Chat Question for the Week

Favorite BBQ?

ENERGY

1

ENERGY

Recording

This meeting is being recorded (both audio and video)

If you do not consent to being recorded, please let the meeting moderator know ASAP and we will facilitate your participation in another way or adjust our procedure.

3

WASTEWATER VINPLT SESSION 6 OPTIMIZING RAS RATE, STATE POINT ANALYSIS AND MORE ENERGY MATH

Thank You!

Sponsor

ENERGY

5

Today's Agenda

Welcome

Compressed Air

Optimizing RAS Rate

State Point Analysis

Quiz

Closing Remarks

HOMEWORK

- 1. Calculate the WAS flow necessary to maintain the following SRT_{TARGETS}
 - A. 3 days (Plant is not nitrifying)
 - B. 6.5 days
 - C. 9 days (Full Nitrification)

$$Q_{WAS} = \left(\frac{V_{AB}}{SRT_{TARGET}} \times \frac{MLSS}{TSS_{WAS}}\right) - \left(Q \times \frac{TSS_{SCE}}{TSS_{WAS}}\right)$$

Better

ENERGY

7

1. Calculate the WAS flow necessary to maintain the following SRT_{TARGETS}
C. 9 days (Full Nitrification)

HOMEWORK

$$Q_{WAS} = \left(\frac{V_{AB}}{SRT_{TARGET}} \times \frac{MLSS}{TSS_{WAS}}\right) - \left(Q \times \frac{TSS_{SCE}}{TSS_{WAS}}\right)$$

$$Q_{WAS} = \left(\frac{3,200,000 \text{ gal}}{9 \text{ d}} \times \frac{2,200 \text{ mg TSS/L}}{7,900 \text{ mg TSS/L}}\right) - \left(9,800,000 \text{ gal/d} \times \frac{5.5 \text{ mg TSS/L}}{7,900 \text{ mg TSS/L}}\right)$$

 Q_{WAS} =(99,000 gal/d)-(7,000 gal/d)=92,000 gal/d

U.S. DEPARTMENT OF ENERGY

Polls

- > Do you know your plant and RAS flow rates?
- ➤ Do you know your **RAS recycle percentage**?
- ➤ Do you know your **MLSS concentration**?
- ➤ Do you know your **RAS TSS concentration**?
- ➤ Do you know your *SSV30*?

ENERGY

10

Air Compressors

Better Plants

ENERGY

Air Compressors.....all Shapes & Sizes

U.S. DEPARTMENT OF ENERGY

12

Compressor Energy Sankey Diagram

Better Plants

U.S. DEPARTMENT OF ENERGY

14

Control Options & Performance

Compressed Air Opportunities

Pressure Limiting User

Is one end-use driving up your pressure requirements?

What is the maximum pressure you actually require?

Compressor Checks

Do you have more than one compressor? Are they all operating, and do they have to be?

Compressor Pressure Setpoints

2 psi = 1%

Minimize pressure reductions

Filter & Dryers

Desiccant or refrigerated? Filters checked regularly

ENERGY

20

Time to Get Serious for a Moment...

This Photo by Unknown Author is licensed under CC BY-ND

Better Plants

ENERGY

24

A WWTP is Like a Manufacturing Plant

Influent Recycle Solids Treatment Biosolids

Better Plants ENERGY

But What is It We Produce?

More Importantly, What is It We Do?

Better Plants U.S. DEPARTMENT OF ENERGY

As Operations Professionals We Live the Triple Bottom Line (3BL) Every Day

Better U.S. DEPARTMENT OF ENERGY ENERGY

28

For Society

For the Environment

For Our Ratepayers

Much, Much More Than "Making Permit"

Professional Operator Credo:

To remove pollutants from the incoming water while complying with all permits—water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

Better Plants

As a Profession, We've Put a Lot of Emphasis Here...

To remove pollutants from the incoming water while complying with all permits—water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

ENERGY

34

...and Here...

To remove pollutants from the incoming water while complying with all permits—water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

U.S. DEPARTMENT OF ENERGY

But Remember...

50

This is Why We're All Here!

To remove pollutants from the incoming water while complying with all permits—water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

Better Plants

Bottom Line: We Build and Operate Multi-Million/ Billion \$\$\$ Facilities with Someone Else's Money

ENERGY

38

Clean Water is More Important Than Wine, Even Good Wine

You can make good wine with good grapes, you can make bad wine with good grapes, but you can never make good wine with bad grapes.

In the Activated Sludge Process, Good Sludge Quality is Key to the 3BL

You cannot have good effluent quality without good sludge quality.

