Chat Question for the Week

Favorite BBQ?

1

ENERGY

Recording

This meeting is being recorded (both audio and video)

If you do not consent to being recorded, please let the meeting moderator know ASAP and we will facilitate your participation in another way or adjust our procedure.

3

ENERGY

WASTEWATER VINPLT SESSION 6 OPTIMIZING RAS RATE, STATE POINT ANALYSIS AND MORE ENERGY MATH

Thank You!

Sponsor

1. Calculate the WAS flow necessary to maintain the following SRT_{TARGETS} C. 9 days (Full Nitrification)

➢Do you know your *SSV30*?

Air Compressors……all Shapes & Sizes

Better

12

ENERGY

Compressor Energy Sankey Diagram

Compressed Air Opportunities

 \bullet $\begin{picture}(120,15) \put(0,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}}$ soble rangees $\overline{\mathbf{G}}$ Ŧ $\begin{array}{l} 32.5 \\ 32.5 \\ 51.8 \\ 61.8 \\ 71.6 \\ \end{array}$ $\frac{1}{\sqrt{2}}$ em em выí $\phi^{\frac{1+\alpha}{2\alpha}}\left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right)$ i
Talian ĩ $\frac{1}{2}$ a
San or blow a component **BER** \mathbb{R} **Better** ENERGY

Time to Get Serious for a Moment…

A WWTP is Like a Manufacturing Plant

But What is It We Produce?

As Operations Professionals We Live the Triple Bottom Line (3BL) Every Day

For the Environment

Much, Much More Than "Making Permit"

Professional Operator Credo:

To remove pollutants from the incoming water while complying with all permits water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

As a Profession, We've Put a Lot of Emphasis Here…

To remove pollutants from the incoming water while complying with all permits water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

ENERGY

But Remember…

This is Why We're All Here!

To remove pollutants from the incoming water while complying with all permits water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

Bottom Line: We Build and Operate Multi-Million/ Billion \$\$\$ Facilities with Someone Else's Money

Better
Plants

38

ENERGY

Clean Water is More Important Than Wine, Even Good Wine

You can make good wine with good grapes, you can make bad wine with good grapes, but you can never make good wine with bad grapes.
 Fig. 3 "
grap
000

In the Activated Sludge Process, Good Sludge Quality is Key to the 3BL

f You cannot have good effluent quality without good sludge quality.

Two Reasons for Confusion Around RAS Flow (Q_{RAS}) and RAS TSS Concentration (TSS_{RAS})

1. Thickening is *NOT* a Process Objective of the Secondary Clarifier

To remove settleable solids (biomass).

Activated Sludge Does Not **Appreciatively** Settle/Thicken/Compact More After 30 min

 $SSV_{30} = 290$ mL/L

SSV60, SSV¹²⁰ not much different

44

For All Intents and Purposes, MLSS $_{30}$ is Max Possible RAS Concentration (TSS_{RASmax})

Thickening is *NOT* a Process Objective of the Secondary Clarifier

Perform a Solids Mass Balance Around Secondary Clarifier

Four Simplifying Assumptions

- **1. Mass of solids entering neither increases by growth nor decreases by decay and death**
- **2. The sludge blanket is neither increasing nor decreasing ("steady state")**
- **3. QWAS, compared to Q and QRAS, is small enough to ignore**
- **4. TSS**_{SCE} is small enough to ignore

Mass of solids in = Mass of solids out

Mass In Equals Mass Out

Third Assumption Eliminates This Term

Fourth Assumption Eliminates This Term

Poes Q_{RAS} Control TSS_{RAS} or
Does TSS_{RAS} Control Q_{RAS} Does TSS_{RAS} Control Q $_{RAS}$ </sub>

$(Q + Q_{RAS}) \times MLSS \approx Q_{RAS} \times TSS_{RAS}$

TSS_{RAS} is Always a Fixed Multiple of MLSS But Varies with Q and Q_{RAS}

$$
TSS_{RAS} \approx (1 + \frac{Q}{Q_{RAS}}) \times MLSS
$$

A Mass Balance is Fundamental It's Non-negotiable

 \dot{Q} = 1.2 Mgal/d $Q_{RAS} = 375 gal/min = 0.54 Mgal/d$ $MLSS = 2,000$ mg/L Example:

