulas**

- Capacity calculations (Positive-Displacement)
  - **Golden rule**: FAD, ACFM, and ICFM are fixed volume flow rates which do not change with respect to atmospheric conditions.
  - In other words, a given compressor, when operating at rated speed and discharge pressure will essentially deliver the same volume flow rate regardless of inlet conditions.
  - SCFM delivery of an air compressor is calculated from the unit's FAD volume flow rate.
  - SCFM delivery will vary, depending on how the actual atmospheric conditions deviate from the "standard" reference set of conditions.
  - In winter, the SCFM delivery of a given air compressor is greater than during the summer, and vice versa.





#### Formulas

- To convert the required scfm to the flow that will be required at a specific geographic location with acfm, the formula below can be used.
  - Where:
    - $P_s$  = standard pressure, psia
    - *P<sub>a</sub>* = Atmospheric pressure, psia
    - *PP<sub>wv</sub>* = Partial Pressure water vapor at ambient temperature
    - Rh = Relative Humidify
    - $T_a$  = Ambient Temperature, °F
    - *T<sub>s</sub>* = Standard Temperature,°F

$$acfm = scfm \times \frac{P_s}{\left[P_a - \left(PP_{wv} \times Rh\right)\right]} \times \frac{\left(T_a + 460\right)}{\left(T_s + 460\right)}$$





#### Formulas

|          | Ambient   |
|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| Temp. °F | Pressure  |
|          | Lb/Sq.In. |
| 32       | 0.008854  | 49       | 0.1716    | 67       | 0.3276    | 85       | 0.5959    | 103      | 1.0382    | 121      | 1.7400    |
| 33       | 0.0922    | 50       | 0.1781    | 68       | 0.3390    | 86       | 0.6152    | 104      | 1.0695    | 122      | 1.7888    |
| 34       | 0.0960    | 51       | 0.1849    | 69       | 0.3509    | 87       | 0.6351    | 105      | 1.1016    | 123      | 1.8387    |
| 35       | 0.1000    | 52       | 0.1918    | 70       | 0.3631    | 88       | 0.6556    | 106      | 1.1345    | 124      | 1.8897    |
| 36       | 0.1040    | 53       | 0.1990    | 71       | 0.3756    | 89       | 0.6766    | 107      | 1.1683    | 125      | 1.9420    |
| 37       | 0.1082    | 54       | 0.2064    | 72       | 0.3886    | 90       | 0.6982    | 108      | 1.2029    | 126      | 1.9955    |
| 38       | 0.1126    | 55       | 0.2141    | 73       | 0.4019    | 91       | 0.7204    | 109      | 1.2384    | 127      | 2.0503    |
| 39       | 0.1171    | 56       | 0.2220    | 74       | 0.4156    | 92       | 0.7432    | 110      | 1.2748    | 128      | 2.1064    |
| 40       | 0.1217    | 57       | 0.2302    | 75       | 0.4298    | 93       | 0.7666    | 111      | 1.3121    | 129      | 2.1638    |
| 41       | 0.1265    | 58       | 0.2386    | 76       | 0.4443    | 94       | 0.7906    | 112      | 1.3504    | 130      | 2.2225    |
| 42       | 0.1315    | 59       | 0.2473    | 77       | 0.4593    | 95       | 0.8153    | 113      | 1.3896    | 131      | 2.2826    |
| 43       | 0.1367    | 60       | 0.2563    | 78       | 0.4747    | 96       | 0.8407    | 114      | 1.4298    | 132      | 2.3440    |
| 44       | 0.1420    | 61       | 0.2655    | 79       | 0.4906    | 97       | 0.8668    | 115      | 1.4709    | 133      | 2.4069    |
| 45       | 0.1475    | 62       | 0.2751    | 80       | 0.5069    | 98       | 0.8935    | 116      | 1.5130    | 134      | 2.4712    |
| 46       | 0.1532    | 63       | 0.2850    | 81       | 0.5237    | 99       | 0.9210    | 117      | 1.5563    | 135      | 2.5370    |
| 47       | 0.1591    | 64       | 0.2951    | 82       | 0.5410    | 100      | 0.9492    | 118      | 1.6006    | 136      | 2.6042    |
| 48       | 0.1653    | 65       | 0.3056    | 83       | 0.5588    | 101      | 0.9781    | 119      | 1.6459    | 137      | 2.6729    |
|          |           | 66       | 0.3160    | 84       | 0.5771    | 102      | 1.0078    | 120      | 1.6924    |          |           |

