

USING THE CHAT FUNCTION......

WHO IS YOUR FAVORITE SUPERHERO....AND

WHY????

U.S. DEPARTMENT OF

<section-header>

If you do not consent to being recorded, please let the meeting moderator know ASAP and we will facilitate your participation in another way or adjust our procedure.

Better Plants

3

ENERGY

VIRTUAL WASTEWATER INPLT SESSION 2

MOVING DAY - BOD & Pumping

Thank You to Our Sponsor!

Better Plants U.S. DEPARTMENT OF

22. Do you track any energy key performance indicators?

Better Plants

7

U.S. DEPARTMENT OF

Today's Agenda

Bette Plants	U.S. DEPARTMENT
	Q&A
	Wrap-up
	Energy Maps
	Pumping Systems Part 2 - Curves
	Break
	Pumping Systems Part 1 - Head
	Follow the BOD
	Intros & Welcome

Derived from data from Focus On Energy WWOA 49th Annual Conference, October 7, 2015 presentation by Joseph Cantwell, PE

Better

Assume 33% BOD Removal in Primary Clarifier

The Remaining BOD Goes to the Aeration Basin

Assuming a Yield of 0.6 lb Biomass (measured as BOD) per lb BOD...

...Means 4,191 lb BOD/d Must be Removed in the WAS

Difference Between These is 2,794 lb BOD/d Where Does That BOD Go?

An Optimized Primary Clarifier is an Optimized Plant = Least Cost Operation

Homework (Assume: PI = 10,425 lb BOD/d, Yield = 0.6 lb BOD/lb BOD, Eff = 400 lb BOD/d)

23	Primary clarifier BOD removal (%)	BOD _{PS} (Ib BOD/d)	BOD _{PE} (Ib BOD/d)	BOD _{WAS} (Ib BOD/d)	BOD _{RESPIRED} (Ib BOD/d)	BOD _{PS} /BOD _{WAS}
33 3,440 6,985 4,191 2,394 0.82 43	23					
43	33	3,440	6,985	4,191	2,394	0.82
	43					
53	53					

Better Plants

ENERGY

23

Anaerobic Digestion (tied with Wastewater Pumping) is Second Largest Electricity User

Derived from data from Focus On Energy WWOA 49th Annual Conference, October 7, 2015 presentation by Joseph Cantwell, PE

Practice Problem Set 2, Question 4

Anaerobic Digester Mix Pump 3A pumps 1,175 gal/min against a total dynamic head of 48 ft. It was designed to run continuously. From the manufacturer's literature, the pump is 74% efficient and the motor is 92% efficient. The average cost of electricity is \$0.1012/kWh. The CPO conducted a study and found no deterioration in performance—measured in terms of VSR, gas production and gas composition—when turning the mix pump off for 20 minutes every 30 minutes (i.e., 10 min *on*, 20 min *off*). Calculate the annual electrical cost savings realized with this new operation, ignoring demand charges.

This Is What I'm Talking About

Anaerobic Digester Mix Pump 3A pumps 1,175 gal/min against a total dynamic head of 48 ft. It was designed to run continuously. From the manufacturer's literature, the pump is 74% efficient and the motor is 92% efficient. The average cost of electricity is \$0.1012/kWh. The CPO conducted a study and found no deterioration in performance—measured in terms of VSR, gas production and gas composition—when turning the mix pump off for 20 minutes every 30 minutes (i.e., 10 min *on*, 20 min *off*). Calculate the annual electrical cost savings realized with this new operation, ignoring demand charges.

26

The CPO's Study Would Not Have Been Possible if the Digester Performed Like This

A Bit of History: Papplewick Pumping Station

Nottinghamshire, England 1882-84 until 1969 2 ea. 140 hp engines Supplied by James *Watt* & Co.

Better Plants

29

U.S. DEPARTMENT OF

Abbey Pumping Station

Leicester, England 1891 - 1964 4 ea. 200 hp by Gimson & Co. 12-19 RPM 4,170 GPM

What does 200 hp look like today?

