

Industrial Steam Systems Virtual INPLT Training & Assessment

Session 3 Wednesday – October 16, 2024 10 am – 12:30 pm ET

11////

Welcome

- Welcome to the second Steam Virtual INPLT training series
- Eight, 2-1/2 hour webinars, focused on Industrial Steam Systems Energy Assessment and Optimization
- These webinars will help you gain a significant understanding of your industrial steam system, undertake an energy assessment using a systems approach, evaluate and quantify energy and cost-saving opportunities using US DOE tools and resources
- Thank you for your interest!

Steam Virtual INPLT Agenda

- Session 1 (October 2) Industrial Steam Systems Fundamentals and Introduction to SSST
- Session 2 (October 3) Focus on Steam System Generation and Introduction to DOE's MEASUR Tool
- Session 3 (October 16) Steam System Generation & Cogeneration (CHP)
- Session 4 (October 17) Steam System Distribution, End-Use & Condensate Recovery
- Session 5 (October 30) Energy Efficiency Opportunities in the Generation Area
- Session 6 (October 31) Energy Efficiency Opportunities in Cogeneration (CHP) Area
- Session 7 (November 13) EE Opportunities in Distribution, End-use and Condensate Recovery
- Session 8 (November 14) Industrial Steam System VINPLT Wrap-up Presentations

Agenda – Session THREE

- Safety and Housekeeping
- Today's Content:
 - Discussion of Homework
 - **Quick Review from Session 2**
 - **Steam System Generation**
 - Boiler Efficiency Methods & Comparisons, Special Cases
 - Impact Boiler
 - Cogeneration
 - US DOE MEASUR Tool
 - Boiler Calculator
 - Building a steam system model
- Kahoot Quiz Game
- Q&A

Safety and Housekeeping

Safety Moment

- $\circ~$ Stay within marked walking paths during the plant walk-through
- Make sure you know where emergency exits and gathering places are located
- Break points after each sub-section where you can ask questions
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded
 - $\circ~$ A link to the recorded webinars will be provided, afterwards

Homework 1 Discussion

Homework #1

- Steam is directly injected in a vessel to heat water from 65°F to 135°F and the required flow for the process need is 100 gpm.
 - Calculate the steam flow rate required
 - Compare the results with the indirect heat exchange application and comment on which method would you recommend for use in your plant.

- Apply Steady State Steady Flow Conservation of Mass
- Water flow in + Steam flow in = Water flow out

- Apply Steady State Steady Flow Conservation of Mass
- Water flow in = M_{waterin} = unknown
 - Steam flow in = M_{steam} = unknown
- Water flow out = M_{waterout} = 100 gpm = 50,000 lb/hr
- $M_{waterin} + M_{steam} = M_{waterout}$ Eqn 1

- Water inlet temperature = 65°F
- Water outlet temperature = 135°F
- Steam inlet conditions: Saturated steam at atmospheric pressure (0.0 psig)
- No shaft work is done in the control volume: W = 0
- Apply Steady State Steady Flow Conservation of Energy

- Steam Property tables provide information on steam and sub-cooled water enthalpies
- h_{waterin} Subcooled water (0.0 psig, 65°F) = 33.1 Btu/lb
- h_{steam} Saturated steam at 0.0 psig = 1,150.3 Btu/lb
- h_{waterout} Subcooled water (0.0 psig, 135°F) = 103 Btu/lb

Temperature (°F)	Specific Enthalpy(Btu/lb)	Specific Entropy (Btu/lb-°F)	Quality Va	nown riable	Specific Volume (ft³/lb)
65	33.1201	0.0651	Liquid Tem	perature	0.016
135	103.0118	0.1902	Liquid Tem	perature	0.0163
212	1,150.2944	1.7566	Gas Tem	perature	26.8056

Equation 1 is now written as

$$M_{waterin} + M_{steam} = M_{waterout}$$

$$M_{waterin} + M_{steam} = 50000$$

$$M_{waterout} = 50000 \frac{lb}{hr}$$

Equation 2 can now be written as

 $M_{waterin} \times (33.1) + M_{steam} \times (1150.3) = M_{waterout} \times (103)$

 $M_{waterin} \times (33.1) + M_{steam} \times (1150.3) = 50000 \times (103)$

 $M_{waterin} \times (33.1) + M_{steam} \times (1150.3) = 5150000$

$$M_{waterin} = 46871.6 \frac{lb}{hr} = 93.7 \ gpm$$

$$M_{steam} = 3128.4 \frac{lb}{hr} = 3.13 \frac{klb}{hr}$$

Comparing the 2 Cases

Indirect Heat Exchange

Direct Heat (& Mass) Exchange

U.S. DEPARTMENT OF

Steam System Scoping Tool – (SSST)

Office of Industrial Technologies

BestPractices Energy Smart Technology for Today

Steam System Scoping Tool

Version 2.0.0 December 2002 United States Department of Energy

Click anywhere on this frame to begin the assessment.

