

#### Industrial Process Cooling (Chilled Water) Systems Virtual INPLT Training & Assessment

Session 4 Thursday – August 1, 2024 10 am – 12:30 pm



11////

# Welcome

- Welcome to the 4<sup>th</sup> Chilled Water Systems Virtual INPLT training series
- Eight, 2-1/2 hour webinars, focused on Industrial Process Cooling (Chilled Water) Systems Energy Assessment and Optimization
- These webinars will help you gain a significant understanding of your industrial process cooling system, undertake an energy assessment using a systems approach, evaluate and quantify energy and cost-saving opportunities using CWSAT and other US DOE tools and resources
- Thank you for your interest!







# Process Cooling (Chilled Water Systems) Virtual INPLT Facilitator



Riyaz Papar, PE, CEM, Fellow – ASME, ASHRAE

Industrial Energy Efficiency & Decarbonization Advisor Oak Ridge National Laboratory

paparra@ornl.gov (346) 610 8787





# Process Cooling Virtual INPLT Agenda (2024)

- Session 1 (July 17) Industrial Chilled Water Systems Fundamentals
- Session 2 (July 18) Review of Chilled Water System Scoping Tool; Efficiency Metrics & Calculations
- Session 3 (July 31) Introduction to Chilled Water System Assessment Tool (CWSAT)
- Session 4 (August 1) Using CWSAT to Quantify Energy Efficiency Opportunities Part 1
- Session 5 (August 14) Using CWSAT to Quantify Energy Efficiency Opportunities Part 2
- Session 6 (August 15) US DOE MEASUR, 3EPlus, etc.; Undertaking a VINPLT Assessment & Reporting
- Session 7 (August 28) Case Studies; Refrigerants Past, Present & Future; Reclamation and O&M
- Session 8 (August 29) Industrial Process Cooling (Chilled water) System VINPLT Wrap-up Presentations





# Agenda – Session 4

- Welcome and Introductions
- Safety and Housekeeping
- Today's Content:
  - Example Chilled Water Plant
  - Modeling in CWSAT Base Model
- Kahoot Quiz Game
- Q&A











# Safety and Housekeeping

#### Safety Moment

- Chillers have oil sumps, filters, etc. be careful when walking around a chiller oil may be leaking on the floor or there may be a puddle making the floor extremely slippery – exercise caution, wear proper safety shoes to avoid slipping
- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded
   A link to the recorded webinars will be provided, afterwards







## Modeling the Example Chilled Water System in CWSAT



# Aim of Student Exercise

- Provide an understanding of an actual industrial chilled water system
- Hands-on exercise to demonstrate operation and functionality of CWSAT in a real-life scenario
- Start from the basics and get into details and build a "Baseline Model" for a central chilled water system
- Students will learn to model their own chilled water plant and develop a baseline for the energy consumption and the breakdown of energy consumed by the individual sub-systems





## Start CWSAT 3.0.1

| Name ^                      | Status  | Date modified      | Туре             |
|-----------------------------|---------|--------------------|------------------|
| OUTPUTDATA                  | $\odot$ | 4/20/2022 8:42 AM  | File folder      |
| Sample Weather Upload Files | $\odot$ | 4/20/2022 8:42 AM  | File folder      |
| User Manual                 | $\odot$ | 4/20/2022 8:42 AM  | File folder      |
| USERCHILLER                 | $\odot$ | 4/20/2022 8:42 AM  | File folder      |
| USERPROFILE                 | $\odot$ | 4/20/2022 8:42 AM  | File folder      |
| WEATHER                     | $\odot$ | 4/20/2022 11:22 AM | File folder      |
| CWSAT 3.0.1                 | 0       | 4/20/2022 8:42 AM  | Application      |
| CWSAT                       | 0       | 4/20/2022 8:41 AM  | Compressed (zipp |
|                             |         |                    |                  |
| c .                         |         |                    | >                |
|                             |         |                    |                  |

#### **Chilled Water System Analysis Tool**

#### Version 3.0.1

Description: This program calculates the annual energy requirements of various chilled water systems. It also evaluates the energy and cost savings that result when a variety of changes are made to the chilled water system.



