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Chat question for the week

What is one of your favorite fair 

foods?

Using Zoom!

2

Mute yourself! 

Have a question? 

Use the chat feature.

Controls accessed at the bottom

Access Chat at the bottom

Note: We will NOT be recording this workshop

Rename yourself 

“Name (Company)”

Right click on your picture or 3 dots 

OR

Controls accessed at the right after 

clicking ‘Participants’ at bottom.
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This meeting is being recorded 

(both audio and video)
 

If you do not consent to being recorded, 

please let the meeting moderator know 

ASAP and we will facilitate your 

participation in another way or adjust our 

procedure.

Recording

WASTEWATER VIRTUAL INPLT

SESSION 4
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For those that did Imhoff 

cone tests on your 

primary effluent, what did 

you measure???

Chat question for the week

Thank You!

Sponsor:
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Report outs!

▪ Who wants to tell us 

about some energy 

saving opportunities 

that they have 

discovered?

▪ Have you begun to 

populate your 

opportunity register?

Action ID Action Description

Project 

Initiation Date 

(MM/DD/YYYY)

Project 

Completion Date 

(MM/DD/YYYY)

Energy Type 

Impacted

Primary Energy 

Conversion 

Factor

Measurement Method
Annual Site 

(MMBtu/year)

Annual Primary

(MMBtu/year)

Example 1 Install occupancy sensors 

and energy management 

controls

1/1/2020 2/1/2020 Electricity 3                             Calculated 10,905.00               32,715.00                          

Example 2 Replace chilled water 

and process water pump 

motors with premium 

efficiency electric motors

1/1/2021 4/1/2021 Electricity 3                             Calculated 12,591.00               37,773.00                          

 Anticipated Reduction in Annual Energy 

Consumption 

(BEFORE Implementation) 

 Energy Performance Improvement Action 

POLL

Today’s Agenda

Welcome and Introductions

Plant Energy Basics

Bacterial Energetics and Aeration

Break

Aeration Blower Opportunities

Estimating Potential Savings

Kahoot

Q&A
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Motor Inrush Current — Concern or Not?
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Motor Current vs. Time

3 seconds

Session 4

Bacterial Energetics and Aeration
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Four Requirements of Life to Live and Thrive

Carbon

Energy

Inorganic nutrients

Reducing power

1

2

3

4

Heterotrophs Get Carbon and Energy 

From Organic Carbon (Like Us)

Carbon

Energy

Inorganic nutrients

Reducing power

1

2

3

4

15

16



7

Heterotrophic Metabolism: Catabolism 

and Anabolism, Energy and Growth

Anabolism | Growth

Maintenance

O2

MLVSS

CO2, H2OCatabolism | Respiration

EnergyC 

building 

blocks

BODOrganic C

cell

Electron Transport Chains 

in Cell Membranes Extract Energy

e-
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O2 Serves as the Terminal Electron Acceptor 

in Aerobic Respiration

e-

O2

H2O 

When an Atom Gains Electrons, it is Reduced

e-

O2

H2O 

Oxygen is reduced
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Anabolism | Growth

Maintenance

O2

MLVSS

CO2, H2O

cell

Catabolism | Respiration

EnergyC 

building 

blocks

BOD

BOD Decreases Until Gone 

(That’s the Goal) What Happens Then?

Anabolic Metabolism Shuts Down

Energy Still Needed to Maintain Cell Integrity

Anabolism | Growth

Maintenance

O2

MLVSS

CO2, H2O

cell

Catabolism | Respiration

EnergyC 

building 

blocks
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Endogenous Respiration Begins When the 

Cell Starts Using its Own Carbon Reserves

Maintenance

O2

CO2, H2O

cell

Catabolism | Respiration

EnergyCarbon 

reserves

Bacterial Growth Curve

from Auralene Glymph

This Graphic is Wrong: 

Death and Endogenous are Not Synonymous

Time

Lag Phase

Growth

(exponential)

Phase

Declining 

Growth Phase

Stationary Phase

Death

(endogenous) 

Phase

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
lo

g
)
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When the BOD is Gone, the Biomass 

Goes Endogenous; it Does Not Die

Anabolism | Growth

Maintenance

O2

MLVSS

CO2, H2O

cell

Catabolism | Respiration

EnergyC 

building 

blocks

BOD

When the BOD is Gone, the Biomass 

Goes Endogenous; it Does Not Die

Maintenance

O2

CO2, H2O

cell

Catabolism | Respiration

EnergyCarbon 

reserves
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Maintenance

O2

CO2, H2O

cell

Catabolism | Respiration

EnergyCarbon 

reserves

A Different Story When 

Carbon Reserves Run Out

Cell contents = BOD + nutrients

Anabolism | Growth

Maintenance

O2

MLVSS

CO2, H2O

cell

Catabolism | Respiration

EnergyC 

building 

blocks

BOD

Yield: How Much Influent Organic C (BOD) 

is Converted to Organic C in New Cells (MLVSS)

