

Recording

This meeting is being recorded (both audio and video)

If you do not consent to being recorded, please let the meeting moderator know ASAP and we will facilitate your participation in another way or adjust our procedure.

3

WASTEWATER VIRTUAL INPLT SESSION 4

Better Plants

ENERGY

5

Thank You!

Sponsor:

Better Plants U.S. DEPARTMENT OF ENERGY

Report outs!

- Who wants to tell us about some energy saving opportunities that they have discovered?
- Have you begun to populate your opportunity register?

Energy Performance Improvement Action						Anticipated Reduction in Annual Energy Consumption (BEFORE Implementation)		
Action ID	Action Description	Project Initiation Date (MM/DD/YYYY)	Project Completion Date (MM/DD/YYYY)	Energy Type Impacted	Primary Energy Conversion Factor	Measurement Method	Annual Site (MMBtu/year)	Annual Primary (MMBtu/year)
	Install occupancy sensors and energy management controls	1/1/2020	2/1/2020	Electricity	3	Calculated	10,905.00	32,715.00
	Replace chilled water and process water pump motors with premium efficiency electric motors	1/1/2021	4/1/2021	Electricity	3	Calculated	12,591.00	37,773.00

ENERGY

9

Today's Agenda

Welcome and Introductions

Plant Energy Basics

Estimating Potential Savings

Bacterial Energetics and Aeration

Kahoot

Reak

Q&A

Better Plants

Motor Inrush Current — Concern or Not?

Motor Current vs. Time

Better Plants ENERGY

13

Session 4 Bacterial Energetics and Aeration

Four Requirements of Life to Live and Thrive

Better Plants

U.S. DEPARTMENT OF ENERGY

15

Heterotrophs Get Carbon and Energy From Organic Carbon (Like Us)

Better Plants

Heterotrophic Metabolism: Catabolism and Anabolism, Energy and Growth

17

Electron Transport Chains in Cell Membranes Extract Energy

Better Plants

O₂ Serves as the *Terminal Electron Acceptor* in Aerobic Respiration

Better Plants

ENERGY

19

When an Atom Gains Electrons, it is Reduced

Better Plants ENERGY

BOD Decreases Until Gone (That's the Goal) What Happens Then?

Better Plants ENERGY

21

Anabolic Metabolism Shuts Down Energy Still Needed to Maintain Cell Integrity

Better Plants

ENERGY

Endogenous Respiration Begins When the Cell Starts Using its Own Carbon Reserves

Better Plants

ENERGY

23

This Graphic is Wrong: Death and Endogenous are Not Synonymous

Better Plants ENERGY

When the BOD is Gone, the Biomass Goes Endogenous; it Does Not Die

25

When the BOD is Gone, the Biomass Goes Endogenous; it Does Not Die

Better Plants ENERGY

A Different Story When Carbon Reserves Run Out

27

Yield: How Much Influent Organic C (BOD) is Converted to Organic C in New Cells (MLVSS)

Better Plants

ENERGY

More Influent BOD is Converted to New Cells Than Oxidized for Energy (and respired)

Better Plants U.S. DEPARTMENT OF ENERGY

29

Plant Process Electricity Use Overview

 $Derived from \ data \ from \ Focus \ On \ Energy \ WWOA \ 49^{th} \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ by \ Joseph \ Cantwell, \ PError \ Annual \ Conference, \ October \ 7, 2015 \ presentation \ Perror \ Perror \ Annual \ Perror \ Perr$

ENERGY

A Gallon of Milk...

Weighs ~8.34 lb

Has a BOD concentration of approximately 120,000 mg/L

How many pounds of BOD?

U.S. DEPARTMENT OF ENERGY

31

A Gallon of Milk = One Pound of BOD

What does that mean?

U.S. DEPARTMENT OF ENERGY

A Pound of Oxygen From the Atmosphere...

~Eight 55-gallon drums of air

ENERGY Better Plants

33

The Reason so Much Aeration is Required. . . .