Session 1 – Quick Review

Key Points / Action Items

- 1. Use a Systems Approach to optimize steam systems
- 2. There are four major areas of a steam system Generation, Distribution, End-Use & Recovery
- 3. An understanding of the laws of thermodynamics, heat transfer, fluid flow and steam properties is required for a steam system analysis
- 4. Steam is used all across industry to do various tasks and is the most effective medium to transport energy and produce shaft work (or power)

Key Points / Action Items

- 1. Use a systematic approach (gap analysis, comparison to BestPractices) to identify potential energy saving opportunities that may exist in steam systems
- 2. Use the Steam System Scoping Tool (SSST) to provide a high-level overview of operational, maintenance and management BestPractices
- 3. Once gaps are identified, delve into more detail using the other US DOE's tools and resources
- 4. Quantify, prioritize, implement and continue to monitor

Homework 2 Discussion

Homework #2

- Pay a visit to your boiler plant (generation) area and make a list of all the boilers, their design steam flow, pressure, fuel used and heat (input or output) rating.
- Understand how the boiler plant is controlled how many boilers are running, how many are hot standby, etc. How does seasonality and production change the operations of these boilers.
- Pick one or more boilers and complete the exercise to calculate direct boiler efficiency and indirect boiler efficiency with specific boiler losses. You can use 1Q 2021 average data or representative operating data.
- Calculate your steam cost (\$/klb).

Polling Questions 1-3

Polling Question

Were you able to calculate boiler efficiency using the direct method?
A. Yes

B. No

2) Were you able to calculate stack loss for your boiler?

- A. Yes
- B. No

3) Were you able to use US DOE MEASUR?

- A. Yes
- B. No

Session 2 – Quick Review

Steam Cost Indicator

 $Steam \ Cost = \frac{Fuel \ Cost}{Steam \ Produced}$ Steam Cost = $\frac{745}{100}$ Steam Cost = 7.45 $\frac{\$}{klb}$ *Steam Cost* = $\frac{6,526,200}{100 \times 8760}$ Steam Cost = 7.45 $\frac{\$}{klb}$

Classic Boiler Efficiency

 Steam generating unit efficiency is defined as the heat absorbed by the steam divided by the fuel input energy

$$\eta_{boiler} = \frac{\text{energy desired}}{\text{energy that costs}} (100)$$

$$\eta_{boiler} = \frac{\dot{m}_{steam} (h_{steam} - h_{feedwater})}{\dot{m}_{fuel} HHV_{fuel}} (100)$$

Boiler Losses

U.S. DEPARTMENT OF

Indirect Efficiency

- Boiler efficiency can also be determined in an indirect manner by determining the magnitude of the losses
 - Primary losses are typically
 - Shell loss
 - Blowdown loss
 - Stack loss

$$\eta_{indirect} = 100\% - \sum_{losses} \lambda_i$$

$$\eta_{indirect} = 100\% - \lambda_{shell} - \lambda_{blowdown} - \lambda_{stack} - \lambda_{misc}$$

U.S. DEPARTMENT OF

ENERGY

Which Method should be used?

Example Boiler – US DOE MEASUR

			RESULTS		HELP		
BOILER							
Deaerator Pressure	10 psig		Blowdown Rate		6 %		
Combustion Efficiency	78.7 %		Boiler Energy		116,825.4 MMBtu/hr		
Calculate Efficiency			Combustion Efficiency		78.7	′%	
Blowdown Rate	6 % Fuel Energy			148,444 MMBtu/hr			
Steam							
Pressure	400	psig.		Feedwater	Blowdown	Steam	
Known Variable	Temperature	×	Pressure (psig)	10	400	400	
Temperature Value	700	or	Temperature (°F)	239.4	448.2	700	
Steam Mass Flow	100	1	Saturated	Liquid	Liquid	Gas	
Steam mass Flow	100000	KID/Nr	Mass Flow (klb/hr)	106,382.98	6,382.98	100,000	
	Generate Ex	cample Reset Data	Sp. Enthalpy (Btu/lb)	207.8	428.2	1,362	
	C		Sp. Entropy (Btu/lb-°F)	0.352	0.626	1.636	
			Energy Flow (MMBtu/hr)	22,108.6	2,732.9	136,201.2	

Copy Table

 \times

Typical Boiler Efficiency Curve

What about **Boiler Plant** Direct Efficiency?