ENERGY

40

RAS Pumps Use Big Motors and Run All the Time

Better Plants

To Talk About RAS, We Need to Talk About the Secondary Clarifier

42

Two Reasons for Confusion Around RAS Flow (Q_{RAS}) and RAS TSS Concentration (TSS_{RAS})

Better Plants

ENERGY

Thickening is **NOT** a Process Objective of the Secondary Clarifier

To remove settleable solids (biomass).

ENERGY

44

Activated Sludge Does Not **Appreciatively** Settle/Thicken/Compact More After 30 min

 $SSV_{30} = 290 \text{ mL/L}$

SSV₆₀, SSV₁₂₀ not much different

Better Plants

Measure MLSS on Sample Used In Settleometer Test

Plants U.S. DEPARTMENT OF ENERGY

46

SSV₅

Better Plants ENERGY

SSV₃₀

Better Plants

ENERGY

48

 $MLSS_{30}$ = Sludge Blanket TSS mg/L After 30 min Settling In Settleometer

$$\mathsf{MLSS}_{30} = \frac{\mathsf{MLSS} \times 1,000}{\mathsf{SSV}_{30}}$$

Better Plants ENERGY

Calculate MLSS₃₀

Better U.S. DEPARTMENT OF ENERGY

50

For All Intents and Purposes, MLSS $_{30}$ is Max Possible RAS Concentration (TSS $_{\rm RASmax}$)

Better

Thickening is **NOT** a Process Objective of the Secondary Clarifier

Better U.S. DEPARTMENT OF ENERGY ENERGY

52

2. Q_{RAS} Controls TSS_{RAS} **NOT** the Other Way Around

Better Plants ENERGY

Perform a Solids Mass Balance Around Secondary Clarifier

Better Plants

ENERGY

54

Four Simplifying Assumptions

- Mass of solids entering neither increases by growth nor decreases by decay and death
- 2. The sludge blanket is neither increasing nor decreasing ("steady state")
- 3. Q_{WAS}, compared to Q and Q_{RAS}, is small enough to ignore
- 4. TSS_{SCE} is small enough to ignore

Better Plants

First Two Assumptions Give Very Logical Result

Mass of solids in = Mass of solids out

ENERGY

56

Solids Mass Equals Concentration × Flow

Better Plants

ENERGY

Mass In Equals Mass Out

Better U.S. DEPARTMENT OF ENERGY

58

Third Assumption Eliminates This Term

$$(Q + Q_{RAS}) \times MLSS =$$

$$Q_{RAS} \times TSS_{RAS} + Q \times TSS_{SCE} + Q_{WAS} \times TSS_{RAS}$$

Better Plants ENERGY

Fourth Assumption Eliminates This Term

Better U.S. DEPARTMENT OF ENERGY ENERGY

60

Mass of Solids in Mixed Liquor Flow Nearly Equals Mass of Solids Out in RAS Flow

Better Plants ENERGY

Does Q_{RAS} Control TSS_{RAS} or Does TSS_{RAS} Control Q_{RAS}

$$(Q + Q_{RAS}) \times MLSS \approx Q_{RAS} \times TSS_{RAS}$$

ENERGY

62

Q_{RAS} Controls TSS_{RAS} Solve for TSS_{RAS}

$$(Q + Q_{RAS}) \times MLSS \approx Q_{RAS} \times TSS_{RAS}$$

Better Plants

${\sf TSS}_{\sf RAS}$ is Always a Fixed Multiple of MLSS But Varies with Q and ${\sf Q}_{\sf RAS}$

$$TSS_{RAS} \approx (1 + \frac{Q}{Q_{RAS}}) \times MLSS$$

ENERGY

64

A Mass Balance is Fundamental It's Non-negotiable

Example:

 \dot{Q} = 1.2 Mgal/d Q_{RAS} = 375 gal/min = 0.54 Mgal/d MLSS = 2,000 mg/L

TSS_{RAS} ≈ (1 +
$$\frac{1.2 \text{ Mgal/d}}{0.54 \text{ Mgal/d}}$$
) × (2,000 mg/L)

TSS_{RAS} ≈ 6,444 mg/L

Some Plants Have Proportional RAS Flow Control (r is Constant)

$$r = \frac{Q_{RAS}}{Q}$$

$$TSS_{RAS} \approx (1 + \frac{Q}{Q_{RAS}}) \times MLSS$$

ENERGY

66

TSS_{RAS} is a Fixed Multiple of MLSS, and Does NOT Change with Q and Q_{RAS}

$$TSS_{RAS} \approx (1 + \frac{1}{r}) \times MLSS$$

A Mass Balance is Fundamental It's Non-negotiable

$$r = 85\% = 0.85$$

MLSS = 3,500 mg/L

$$TSS_{RAS} \approx (1 + \frac{1}{0.85}) \times (3,500 \text{ mg/L})$$

ENERGY

68

Remember the Chat Question...