Can anyone estimate the power requirement?

kW =	=	
Better Plants		
31		

PUMPING SYSTEMS PART 1

Teaching Pumping Math to Operators

Opportunity Register

	Expand or collapse steps using the +/- signs above Expand or collapse steps using the +/- signs above 1 Expand or collapse steps using the +/- signs above														
E	Energy Projects														
	En	ergy Project	Step 1	Ide	ntify			Step 2			Prioritize			Step 3	
		Opportunity Name		Description	Location	System*	Submitted By		Energy Impact	Energy Savings	Type of Energy Saved*	Cost/Effort Required	Decision		Next Step
1	F	Reduce Non-Potable Water Pressure		Average pressure is 100 psi. Pressure needed is 80 psi. Average flow is 300	Plant water pump skid	Non-potable water	Wendy		Gems	24,954	Electric	Low	Do it now		
2															
3															
4															
5	i														
6															
7	·														
8	1														
9	•														
10	D														
11	1														

PUMPING SYSTEMS PART 2 - CURVES

Typical Single Stage Pump Curve

Reading Pump Curves

If the pump has a 11" impeller diameter, is pumping water, and is operating at 500 gpm, what are the other operating conditions (H, BHP, η)?

Better	ENEDGY
	LINERGI

PUMPING SYSTEMS PART 2 – CURVES CONTINUE..

What affects head loss the most?

Total Dynamic Head = Static Head + Head Loss

$$h_L = f \frac{L}{D} \frac{v^2}{2g} =$$

Head loss is most sensitive to changes in diameter

Exercise - Design Engineer for a Day!

LET'S DRAW!

• You get to design a new pump station.

- •Wet well water elevation is 820 feet.
- Discharge point elevation is 860 feet.
 - Static head = ?

Flow (gpm)	Static Head (ft)		Friction Head (ft)	System Curve Head (ft)		
0						
100			1			
200			5			
300			15			
400			30			
500			50			

Flow (gpm)	Static Head (ft)		Friction Head (ft)	S Cur	yster ve Ho (ft)	n ead	
0		40		0		40	
100				1			
200				5			
300				15			
400				30			
500				50			

What Power Will It Require?Pumping Power EquationQ370 GPMH65 feetS.g.1.0
(we're pumping water)

What Power Will It Require?

U.S. DEPARTMENT OF

How Much Will It Cost To Run?

Pumping Power Equation				
Q	450 GPM			
н	50 feet			
s.g.	1 (we're pumping water)			
Pump Efficiency η	40%			
внр				

3960 * 0.40

U.S. DEPARTMENT OF

Throttled Valve

ENERGY

91

Summary

Condition	Flow (GPM)	Head (Feet)	Input Power (kW)	Annual Cost (@ \$.06 /kWh)
Designed	370	65	8.9	\$4,680
Installed	450	50	11.3	\$5,940
Throttled	350	68	8.4	\$4,420
Add VFD	350	46	6.7	\$3,520

92
Better
Plants

U.S. DEPARTMENT OF

Summary

Condition	Flow (GPM)	Input Power (kW)	GPM / kW	kWh/MG Pumped
Designed	370	8.9	42	401
Installed	450	11.3	40	420
Throttled	350	8.4	42	400
Add VFD	350	6.7	52	319

93

U.S. DEPARTMENT OF

Oversize Motors Cost You \$\$

Better

95

Top 10 Energy Savings Opportunities

1. Minimize loads	Decrease flow
2. Use your best part load option	Increase efficiency
3. Turn it off	Decrease run hours
4. Minimize pressure drops	Decrease head
5. Optimize pressure settings	Decrease head
6. Keep idling time to a minimum	Decrease run hours
7. Right technology	Increase efficiency
8. Right size equipment	Increase efficiency, decrease flow, decrease head
9. Remove barriers to more efficient setpoints	Increase efficiency, decrease flow, decrease head
10. Make the most of your controls	Increase efficiency, decrease flow, decrease head

U.S. DEPARTMENT OF

DEPARTMENT

ENERGY