 If the fuel is the same for all boilers and boilers have same steam generation conditions and feedwater conditions

$$\eta_{plant} = \frac{m_{total-steam} (h_{steam} - h_{feedwater})}{m_{total-fuel} \times HHV_{fuel}} \times 100$$

 If the fuel is different for boilers and boilers have different steam generation conditions and feedwater conditions

$$\eta_{plant} = \frac{\sum_{1}^{n} m_{steam} (h_{steam} - h_{feedwater})}{\sum_{1}^{n} m_{fuel} \times HHV_{fuel}} \times 100$$

Generation Area

• Deaerator

Deaeration

Oxygen, carbon dioxide and other gases are soluble in water

- These chemicals are detrimental to the steam system
 - Oxygen results in corrosion generally in the form of pitting
 - Carbon dioxide results in corrosion generally from acidic condensate
- Open condensate receivers are a location where gases can become dissolved in condensate
- Makeup water usually contains significant amounts of dissolved gases
- The solubility of gases in water decreases as temperature increases
 - Deaeration is used to reduce the effects of dissolved gases

Solubility of Oxygen in Water

Deaerator

US DOE MEASUR

- Plant / System Information Required
- Building a Steam System Model

US DOE MEASUR Preferences

- Full flexibility is offered to the user to select default (IP) or choose Custom units for the parameters
- Generally, US\$ is the easiest currency to work with but some other currencies are available
- HELP is always around

	5 Doller 4 Tieader	Turbine	
TEAM EXAMPLE SETTINGS			HELP
inguage	Translate Application Using Google Translate		System Basics Help
urrency	\$ - US Dollar	~	
nits of Measure	●Imperial OMetric OCustom		Your system basics help define th settings are inherited by default fi
essure Measurement	Pounds per Square Inch gauge (psig)	~	
mperature Measurement	Degrees Fahrenheit (°F)	~	
pecific Enthalpy	Btu per lbs (Btu/lb)	~	
pecific Entropy	British Thermal Units per Pound Fahrenheit (Btu/lb-°F)	~	
pecific Volume	Cubic Feet per Pound (ft%/lb)	~	
ass Flow	I housand pounds per hour (klb)/hr	~	
nergy	Millions British Thermal Units (MMBtu)	~	
ower	Kilowatts (kW)	~	
acuum Pressure	Pounds per Square Inch absolute (psia)	~	
lume	U.S. Gallons (gal)	~	
lume Flow	Gallons per minute (gpm)	~	
guipment Notes			
dd additional information for your equipment			
		//	
perating Conditions at time of Assessment			

Site Power Import (or Export)

- MEASUR requires an input for the normal amount of import electrical power
- Import electrical power combined with site generated power is the site load
- If the site is a net exporter of power a negative value should be provided for the import power

Electric Rate Structure

- A thorough understanding of the electric rate structure is essential to evaluate the true impact of any process change
- The average electric cost is generally not the unit cost a facility will be impacted by as a result of an increase or decrease in electrical consumption

Makeup Water Costs

- Water purchase price
- Pumping costs
- Treatment costs
- Wastewater costs ???
- Makeup water temperature is an important variable

Fuel Pricing

	Typical Fuel Properties				
	Sales	Example Price	HHV	LHV	Unit Price
Fuel	Unit	[\$/sales unit]	[Btu/lb]	[Btu/lb]	[\$/MMBtu]
Natural Gas	10 ³ std ft ³	5.00	23,311	21,032	5.00
Number 2 Fuel Oil	gallon	2.20	19,400	18,275	15.79
Number 6 Oil (LS)	gallon	1.50	18,742	17,757	9.77
Number 6 Oil (HS)	gallon	1.25	18,815	17,780	8.27
Eastern Coal	ton	45.00	13,710	13,201	1.64
Western Coal	ton	30.00	10,088	9,547	1.49
Green Wood	ton	11.00	5,250	4,357	1.05

Fuel Cost Structure – Impact Fuel

- Analyses should be completed utilizing *impact costs*
- Gross indications of savings opportunities can be attained by use of average impact cost or projected cost
- Multiple models may need to be developed reflecting various pricing conditions
 - Fuel prices typically vary seasonally
- The USDOE MEASUR fuel cost should be close to the actual <u>energy related</u> fuel cost for building confidence in the system model

Boiler & Fuel Selection

What is Impact fuel?