Copyright by The University of Massachusetts Amherst 2013 All Rights Reserved

Continue





# Facility Description

- The plant / facility is a large Food & Beverages plant located in the St. Louis, MO area
- The system selected for the energy assessment provides chilled water for process, packaging, air-conditioning plant areas and warehouse storage
- The plant operates a 3-shift per day operation, 8-hour per shift and runs all year round
- Possible shut-downs are planned for periodic maintenance activities





# **Description of Chilled Water System**

# Chilled Water System:

- Water-cooled
- 10 years old
- 3 Chillers
- 2 cell 1-speed Tower (1)
- Primary / Secondary Chilled Water Distribution System





# High-level System Schematic







# **CWSAT INPUT Screenshots**

- Geographic location
- System description
- Heat rejection setup
- Pump setups
  - Chilled water
  - Condenser water (if applicable)
- Chiller setup
  - Default
  - Custom
- Utility Cost

Better

Plants

Operation Schedule & Load Profile





## Input Geographic Location

#### St. Louis, MO









# **Chiller Plant Information**

Number of Chillers: 3

Better

Plants

- Chilled Water Setpoint: 44°F
- Water-Cooled Condensers

| iput Screen                 |                                   |    |    |
|-----------------------------|-----------------------------------|----|----|
| File Tools                  |                                   |    |    |
| Basic System Data           |                                   |    |    |
| Geographic Location:        | MO Saint Loui $  \smallsetminus $ |    |    |
| Number of Chillers:         | 3 ~                               |    |    |
| Chilled Water Supply Temper | rature: 44 V                      | ٩£ | ок |
| Condenser Cooling Method:   | Water-Cooled $$                   |    |    |
|                             |                                   |    |    |





# **Chiller Plant Information**

- Cooling Water Supply Temperature is CONSTANT
- Cooling Water Supply Setpoint: 85°F
- Water-Cooled Condensers

| /ater-Cooled Data<br>WT = Condenser Cooling Wa | ater Supply Temperature |
|------------------------------------------------|-------------------------|
| the CWT constant?                              | Yes ✓                   |
| /hat is the CWT?                               | 85 ✓ ºF OK              |



?

~ ºF

Water-Cooled Data

Is the CWT constant?

What is the CWT?

CWT = Condenser Cooling Water Supply Temperature

Yes



#### **Cooling Tower Information**

- One tower with 2-cells and 1-speed motor
- Tower rated capacity 2,000 RT

| Tower Data     |                  | (aa. 🔍 Na    |            | <b></b> |  |
|----------------|------------------|--------------|------------|---------|--|
| Tower Type:    | 2-Cell With 1-St | es 🕑 Nu      | ~          |         |  |
| New of Teasers |                  |              |            |         |  |
| Num of Towers: |                  |              |            | ок      |  |
| Size Tower by: | Tons ~           | 2000 ~       | tons/tower |         |  |
|                |                  | Axial $\sim$ | Fan Type   |         |  |
|                |                  |              |            |         |  |







#### Sub-System Information

#### Chilled Water Pumps

- Primary
  - 3 x 15 hp Constant Speed
  - Flow rate based on 2.40 gpm/RT
- Secondary
  - 2 x 20 hp Variable Speed
- Condenser Water Pumps
  - 3 x 10 hp Constant Speed
  - Flow rate based on 3.0 gpm/RT

| Pump Data             | CHW            |           | CW      |        |    |
|-----------------------|----------------|-----------|---------|--------|----|
| Variable Flow?        | No             | $\sim$    | No      | $\sim$ | ?  |
| Flow Rate [gpm/ton]:  | 2.4            | $\sim$    | 3       | $\sim$ |    |
| Motor Size (hp):      | Unknown        | $\sim$    | Unknown | $\sim$ | OK |
| Pump Efficiency [%]:  | 75             | $\sim$    | 75      | $\sim$ | OK |
| Motor Efficiency [%]: | 85             | $\sim$    | 85      | $\sim$ |    |
|                       | Jnkno<br>Defau | wı<br>ılt |         |        | T  |

U.S. DEPARTMENT OF

ENERGY



#### Sub-System Information

| <mark>ile <u>T</u>ools</mark>                                                                                      |                                                                 |                                              |                        |               |                                                                                                                          |                                         |                     |                                      |                  |    |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------------|------------------|----|
| Basic System D<br>Geographic Lo<br>Number of Chil<br>Chilled Water S<br>Condenser Coc                              | ata<br>cation: N<br>lers:<br>upply Temperatu<br>vling Method: V | AO Saint Loui                                | ✓                      | Э             | Water-Cooled Data<br>CWT = Condenser Coo<br>Is the CWT constant?<br>What is the CWT?                                     | oling Water                             | Supply<br>Yes<br>85 | Temperatu                            | ure<br>∨<br>∨ ºF | ок |
| Tower Data<br>System with Free<br>Tower Type:<br>Num of Towers:<br>Size Tower by:                                  | Cooling ? Yes<br>2-Cell With 1-Sper<br>1<br>Tons 2<br>A         | ed Motors ~<br>2000 ~ tons/<br>Axial ~ Fan 1 | tower                  | <b>Э</b>      | Pump Data<br>Variable Flow?<br>Flow Rate [gpm/ton]:<br>Motor Size (hp):<br>Pump Efficiency [%]:<br>Motor Efficiency [%]: | CHW<br>No<br>2.4<br>Unknown<br>75<br>85 | ~<br>~<br>~<br>~    | CW<br>No<br>3<br>Unknown<br>75<br>85 |                  | ОК |
| Current Chiller Da<br>User Chiller ?<br>(Y/N)<br>Chiller 1<br>O Y IN<br>Chiller 2<br>O Y IN<br>Chiller 3<br>O Y IN | ta<br>Compressor/<br>Type                                       | Chiller F                                    | Full Load<br>ff Known? | Chiller<br>[t | Capacity<br>ons] [                                                                                                       | Age<br>Years]                           | 0                   |                                      |                  |    |