Who wants to volunteer their plant numbers?

- Plant flow (Q)
- RAS flow rate or percentage (Q_{RAS} or r)
- MLSS
- TSS_{RAS} (<u>but don't tell us what it is</u>)

Better Plants

The Purpose of the RAS is Twofold

- 1. To keep the microorganisms in the system longer than the water
- 2. To control the distribution of solids between the aeration basin and secondary clarifier (Note: it is critical to have as many of the solids in the aeration basin as possible at all times)

ENERGY

70

So, What Should My RAS Flow Be

Two Reasons to Run Q_{RAS} as <u>Low as</u> <u>Possible</u> (without building sludge blankets)

- Higher RAS flows than necessary waste electricity (and ratepayer money)
- 2. Due to turbulence in the secondary clarifier, high RAS flows can deteriorate performance by increasing TSS_{SCE}

ENERGY

72

Mass-balance Equation Shows TSS_{RAS} Increases With Decreasing Q_{RAS}

$$TSS_{RAS} \approx (1 + \frac{Q}{Q_{RAS}}) \times MLSS$$

Infinitely?

Said Here $TSS_{RASmax} = MLSS_{30}$, Calculated Using SSV_{30} from Settleometer

Better Plants

ENERGY

74

TSS_{RASmax} Achieved At Q_{RASmin}

$$TSS_{RASmax} \approx (1 + \frac{Q}{Q_{RASmin}}) \times MLSS$$

Better Plants

Set Eqns. 1 and 2 Equal, Solve for Q_{RASmin}

TSS_{RASmax}
$$\approx$$
 (1 + $\frac{Q}{Q_{RASmin}}$) × MLSS (Eqn. 1)

$$TSS_{RASmax} = \frac{MLSS \times 1,000}{SSV_{30}} (Eqn. 2)$$

ENERGY

76

Optimum RAS Flow (Q_{RASmin}) or Percentage (r_{min}) Fixed by Extent of Compaction

$$Q_{RASmin} = \frac{SSV_{30}}{1,000 - SSV_{30}} \times Q$$

$$r_{min} = \frac{SSV_{30}}{1,000 - SSV_{30}}$$

Better Plants ENERGY

Good Sludge Quality Saves Ratepayer Money

SSV ₃₀ (mL/L)	r _{min} (%)
150	18
250	33
350	54
450	82
550	122
650	186
750	300

Better Plants

U.S. DEPARTMENT OF ENERGY

78

Example: If You're SSV₃₀ is 250 mL/L and r is 75%, You're Wasting Ratepayer \$\$\$

SSV ₃₀ (mL/L)	r _{min} (%)
150	18
250	33
350	54
450	82
550	122
650	186
750	300

Better Plants ENERGY

Another: If You're SSV_{30} is 450 mL/L and r is 25%, You Have Sludge Blankets

SSV ₃₀ (mL/L)	r _{min} (%)
150	18
250	33
350	54
450	82
550	122
650	186
750	300

U.S. DEPARTMENT OF ENERGY

80

Better Plants

OJ.

Introduction to State Point Analysis

Better Plants U.S. DEPARTMENT OF ENERGY

The State Point Is At the Intersection of the Two Operating Lines

Plants U.S. DEPARTMENT OF ENERGY

85

The Line Going Up From Left to Right is the Overflow Rate Operating Line

Better Plants

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

Plants U.S. DEPARTMENT OF ENERGY

87

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

Better Plants ENERGY

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

Better U.S. DEPARTMENT OF ENERGY ENERGY

89

The Slope Changes With Changes in Flow (Q) and Online Clarifiers (A)

Better Plants ENERGY

Line Going Down Left to Right is Bottom Underflow Rate Operating Line (BUR)

Better Plants

ENERGY

91

The Slope Changes With Changes in Q_{RAS}

Better Plants

ENERGY

The Slope Changes With Changes in Q_{RAS}

Plants U.S. DEPARTMENT OF ENERGY

93

This is Important

Better U.S. DEPARTMENT OF ENERGY ENERGY

The Two Lines Intersect at the MLSS Concentration

Better Plants

ENERGY

95

Underflow Rate Operating Line Intersects x-axis at TSS_{RAS} (when passing below curve)

Better Plants

And the y-axis at Solids Loading Rate (regardless where it is relative to curve)

Better U.S. DEPARTMENT OF ENERGY ENERGY

97

The Settling Flux Curve is Defined by Sludge Settleability

Better Plants ENERGY

The Settling Flux Curve is Defined by Sludge Settleability

Plants U.S. DEPARTMENT OF ENERGY

99

Increased Flow Causes Overloaded Condition

Better Plants ENERGY

What Happens When a Secondary Clarifier is Overloaded?