ENERGY

35

Mixed Liquor DO Concentration Must Be High Enough to Accomplish Two Things

Must Provide Sufficient Gradient to Diffuse Oxygen Into Floc Center

Better Plants

ENERGY

37

2. While Oxygen is Being Continuously Consumed for Aerobic Respiration

\ Oxygen Uptake Rate = OUR

Better Plants ENERGY

More BOD Results in Greater OUR, Requiring Higher DO Concentration in Mixed Liquor

\ Oxygen Uptake Rate = OUR

Better Plants

ENERGY

39

Jon Palm's Ph.D. Work: DO Set Point Depends On Organic Loading and OUR (here SOUR)

Better Plants ENERGY

Need High DO Where There's High BOD Given Enough DO, BOD Goes Fast

41

DO Requirement Greatest When Oxygen Uptake Rate is Highest (High BOD)

Better Plants

ENERGY

When BOD is Gone, DO Requirement Minimal—Potential for Huge Energy Savings

Better Plants ENERGY

43

Another Problem With Inadequate DO: Small Floc Size

Insufficient DO to Drive Diffusion Results in Low/No DO in Center of Floc

45

Small Floc Settle Slowly, If at All

Nitrifiers are Autotrophs

$$NH_4^+ \leftrightarrows H^+ + NH_3 \rightarrow NO_2^- \rightarrow NO_3^-$$

Ammonium Ammonia Nitrite Nitrate

47

Ammonia Oxidizing Bacteria (AOB)

Better U.S. DEPARTMENT OF ENERGY ENERGY

Nitrite Oxidizing Bacteria (NOB)

Better Plants

ENERGY

49

Total Oxygen Needed to Oxidize NH₄⁺ to NO₂⁻ and NO₃⁻ Determined from Stoichiometry

For AOB

$$NH_4^+ + 1\frac{1}{2}O_2^- \rightarrow NO_2^- + H_2O + 2H^+$$

[Every 1 lb NH_4 -N requires 3.4 lb O_2]

For AOB + NOB

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$$

[Every 1 lb NH₄-N requires 4.6 lb O₂]

Nitrification Proceeds as a "First-order Reaction" Two Hugely Important Consequences

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$$

- Oxygen uptake rate (OUR)
 during nitrification is constant
- 2. As a result of No. 1
 High ammonia concentrations
 do not require high DO concentrations

ENERGY

51

Nitrifiers are Strict Aerobes but Can't Compete When BOD Concentration is High

- Some inhibition
 when DO is less than 1.5 mg/L
- 2. Significant inhibition when DO is less than 1.0 mg/L
- 3. Complete inhibition when DO is less than 0.5 mg/L
- 4. Heterotrophs out-compete nitrifiers for oxygen when the BOD concentration is high

Endogenous OUR (when BOD and NH₃ are gone) is Relatively Constant and Measurable

53

Simplified OUR Test Provides Tremendous Insight and Control

Collect mixed liquor sample (~300 mL in 500-mL Nalgene)

Cap and shake to aerate

Insert DO probe

Once DO is falling constantly, read DO as you start a stopwatch

Read DO every 10 sec for 60 sec

Plot DO (y-axis) as a function of seconds (x-axis) to make sure decrease is linear

Calculate OUR, mg DO/L.hr, from slope

Better Plants

ENERGY

Results at the Beginning of an Aeration Basin

Better Plants ENERGY

55

OUR Profile

Better Plants

ENERGY

Subzones Delineated by OUR Profile

57

Subzones Identified

Better Plants

Endogenous BOD oxidation Nitrification RAS PE

U.S. DEPARTMENT OF ENERGY

59

Better Plants

Recommendation of 2.0 mg DO/L Throughout Not Enough Sometimes, Way Too Much Others

61

Depending on Size of Endogenous Subzone, Huge Potential for Energy Savings

Better Plants ENERGY

TAKEAWAY: Process Knowledge Takes Guesswork Out of Setting DO Targets

63

Homework - OUR Example & MEASUR

Break

Better Plants

U.S. DEPARTMENT OF ENERGY

65

Motor Inrush Current — Concern or Not?