- The fuel that will change consumption if steam demand changes
- Typically, the highest cost fuel in use
- "Blended costs" generally <u>do not</u> reflect actual system changes
 - Blended costs <u>do</u> provide a confidence level in the model results

What is Impact boiler(s)?

- The boiler(s) that will change consumption if steam demand changes
- Typically, the boiler with the highest steam cost indicator
- "Blended boiler" configuration generally <u>does not</u> reflect actual system changes
 - Blended costs <u>do</u> provide a confidence level in the model results

Impact Boiler & Fuel Selection

Fuel: Natural gas Fuel cost: \$5.00/MMBtu Boiler capacity: 120,000 lbm/hr Steam production: 100,000 lbm/hr Boiler efficiency: 78%

- Fuel: Number 2 fuel oil Fuel cost: \$15.79/MMBtu Boiler capacity: 50,000 lbm/hr Steam production: 10,000 lbm/hr Boiler efficiency: 85%
- For the example system, variations in steam demand and reliability concerns will require both boilers to operate

Impact Boiler & Fuel Selection

Fuel: Natural gas Fuel cost: \$5.00/MMBtu Boiler capacity: 120,000 lbm/hr Steam production: 100,000 lbm/hr Boiler efficiency: 78%

- Fuel: Number 2 fuel oil Fuel cost: \$15.79/MMBtu Boiler capacity: 50,000 lbm/hr Steam production: 10,000 lbm/hr Boiler efficiency: 85%
- The natural gas boiler is the **IMPACT boiler** because it responds to steam demand changes
- The #2 fuel oil boiler is a fixed operation boiler

Plant Information

- The industrial plant chosen for this assessment is a Pulp & Paper Mill
- Typical electrical demand for the plant is 5 MW
- The plant has the following electrical costs
 - Energy charge is \$0.030/kWh
 - Demand charge: \$14.6/kW on a monthly basis
 - If both charges are applicable to a load contributing to the billing demand the electrical cost can be considered \$0.050/kWh
- The site operates 24 hours each day 365 days each year
 - 8760 hours

Plant Information

- Average annual bundled cost for water is \$10/kgal (0.01 \$/gal)
- Impact fuel Natural gas
 - Fuel cost \$5.00/MMBtu
- Make-up water temperature 65°F

MEASUR – System Setup

e 16, 2021		System Setup	ssessment Diagram Repo	ort Sankey Calculators
2 Operations	3 Boiler	4 Header	5 Turbine	
ITIONS				HELP
				Steam Operatio
	8760		hrs/yr	· · · ·
	5000		kW	Enter measured data to
e	65		°F	Make-up Water Cos
				Cost of makeup water pe
	5.00		\$/MMBtu	
	0.05		\$/kWh	
	0.010		\$/gal	
	e 16, 2021 2 Operations ITIONS	e 16, 2021 2 Operations 3 Boiler 1 T I O N S e 5.00 0.05 0.010	B System Setup A 16, 2021 3 Boiler 4 Header 2 Operations 3 Boiler 4 Header ITIONS ITIONS e 5000 55.00 65 5.00 0.05 0.010 0.010	B System Setup Assessment Diagram Report 16, 2021 3 Boiler 4 Header 5 Turbine ITIONS ITIONS ITIONS e 5.00 kW 5.00 \$/MMBtu 0.05 \$/KWh 0.010 \$/gat

Plant Information

- Impact boiler efficiency to be used in the US DOE MEASUR tool
 - Combustion efficiency 78.7%
 - Blowdown rate 6%
- Boiler blowdown is sent to drain/sewer directly
 - No heat recovery
 - No flash steam generation
- Deaerator operating pressure 10 psig
- Deaerator vent is NOT (generally) an impact parameter
 - Can be set to 0
- Steam generation conditions: 400 psig, 700°F

MEASUR – System Setup

MEASUR				
Steam Example Last modified: Apr 16, 2021		System Setup Assessme	ent Diagram Report	t Sankey Calculators
1 Assessment Settings 2 Operations 3	Boiler	4 Header	5 Turbine	
BOILER DETAILS				HELP
Fuel Type	Gas		~	Boiler Help
Fuel Add New Fuel	Typical Natural G	as - US	*	Enter measured data to ca
Boiler Combustion Efficiency Calculate Efficiency	78.7		%	Deaerator Pressure
Blowdown Rate Calculate Blowdown Rate	6		%	The pressure of the deaera 0 to 30 psig.
Is the blowdown flashed?	No		~	
Preheat Make-up Water with Blowdown	No		~	
Steam Temperature	700		°F	
Deaerator Vent Rate	0.0		%	
Deaerator Pressure	10		psig	