#### Partial Pressure of Moisture at Various Temperatures





## Example

- Requirement.
  - 1000 scfm using ISO standard (68°F, 0% RH, 14.5 psig (1 bar))
  - Altitude 5000 ft above sea level
  - Maximum ambient temperature 100°F
  - Maximum Relative Humidity 50%
  - Ambient pressure at 5000 ft. = 12.2 psia
  - Partial pressure of moisture at 100°F from vapor pressure chart = 0.95 psia
  - Partial pressure at 50% RH = 0.95 x 0.50

$$acfm = scfm \times \frac{P_s}{\left[P_a - \left(PP_{wv} \times Rh_a\right)\right]} \times \frac{\left(T_a + 460\right)}{\left(T_s + 460\right)}$$

$$acfm = 1000 \, scfm \times \frac{(14.5 - 0Rh)}{\left[12.2 - (0.95 \times .50)\right]} \times \frac{(100 + 460)}{(68 + 460)}$$

$$acfm = \frac{14.5}{11.725} \times \frac{560}{528} = 1312 \, acfm$$

Ps = standard pressure, psia Pa = Atmospheric pressure, psia PPwv = Partial Pressure water vapor at ambient temperature Rh = Relative Humidify Ta = Ambient Temperature, °F Ts = Standard Temperature, °F





### Example using the MEASUR Tool

ACTUAL TO STANDARD AIRFLOW

Convert to Standard Airflow Convert to Actual Airflow

Actual Atmospheric Pressure Auto Calculate From Elevation Actual Ambient Temperature Actual Relative Humidity



Standard Atmospheric Pressure Standard Ambient Temperature Standard Relative Humidity Standard Airflow

| 14.5 | psia |
|------|------|
| 68   | °F   |
| 0    | %    |
| 1000 | scfm |



U.S. DEPARTMENT OF

ENERCY

Results

SCFM

ACFM

Airflow 1,311.7 acfm



#### Formulas

- The example on the previous page demonstrates the need for accurate requirement specifications.
- In this case, the actual compressor capacity required at the prevalent ambient conditions is one-third greater than the stated scfm.
- Consideration also must be given to the fact that the temperature at this site will not always be as high as 100 degrees Fahrenheit, and relative humidity also may be lower.
- Some geographic locations have wide changes in ambient temperature from day to night and from season to season.
- This will result in less volume being required from the compressor.
- The right compressor with the proper controls will help to manage the supply for these various demands.









### **Taking Measurements**





## The Need to Make Measurements

- Flow (cfm)
- Pressure (psi)
- Power (kW)
- Energy (kWh)
- Dollars (\$)





























## Thermal mass measurement versus other technologies

- Understanding the difference between a thermal mass flowmeter and other measurement technologies is the first step in deciding if the TMFM is the correct device for an application.
- The primary difference between a TMFM and other technologies is that it directly measures mass flow versus volumetric flow based on heat transfer.
- Gas is compressible. The gas volume changes under pressure and temperature fluctuations.
- For this reason, orifice plates, venturi meters and other Delta-P (differential pressure) devices, as well as turbine meters, rotary gas meters and vortex meters, require additional instruments to measure the temperature and pressure and then mathematically convert the volume to mass.
- A TMFM does not need separate temperature or pressure transmitters as it directly measures mass flow.













#### Flow Meters







# How to Hot Tap































# **Orifice Plate Flow Meters**

These meters are another carry over from fluid engineering.