#### Chillers:

- 2 Centrifugals and 1 Screw machine (constant speed)
  - Centrifugals 1,000 RT each
  - Screw 350 RT
- Rated Full Load Efficiency (kW/RT)
  - Centrifugals 0.65
  - Screw 0.75
- Age: 10 years
- Chilled Water Setpoint 44°F
- Condenser Water Supply Temperature 85°F







- There are 3 methods to specify chillers in CWSAT
- Each chiller is specified independently and can be done in either of the 3 ways
- How you specify a chiller depends on how much information you have on the chiller
- CWSAT is built w/default information





- No information about performance is known
- Following information is enough to use the default performance curves within CWSAT
  - Compressor type Centrifugal, Screw (helical rotary), Reciprocating
  - Chiller Design Capacity (RT)
  - Age of chiller (years)

| Current Chiller Data<br>User Chiller ?<br>(Y/N)<br>Chiller 1 | a<br>Compressor/Chiller<br>Type | Full Load<br>Eff Known? | Chiller Capacity<br>[tons] | Age<br>[Years] | 1 |
|--------------------------------------------------------------|---------------------------------|-------------------------|----------------------------|----------------|---|
| OY ● N                                                       | Centrifugal 🗸                   | No ~                    | 1000 ~                     | 10 ~           |   |



- Full Load performance (kW/RT) is known but part-load information is not available
- Following information is enough to use the default performance curves within CWSAT
  - Compressor type Centrifugal, Screw (helical rotary), Reciprocating
  - Chiller Design Capacity (RT)
  - Full Load Efficiency (kW/RT)
  - Age of chiller (years)

| Current Chiller Data<br>User Chiller ?<br>(Y/N)<br>Chiller 1 | a<br>Compressor/Chiller<br>Type | Full Load<br>Eff Known? | Chiller Capacity<br>[tons] | FLE Value<br>[kW/ton] | Age<br>[Years] |  |
|--------------------------------------------------------------|---------------------------------|-------------------------|----------------------------|-----------------------|----------------|--|
| OY ● N                                                       | Centrifugal                     | ∨ Yes ∨                 | 1000 ~                     | 0.65 ~                | 10 ~           |  |



- Full Load performance (kW/RT) is known
- Part-load information is also available
- The following information is used to build a performance curve for the specific chiller in CWSAT
  - Compressor type Centrifugal, Screw (helical rotary), Reciprocating
  - Chiller Design Capacity (RT)
  - Efficiency (kW/RT) at the following load conditions
    - 25% load
    - 50% load
    - 75% load
    - 100% load





| Input Screen                             |                       |                  |               |    |
|------------------------------------------|-----------------------|------------------|---------------|----|
| File Tools                               |                       |                  |               |    |
| Basic Upload New Geographical Location   |                       |                  |               |    |
| Define Chiller                           | CWT = Condenser Coo   | ling Water Suppl | y Temperature | ?  |
| Geographic Elecation.                    | Is the CWT constant?  | Yes              | s ~           |    |
| Number of Chillers:                      | What is the CWT?      | 85               | ~ ºF          | OK |
| Chilled Water Supply Temperature: 44     |                       |                  |               |    |
| Condenser Cooling Method: Water-Cooled V |                       |                  |               |    |
| Tower Data                               | Pump Data             | CHW              | CW            |    |
| System with Free Cooling ? Yes No        | Variable Flow?        | No 🗸             | No 🗸          |    |
| Tower Type: 2-Cell With T-Speed Motors   | Flow Rate [gpm/ton]:  | 2.4 ~            | 3 ~           |    |
| Num of Towers: 1 V                       | Motor Size (hp):      | Unknown V        | Unknown 🗸     | ОК |
| Size Tower by: Tons V 2000 V tons/tower  | Pump Efficiency [%]:  | 75 V             | 75 ~          |    |
| Axial 🗸 Fan Type                         | Motor Efficiency [%]: | 85 ~             | 85 ~          |    |
| Current Chiller Data                     | Constant DEDValue     | A                |               |    |
| (Y/N) Type Eff Known?                    | [tons] [kW/ton] [     | Age<br>(ears]    | )             |    |
| O Y ● N Centrifugal ∨ Yes ∨ 1000         | 0 ~ 0.65 ~ 10         | $\sim$           |               |    |
| Chiller 2                                |                       |                  |               |    |
| OY ◉N ✓                                  |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |
|                                          |                       |                  |               |    |