MEASUR – System Setup

b MEASUR							
VINPLT_0421 Last modified: Apr 16, 2021		System Setup	Assessment	Diagram	Report	Sankey	Calculators
1 Assessment Settings 2 Operations 3	Boiler	4 Header	5	Turbine			
HEADER DETAILS					_	HELP	
Number Of Headers	1				~	Heade	r Help
Condensate Return					- 1	Enter mea	sured data to
Condensate Return Temperature	150				°F		
Flash Condensate Return	No				~	Process Mass flow	Steam Use
High Pressure Header					_		or steam aser
Pressure	400			p	sig		
Process Steam Usage	89			klb	/hr		
Condensate Recovery Rate	50				%		
Heat Loss	0				%		

MEASUR – System Diagram

MEASUR – System Cost Summary

COST SUMMARY

Power Balance				
Generation	0 kW			
Demand	5,000 kW			
Import	5,000 kW			
Unit Cost	\$0.05 /kWh			
Total \$/yr	\$2,190,000			
Fuel B	alance			
Boiler	148.63 MMBtu/hr			
Unit Cost	\$5.00 /MMBtu			
Total \$/yr	\$6,510,187			
Make-U	Make-Up Water			
Flow	101.78 gpm 53,497,740.14 gal			
Unit Cost	\$0.01 /gal			
Total \$/yr	\$534,977			
Total Open	Total Operating Cost			
\$9,23	\$9,235,164			
MARGINAL STEAM COST				
High Pressure	\$9.04 /klb			
Medium Pressure	\$0.00 /klb			
Low Pressure	\$0.00 /klb			

CoGeneration (Combined Heat & Power)

Steam Turbines

Turbines 101

- What is a Turbine?
 - Energy Conversion Device

Potential / Kinetic / Pressure / Thermal Energy

Market Penetration

- No easy reference to determine number and size of steam turbines out in the field
 - Some estimates indicate ~85% US power generated by steam turbines
- Some studies state that U.S. industry employs ~20 GW of power generation from steam turbines
 - Shaft power generation (direct drive and electrical generator drives)
- Industrial turbines range in capacity from 10 kW (13.5 hp) to several hundred MW

Examples of Industrial Systems

- Very common in industry
 - Direct power generation
 - Boiler feed water pumps
 - Cooling tower water pumps
 - Chilled water pumps
 - Boiler forced draft fan
 - Exhaust fans
 - Air compressors
 - Refrigeration machines
 - Chiller systems
 - Other utility services
- Less common in industry
 - Process equipment drives
 - Highly critical equipment

Examples of other Industrial Systems

Backpressure Steam Turbine-driven Application

Industrial Applications

4,000 RT Steam Turbine Driven Chiller

Steam Turbine

An Industrial System

2-stage refrigeration (R134a) compressor

Simple Utility Power Station

Better Plants

What would be the overall fuel to power conversion efficiency?

U.S. DEPARTMENT OF

Polling Question 4

Polling Question

- 4) What would you expect to be the efficiency of the simple utility thermal power station?
 - **A.** 25%
 - **B.** 35%
 - **C.** 50%
 - **D.** 75%

Simple Utility Power Station

Simple Utility Power Station

U.S. DEPARTMENT OF

Industrial Power Station

Steam Turbines

- Steam turbines are devices used to convert thermal (steam) energy into shaft energy
 - High-pressure steam enters and low-pressure steam exhausts

Steam Turbine Types

- Topping turbine (backpressure)
- Extraction turbine
- Extraction condensing turbine
- Straight condensing turbine
- Multiple extraction

Backpressure Steam Turbines

 Backpressure steam turbines discharge steam at a pressure greater than (or equal to) atmospheric pressure

Condensing Steam Turbines

- Condensing steam turbine discharge steam at a pressure less than atmospheric pressure
- The steam must be condensed to pump it back into the boiler
- Exiting steam quality is typically much greater than 90%