27
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More Influent BOD is Converted to New Cells 

Than Oxidized for Energy (and respired)

Anabolism | Growth

Maintenance

O2

MLVSS

CO2, H2O

cell

Catabolism | Respiration

EnergyC 

building 

blocks

BOD

~ 60%

Plant Process Electricity Use Overview

Derived from data from Focus On Energy WWOA 49th Annual Conference, October 7, 2015 presentation by Joseph Cantwell, PE

Aeration
54%

Wastewater Pumping
14%

Lighting & Buildings
8%

Chlorination
0%

Belt Press
4%

Screens
0%

Gravity Thickening
0%

Anaerobic Digestion
14%

Grit
2%

Clarifiers and RAS
4%

Electricity Requirements for Activated Sludge Wastewater

Aeration

Wastewater Pumping

Lighting & Buildings

Chlorination

Belt Press

Screens

Gravity Thickening

Anaerobic Digestion

Grit

Clarifiers and RAS

WHY??
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A Gallon of Milk…

Weighs  ~8.34 lb 

Has a BOD concentration 

of approximately 120,000 mg/L

How many pounds of BOD?

A Gallon of Milk = One Pound of BOD

What does that mean?

31
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A Pound of Oxygen From the Atmosphere…

~Eight 55-gallon drums of air

Air:
21% O2

The Reason so Much Aeration is Required. . . . 

DO ×

Bubble FlocMixed 

Liquor

33
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Eighty 55-Gallon Drums of Air

Mixed Liquor DO Concentration Must Be 

High Enough to Accomplish Two Things

Air:
21% O2

DO ×

Bubble FlocMixed 

Liquor
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DO ×

1. Must Provide Sufficient Gradient 

to Diffuse Oxygen Into Floc Center

DO ×

Oxygen Uptake Rate = OUR

2. While Oxygen is Being Continuously 

Consumed for Aerobic Respiration
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DO ×

More BOD Results in Greater OUR, Requiring 

Higher DO Concentration in Mixed Liquor

Oxygen Uptake Rate = OUR

Ph.D. work of Jon Palm

Jon Palm’s Ph.D. Work: DO Set Point Depends 

On Organic Loading and OUR (here SOUR)

B
O

D
 
C

O
N

C
E

N
T

R
A

T
I
O

N

HIGH

LOW

O
U

R

HIGH

LOW

39

40



19

Need High DO Where There’s High BOD

Given Enough DO, BOD Goes Fast

Air:
21% O2

DO ×

Bubble FlocMixed 

Liquor

DO Requirement Greatest When Oxygen 

Uptake Rate is Highest (High BOD) 

Up here!◉

Ph.D. work of Jon Palm
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When BOD is Gone, DO Requirement 

Minimal—Potential for Huge Energy Savings

No need here 

for DO > 0.5 mg/L

Ph.D. work of Jon Palm
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Another Problem With Inadequate DO: 

Small Floc Size

Air:
21% O2

DO ×

Bubble FlocMixed 

Liquor
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Air:
21% O2

DO ×

Bubble FlocMixed 

Liquor

Low or 

no O2

Insufficient DO to Drive Diffusion Results 

in Low/No DO in Center of Floc

Air:
21% O2

DO ×

Bubble FlocMixed 

Liquor

Small Floc Settle Slowly, If at All
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NH4
+  H+ + NH3 ➝ NO2

− ➝ NO3
−

NitrateNitriteAmmonium Ammonia

Nitrifiers are Autotrophs

Ammonia Oxidizing Bacteria (AOB)

Anabolism | Growth

Maintenance

O2

AOB

NO2

cell

Catabolism | Respiration

Energy

NH3

Inorganic C
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Nitrite Oxidizing Bacteria (NOB)

Anabolism | Growth

Maintenance

O2

NOB

NO3

cell

Catabolism | Respiration

Energy

NO2

Inorganic C

NH4
+ + 1½O2 ➝ NO2

− + H2O + 2H+

[Every 1 lb NH4-N requires 3.4 lb O2]

NH4
+ + 2O2 ➝ NO3

− + H2O + 2H+

[Every 1 lb NH4-N requires 4.6 lb O2]