They operate on the physics of a pressure drop being created as a medium flows through an orifice.

The problem with these meters is just that; they, themselves are a pressure drop.



U.S. DEPARTMENT OF



# **Ultrasonic Flow Meters**

Better Plants




# Taking Measurements

- Money spent on energy is calculated by converting kWh to dollars.
- Dollars can be estimated using average \$/kWh rates, or more complicated calculations can be made using actual electricity rates.
- You need to understand your electricity rate structure, your electricity bill, and how the compressed air system is impacting the bill.
- Calculations on how much is spent on compressed air should always be tied back into production by calculating dollars spent on compressed air per unit of production





- Taking data at a single point, or even during various shifts can provide some answers, but not the complete picture.
- The use of data logs is important in determining how a system operates over time.
- When data logging system performance sample rate (reading transducer signals), and data storage interval are critical.
- Sample rate, data reduction averaging methods, and data storage interval must be consistent with system dynamics.





- This data chart shows a comparison of different sampling rates and data intervals.
- The inappropriate data collection leads to a misrepresentation of compressor load cycles.

|                | High Rate                | Slow Rate              |
|----------------|--------------------------|------------------------|
| Sample Rate    | 1 sample per 1<br>second | 1 sample per 3 seconds |
| Data Averaging | 10 samples               | 15 samples             |
| Data Interval  | 10 seconds               | 45 seconds             |

#### Plant Air Consumption

Plant Compressed Air Flow Rate and System Pressure - Test 36D



Air Flow From Plant Air Compressor



- Signal aliasing in the data tracing above could easily lead to misinterpretation of the recorded system dynamics.
- The 350 scfm swing in flow to the system is NOT a demand event.
- The true wave forms, collected at the high sample rate, clearly show a direct correlation of increasing flow with increasing pressure.

Pressure (PSIG)

|                | High Rate                | Slow Rate              |
|----------------|--------------------------|------------------------|
| Sample Rate    | 1 sample per 1<br>second | 1 sample per 3 seconds |
| Data Averaging | 10 samples               | 15 samples             |
| Data Interval  | 10 seconds               | 45 seconds             |



-Air Flow From Plant Air Compressor



Plant Compressed Air Flow Rate and System Pressure - Test 36D



- The aliased pressure tracing between 15:30 hours and 15:35 hours might be interpreted to show increasing flow with decreasing pressure, or no change in pressure.
- The slow sample rate and alias pressure tracing could lead to the conclusion that the flow increase is a demand event.
- Increasing flow with decreasing, or no pressure change, is due to a demand event.

#### **Plant Air Consumption**

Plant Compressed Air Flow Rate and System Pressure - Test 36D





### High Speed Data Collection







# **Using Measurements**

- Measurements take the "vital signs" of a compressed air system to see how it is operating and how efficient the system is
- Once the system baseline is established, it can be tracked over time to monitor improvements or degradation in the system's performance.
- This information is then converted into dollars and communicated to management.





## Summary

- Measurements need to be taken to understand how a compressed air system is operating
- Measurements can help you adjust and optimize your system
- Data logging can help you better understand and optimize the system, although sometimes substantial improvements can be made without them
- Care needs to be taken to ensure that you have the right tools for the job, know how to use them, know their limitations, and know how to interpret the data being produced
- Understanding the difference between accuracy and repeatability is important when taking measurements
- Measurements will help you understand how much you are spending on compressed air on a per unit of production basis





# Next Week – Compressor Types and Ventilation

- Positive Displacement Typically Rotary Screw
- Dynamic Compressors Typically Centrifugal
- Compressor Room Ventilation
- Homework ....





## Homework for Week 1 – Block Diagram

- Draw a block diagram of your compressed air system.
  - No P&ID drawings please.
- Include supply side and demand side if possible.
- Indicate compressor type and horsepower.
- Show dryer type and any filters.





## Homework for Week 1 – Example Diagram