Typical Steam Turbines Operations

- Operating pressures
 - Minimum 150 psig
 - Maximum 3,000 psig
 - Vacuum conditions exist at the exhaust in condensing turbines!
- Operating steam temperatures
 - Few degrees of superheat
 - Significantly superheated
- Summary Steam turbine technology is very diverse and operates over a broad range of pressures and temperatures

Turbine First Law Efficiency

- An energy balance conducted on a steam turbine will reveal an exceptionally high efficiency
 - Essentially all of the energy taken out of the steam is converted into shaft energy

$$\eta_{first \ law} = \frac{\dot{W}_{shaft}}{\dot{m}_{steam}(h_i - h_e)} \approx 100\%$$

- Steam turbines operate with only minor "losses"
 - Bearing friction
 - Heat transfer
 - Gland losses

Isentropic Efficiency

- Steam turbine efficiency is described as *isentropic efficiency*
 - A comparison of the actual work produced compared to a perfect (isentropic) turbine

1

$$\eta_{isentropic} = \frac{Actual Work}{Isentropic Work} = \frac{\dot{W}_{actual}}{\dot{W}_{isentropic}}$$
$$\eta_{isentropic} = \frac{\dot{m}_{steam}(h_{inlet} - h_{exit})_{actual}}{\dot{m}_{steam}(h_{inlet} - h_{exit})_{isentropic}} = \frac{(h_i - h_e)_{actual}}{(h_i - h_e)_{isentropic}}$$

Typical Steam Turbine Efficiency

- Major contributors to isentropic efficiency
 - Turbine design
 - Control valve type
 - Single valve throttle
 - Multi-valve flow nozzles

$$\eta_{isentropic} = \frac{(h_{in} - h_{out})_{actual}}{(h_{in} - h_{out})_{isentropic}} = 20\% \text{ to } 80\%$$

Turbine Efficiency Summary

- US DOE MEASUR requires turbine isentropic efficiency
- Methods of obtaining isentropic efficiency:
 - Manufacturer specifications
 - Turbine Map / Curve
 - Actual operating conditions (superheated cases)
 - Steam inlet and outlet conditions known
 - Steam inlet conditions and power generation known
 - Typically, used for electrical power generation units

MEASUR – Steam Turbine Calculator

STEAM TURBINE			RESULTS		HELP	
Solve For			Isentropic Efficiency		64.1 %	
Isentropic Efficiency 🗸			Energy Out		6 MMBtu/hr	
			Generator Efficiency		95 %	
Pressure	400		Power Out		1,660.1 kV	/
Known Variable	400 Temperature	psig				1
Temperature Value	700			Inlet	Outlet Ideal	Outlet
	700	T	Pressure (psig)	400	20	20
Turbine Properties			Temperature (°F)	700	350	350
Selected Turbine Property	Mass Flow	~	Phase	Gas	Gas	Gas
Mass Flow	40	klb/hr	Sp. Enthalpy (Btu/lb)	1,362	1,213	1,213
Generator Efficiency	95	%	Sp. Entropy (Btu/Ib-°F)	1.636	1.748	1.748
Outlet Steam			Mass Flow (klb/hr)	40		40
Pressure	20	psig	Energy Flow (MMBtu/hr)	54.5		48.5
Known Variable	Temperature	v liet				
Temperature Value	350	°F		Copy Table		
	L					

CoGeneration (Combined Heat & Power)

• Gas Turbines

An Example Gas Turbine / HRSG Cogeneration System

Better Plants

Metrics for Cogeneration

Heat Rate

- Heat Rate = E_{fuel} / E_{Power}
- E_{fuel} is in Btu/hr using LHV (or net)
- E_{power} is in kW

Net Electric Efficiency

- $\eta_E = E_{Power} / E_{Fuel}$
- Cogeneration System Efficiency
 - η_{Cogen} = (E_{Power} + E_{steam}) / E_{Fuel}
- Cogeneration Electric Effectiveness
 - $\epsilon_{EE} = E_{Power} / (E_{Fuel} E_{steam} / \eta_{boiler})$

Example System Cogeneration Trending

Example System Cogeneration Trending

Homework #3

- Get comfortable using the MEASUR tool.
- Decide on a specific header model and work with your line diagram and develop a high-level steam system model for your facility. Use your numbers and values wherever you can otherwise use default information provided in the Steam System Assessment template.
- Use your plant's utility costs to calculate your marginal steam cost (\$/klb)
- Send a screenshot of the MEASUR diagram and cost summary page

Thank You all for attending today's webinar.

See you all on tomorrow Thursday – October 17, 2024 – 10 am ET

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at paparra@ornl.gov