For AOB

For AOB + NOB

Total Oxygen Needed to Oxidize NH4
+ to NO2

− 

and NO3
− Determined from Stoichiometry
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NH4
+ + 2O2 ➝ NO3

− + H2O + 2H+

1. Oxygen uptake rate (OUR) 

during nitrification is constant

2. As a result of No. 1

High ammonia concentrations 

do not require high DO concentrations

Nitrification Proceeds as a “First-order Reaction” 

Two Hugely Important Consequences

1. Some inhibition 

when DO is less than 1.5 mg/L

2. Significant inhibition 

when DO is less than 1.0 mg/L

3. Complete inhibition 

when DO is less than 0.5 mg/L

4. Heterotrophs out-compete nitrifiers 

for oxygen when the BOD concentration is high

Nitrifiers are Strict Aerobes but Can’t Compete 

When BOD Concentration is High
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Maintenance

O2

CO2, H2O

cell

Catabolism | Respiration

EnergyCarbon 

reserves

Endogenous OUR (when BOD and NH3 are gone) 

is Relatively Constant and Measurable 

12–25 mg DO/L.hr

Collect mixed liquor sample 

(~300 mL in 500-mL Nalgene)

Cap and shake to aerate

Insert DO probe

Once DO is falling constantly, 

read DO as you start a stopwatch

Read DO every 10 sec for 60 sec

Plot DO (y-axis) as a function of seconds (x-axis) 

to make sure decrease is linear

Calculate OUR, mg DO/L.hr, from slope 

Simplified OUR Test Provides 

Tremendous Insight and Control
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Results at the Beginning of an Aeration Basin
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Subzones Identified

RAS

PE

BOD 

oxidation

Nitrification

Endogenous

Different Subzones Have Different 

DO Set-Point Requirements

RAS

PE

BOD 
oxidation
5 mg DO/L 

or moreNitrification
2−4 mg DO/L

Endogenous
0.5 mg DO/L
(or whatever is required 

for mixing)
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Recommendation of 2.0 mg DO/L Throughout 

Not Enough Sometimes, Way Too Much Others

RAS

PE

BOD 
oxidation
5 mg DO/L 

or moreNitrification
2−4 mg DO/L

Endogenous
0.5 mg DO/L
(or whatever is required 

for mixing)

Depending on Size of Endogenous Subzone, 

Huge Potential for Energy Savings

RAS

PE

BOD 
oxidation
5 mg DO/L 

or moreNitrification
2−4 mg DO/L

Endogenous
0.5 mg DO/L
(or whatever is required 

for mixing)
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TAKEAWAY: Process Knowledge Takes 

Guesswork Out of Setting DO Targets

RAS

PE

BOD 
oxidation
5 mg DO/L 

or moreNitrification
2−4 mg DO/L

Endogenous
0.5 mg DO/L
(or whatever is required 

for mixing)

Homework - OUR Example & MEASUR
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Break

Motor Inrush Current — Concern or Not?
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Aeration/Secondary Treatment

Energy

Efficiency

POLL

Coarse Bubble Aeration

67
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Fine bubble diffused aeration High efficiency, moderate maintenance 

Mechanical aeration Low efficiency, high maintenance

Aeration

Jet aeration* High aeration efficiency, low-to-moderate maintenance

         *(The pump accounts for 25 to 40 percent of the power used in a jet aeration system.)

Coarse bubble diffused aeration Low efficiency, low maintenance

Aeration → Priorities!

1. Satisfy the process need (BOD conversion).

2. Minimize the residual.

3. Keep solids in suspension.

Avoid if you can! 

This is what mixers are for!

69
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Header Pressure

Distance from 

diffuser to water 

surface in feet 

divided by 2.31 = 

minimum header 

pressure in PSIG 

to form a bubble.

Aeration Energy Savings 

For every 0.5 mg/l reduction in DO setpoint ~ 

6% blower energy savings

(Assumes 70% motor load & 92% motor/drive eff.)
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Exercise - Aeration Pressure

Energy

Efficiency

(Assumes 70% motor load & 92% motor/drive eff.)

DO Residual Aeration Impact
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Opportunity Register Thoughts?

Opportunity #

Opportunity 

Name Description Location System*

Submitted 

By

This Photo by Unknown Author is licensed under CC 

BY-SA-NC

This Photo by Unknown Author is licensed under CC 

BY-NC-ND

86
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https://creativecommons.org/licenses/by-nc-sa/3.0/
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https://debshoganteaching.wordpress.com/2020/04/27/microsoft-forms-business-quizzes/
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Closing

See You Next Tuesday!

88
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