 $TSS_{RAS} \approx (1 + \frac{1.2 \text{ m} \cdot \text{s}}{0.54 \text{ M} \cdot \text{s}}) \times (2,000 \text{ m} \cdot \text{s}}{1.2 \text{ m} \cdot \text{s}})$ **1.2 Mgal/d**

$$
TSS_{RAS} \approx 6,444 \text{ mg/L}
$$

Better
• Plants

ENERGY

Some Plants Have Proportional RAS Flow Control (r is Constant)

$$
r = \frac{Q_{RAS}}{Q}
$$

TSS_{RAS} \approx (1 + $\frac{Q}{Q_{RAS}}$) x MLSS

 TSS_{RAS} is a Fixed Multiple of MLSS, and Does \overline{NOT} Change with Q and Q_{RAS}

$$
TSS_{RAS} \approx (1 + \frac{1}{r}) \times MLSS
$$

A Mass Balance is Fundamental It's Non-negotiable

$r = 85\% = 0.85$ MLSS = 3,500 mg/L Example:

$$
TSS_{RAS} \approx (1 + \frac{1}{0.85}) \times (3,500 \text{ mg/L})
$$

$$
TSS_{RAS} \approx 7,618 \text{ mg/L}
$$

The Purpose of the RAS is Twofold

- **1. To keep the microorganisms in the system longer than the water**
- **2. To control the** *distribution* **of solids between the aeration basin and secondary clarifier (NOTE: it is critical to have as many of the solids in the aeration basin as possible at all times)**

Infinitely?

Said Here $TSS_{RASmax} = MLSS_{30}$, Calculated Using SSV_{30} from Settleometer

$$
TSS_{RASmax} \approx (1 + \frac{Q}{Q_{RASmin}}) \times MLSS
$$

Set Eqns. 1 and 2 Equal, Solve for Q_{RASmin}

$$
\text{TSS}_{\text{RASmax}} \approx (1 + \frac{Q}{Q_{\text{RASmin}}}) \times \text{MLSS}_{(Eqn. 1)}
$$

$$
\text{TSS}_{\text{RASmax}} = \frac{\text{MLSS} \times 1,000}{\text{SSV}_{30}} \quad (\text{Eqn. 2})
$$

Optimum RAS Flow (Q_{RASmin}) or Percentage (r_{min}) Fixed by Extent of Compaction

$$
Q_{RASmin} = \frac{SSV_{30}}{1,000 - SSV_{30}} \times Q
$$

$$
r_{\min} = \frac{SSV_{30}}{1,000 - SSV_{30}}
$$

Good Sludge Quality Saves Ratepayer Money

Better

• Plants

ENERGY

Example: If You're SSV_{30} is 250 mL/L and r is 75%, You're Wasting Ratepayer \$\$\$

ENERGY

Better
Plants

ENERGY

INTRODUCTION TO STATE POINT ANALYSIS

Introduction to State Point Analysis

The State Point Is At the Intersection of the Two Operating Lines

85

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

Line Going Down Left to Right is Bottom Underflow Rate Operating Line (BUR)

The Slope Changes With Changes in Q_{RAS}

The Slope Changes With Changes in QRAS

ENERGY

The Two Lines Intersect at the MLSS Concentration

Underflow Rate Operating Line Intersects x -axis at TSS_{RAS} (when passing below curve)

ENERGY

And the y-axis at Solids Loading Rate (regardless where it is relative to curve)

97

The Settling Flux Curve is Defined by Sludge Settleability

Increased Flow Causes Overloaded **Condition**

What Happens When a Secondary Clarifier is Overloaded?

101

System Responds All By Itself—But at a Cost…a Sludge Blanket

Proper Response Sould Have Been to Increase RAS Flow When Overloaded

103

Consider a Plant with Two Flows, Low & High Flows but Constant RAS Flow

ENERGY

Consider a Plant with Two Flows, Low & High Flows but Constant RAS Flow

Flow Changes From Low to High, No Change in RAS Flow

State Point Moves Up

Overloaded

Overloaded Condition Causes State Point to Move Again as Blanket Forms

State Point Stops Here to "Critically Loaded Condition"

111

State Point Drops Down

Blanket Solids are Transferred Back to the Aeration Basin, MLSS Increases

State Point Moves Up

Can Be Used to Determine Maximum Flow System Can Handle

By the Way…Capacity Defined by How the Sludge *Settles* and *Compacts*

An Extremely Powerful Tool

Sludge Quantity (MLSS) and Quality (SVI) Have *HUGE* Impact on Capacity

That's What We Said Last Week: Three Considerations Setting SRT_{TARGET}

- 1. Effluent ammonia requirement
- $×2$ **. Best sludge quality**
- ***3. Minimum SRT_{TARGET}** that will satisfy 1 and 2

Summarizing Process Energy Conservation: 8 Guiding Principles

8. Live by the operations professional credo: To remove pollutants from the incoming water, while complying with all permits—water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

From experience the process control engineer knows that an SRT target (aerobic) of 7 days will meet the effluent NH3 requirements during the winter. However, because the supernatant in the modified settleometer test has been turbid, she wants to increase the SRT target to 7.5 days.

ENERGY