Better Plants

U.S. DEPARTMENT OF ENERGY

101

System Responds All By Itself—But at a Cost…a Sludge Blanket

Better Plants

Proper Response Sould Have Been to Increase RAS Flow When Overloaded

Better Plants

ENERGY

103

Consider a Plant with Two Flows, Low & High Flows but Constant RAS Flow

Better Plants

ENERGY

Consider a Plant with Two Flows, Low & High Flows but Constant RAS Flow

Better Plants

ENERGY

105

Start at Low Flow

Better Plants ENERGY

Flow Changes From Low to High, No Change in RAS Flow

Better Plants

ENERGY

107

State Point Moves Up

Better Plants

ENERGY

Overloaded

Better Plants ENERGY

109

Overloaded Condition Causes State Point to Move Again as Blanket Forms

Better Plants

ENERGY

State Point Stops Here to "Critically Loaded Condition"

Better Plants

ENERGY

111

Flow Goes from High to Low, Now Underloaded

Better Plants

ENERGY

State Point Drops Down

Better Plants

ENERGY

113

Blanket Solids are Transferred Back to the Aeration Basin, MLSS Increases

Better Plants

ENERGY

State Point Moves Up

Better Plants

U.S. DEPARTMENT OF ENERGY

115

We're Back to Where We Started!

Better Plants ENERGY

Can Be Used to Determine Maximum Flow System Can Handle

Better Plants

ENERGY

117

By the Way...Capacity Defined by How the Sludge Settles and Compacts

Better Plants

ENERGY

An Extremely Powerful Tool

Better Plants

ENERGY

119

Sludge Quantity (MLSS) and Quality (SVI) Have *HUGE* Impact on Capacity

Better Plants

ENERGY

For Your Ratepayers: Minimize Sludge Quantity, Maximize Sludge Quality

Plants U.S. DEPARTMENT OF ENERGY

121

That's What We Said Last Week: Three Considerations Setting SRT_{TARGET}

- 1. Effluent ammonia requirement
- ★2. Best sludge quality
- ★3. Minimum SRT_{TARGET} that will satisfy 1 and 2

Better Plants

Summarizing Process Energy Conservation: 8 Guiding Principles

- 1. The performance of primary clarifiers and anaerobic digesters is largely controlled by influent characteristics.
- 2. Remove as much as possible in the primaries.
- 3. Give the mixed liquor just the air it needs when it needs it, where it needs it.
- 4. Identify and maintain the minimum SRT that meets the effluent ammonia target and gives best sludge quality.

ENERGY

124

Summarizing Process Energy Conservation: 8 Guiding Principles

- Determine and maintain the lowest RAS flow possible that does not result in increasing sludge blankets at any flow rate.
- 6. Maintain the organic loading to and the temperature in anaerobic digesters as stable, consistent, and uniform as possible.
- 7. Know the statistical accuracy of all data used to for control.

Better Plants

Summarizing Process Energy Conservation: 8 Guiding Principles

8. Live by the operations professional credo: To remove pollutants from the incoming water, while complying with all permits—water, air, and land—and convert them to recyclable biosolids as sustainably and cost effectively as possible.

Better Plants ENERGY

126

Homework

$$\frac{\mathbf{Q}_{\text{RASmin}}}{\mathbf{Q}} = \frac{\mathbf{SSV}_{30}}{\mathbf{1,000} - \mathbf{SSV}_{30}}$$

Calculate the minimum RAS flow percentage for SSV₃₀s of 125, 150, 175, 200, 250, 300, 400, 500, and 600 mL/L. Comment on the impact that sludge compaction has on the potential for lowering RAS pumping costs.

SRT EXERCISE

$$Q_{\text{WAS}} = \left(\frac{V_{\text{a}}}{\text{SRT}_{\text{target}}} \times \frac{\text{MLSS}}{\text{TSS}_{\text{WAS}}}\right) - \left(Q \times \frac{\text{TSS}_{\text{EFF}}}{\text{TSS}_{\text{WAS}}}\right)$$

From experience the process control engineer knows that an SRT target (aerobic) of 7 days will meet the effluent NH3 requirements during the winter. However, because the supernatant in the modified <u>settleometer</u> test has been turbid, she wants to increase the SRT target to 7.5 days.

129

Closing

See You Next Week

Better Plants U.S. DEPARTMENT OF ENERGY