Motor Current vs. Time

Better Plants ENERGY

Aeration

Fine bubble diffused aeration High efficiency, moderate maintenance Mechanical aeration Low efficiency, high maintenance

Jet aeration* High aeration efficiency, low-to-moderate maintenance

*(The pump accounts for 25 to 40 percent of the power used in a jet aeration system.)

Coarse bubble diffused aeration Low efficiency, low maintenance

ENERGY

69

Aeration → *Priorities!*

- 1. Satisfy the process need (BOD conversion).
- 2. Minimize the residual.
- 3. Keep solids in suspension.

Avoid if you can!

This is what mixers are for!

Aeration Energy Savings

Mixed liquor temp		DO sat	DO LEVEL ON BLOWER ENERGY Energy savings potential if DO reduced from to 2.0 mg/l				
°C	°F	mg/l	2.5	3	4	5	
0	32	14.6	4.0%	7.9%	15.9%	23.8%	
2	36	13.8	4.2%	8.5%	16.9%	25.4%	
5	41	12.8	4.6%	9.3%	18.5%	27.8%	
10	50	11.3	5.4%	10.8%	21.5%	32.3%	
15	59	10.1	6.2%	12.3%	24.7%	37.0%	
20	68	9.1	7.0%	14.1%	28.2%	42.3%	
25	77	8.2	8.1%	16.1%	32.3%	48.4%	
NOTE Higher impact as elevation increases							

(Assumes 70% motor load & 92% motor/drive eff.)

For every 0.5 mg/l reduction in DO setpoint ~ 6% blower energy savings

ENERGY

Exercise - Aeration Pressure

3 IMPACT OF BLOWER PRESSURE ON ENERGY

Disch.		Reduction	in pressure	of psig	
pressure	-0.2	-0.4	-0.6	-0.8	-1.0
12	1.3%	2.7%	4.0%	5.4%	6.7%
11	1.5%	2.9%	4.4%	5.9%	7.4%
10	1.6%	3.3%	4.9%	6.6%	8.3%
9	1.8%	3.7%	5.5%	7.4%	9.3%
8	2.1%	4.2%	6.3%	8.4%	10.6%
7	2.4%	4.8%	7.3%	9.7%	12.2%

(Assumes 70% motor load & 92% motor/drive eff.)

ENERGY

74

DO Residual Aeration Impact

2 IMPACT OF DO LEVELS ON ENERGY

Saturated DO

DO in basin = driving force for oxygen transfer Driving force UP means Energy goes DOWN

DO rule of thum

0.5 mg/l reduction creates ~ 6% energy savings

DO calibration & cleaning

A probe that reads 10% low (e.g. 2.0 when actual is 2.2) is costing you 2.4% at the blower.

DO level increases

As mixed liquor temp increases, the impact of elevated DO levels increases.

Mixed liquor temp		DO sat	Energy savings potential if DO reduced from to 2.0 mg/l				
°C	°F	mg/l	2.5	3	4	5	
0	32	14.6	4.0%	7.9%	15.9%	23.8%	
2	36	13.8	4.2%	8.5%	16.9%	25.4%	
5	41	12.8	4.6%	9.3%	18.5%	27.8%	
10	50	11.3	5.4%	10.8%	21.5%	32.3%	
15	59	10.1	6.2%	12.3%	24.7%	37.0%	
20	68	9.1	7.0%	14.1%	28.2%	42.3%	
25	77	8.2	8.1%	16.1%	32.3%	48.4%	
NOTE Higher impact as elevation increases							

ENERGY

Opportunity Register Thoughts?

Opportunity #	Opportunity Name	Description	Location	System*	Submitted By

Better Plants U.S. DEPARTMENT OF ENERGY

86

Closing

See You Next Tuesday!