# Chiller Specification Methodology

- Method 3 is the ideal way to specify chillers in CWSAT
- It will require some due diligence and information gathering but to build confidence in the assessment and results thereafter, it is well worth the extra effort
- Nevertheless, it should not be a show-stopper and if getting the information is delayed, use Method 2 – FLE required
- Method 1 should NOT be used for assessments and quantifying energy efficiency opportunities but can be used for scoping purposes





#### Chillers:

- 2 Centrifugals and 1 Screw machine (constant speed)
  - Centrifugals 1,000 RT each
  - Screw 350 RT
- Rated Full Load Efficiency (kW/RT)
  - Centrifugals 0.65
  - Screw 0.75
- Age: 10 years
- Chilled Water Setpoint 44°F
- Condenser Water Supply Temperature 85°F







| a<br>Compressor/Chiller<br>Type |                                                                                 | Full Load<br>Eff Knowr                                                                | 1?                                                                                                                  | Chiller Ca<br>[tor                                                                                                  | apacity<br>Is]                                                                                                                                                                   | FLE Va<br>[kW/t                                                                                                                                                             | alue<br>on]                                                                                                                                                                                  | A<br>[Ye                                                                                                                                                                                                                                                                                        | ge<br>ears]                                                                                                                                                                                                                                                                                                                              | ?                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
|---------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Centrifugal                     | $\sim$                                                                          | Yes                                                                                   | $\sim$                                                                                                              | 1000                                                                                                                | $\sim$                                                                                                                                                                           | 0.65                                                                                                                                                                        | $\sim$                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                              | $\sim$                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |
| Centrifugal                     | $\sim$                                                                          | Yes                                                                                   | $\sim$                                                                                                              | 1000                                                                                                                | $\sim$                                                                                                                                                                           | 0.65                                                                                                                                                                        | ~                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                              | ~                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |
| Helical Rotary                  | $\sim$                                                                          | Yes                                                                                   | $\sim$                                                                                                              | 350                                                                                                                 | $\sim$                                                                                                                                                                           | 0.75                                                                                                                                                                        | $\sim$                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                              | $\sim$                                                                                                                                                                                                                                                                                                                                   | ок                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |
|                                 |                                                                                 |                                                                                       |                                                                                                                     |                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |
|                                 |                                                                                 |                                                                                       |                                                                                                                     |                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |
|                                 | a<br>Compressor/Chiller<br>Type<br>Centrifugal<br>Centrifugal<br>Helical Rotary | a<br>Compressor/Chiller<br>Type<br>Centrifugal ✓<br>Centrifugal ✓<br>Helical Rotary ✓ | Compressor/Chiller<br>Type Full Load<br>Eff Knowr<br>Centrifugal V Yes<br>Centrifugal V Yes<br>Helical Rotary V Yes | Compressor/Chiller<br>Type<br>Full Load<br>Eff Known?<br>Centrifugal<br>Centrifugal<br>Yes<br>Helical Rotary<br>Yes | a     Full Load Eff Known?     Chiller Ca       Type     Yes     1000       Centrifugal     Yes     1000       Centrifugal     Yes     1000       Helical Rotary     Yes     350 | a     Full Load Eff Known?     Chiller Capacity [tons]       Centrifugal     ✓     Yes     ✓       Centrifugal     ✓     Yes     ✓       Melical Rotary     ✓     Yes     ✓ | a     Full Load Eff Known?     Chiller Capacity [kW/t]       Centrifugal     Yes     1000     0.65       Centrifugal     Yes     1000     0.65       Helical Rotary     Yes     350     0.75 | a       Compressor/Chiller       Full Load       Chiller Capacity       FLE Value         Type       Yes       1000       0.65          Centrifugal       Yes       1000       0.65          Centrifugal       Yes       1000       0.65          Helical Rotary       Yes       350       0.75 | a       Compressor/Chiller       Full Load       Chiller Capacity       FLE Value       A         Type       Yes       1000       0.65       10         Centrifugal       Yes       1000       0.65       10         Centrifugal       Yes       1000       0.65       10         Helical Rotary       Yes       350       0.75       10 | a       Compressor/Chiller       Full Load       Chiller Capacity       FLE Value       Age         Type       Yes       1000       0.65       10          Centrifugal       Yes       1000       0.65       10          Centrifugal       Yes       1000       0.65       10          Helical Rotary       Yes       350       0.75       10 | Compressor/Chiller Full Load Eff Known? Chiller Capacity FLE Value Age [Years]<br>Centrifugal V Yes V 1000 0.65 10 V<br>Centrifugal V Yes V 1000 0.65 10 V<br>Helical Rotary Yes 350 0.75 10 V<br>K |





| mber of Chillers: 3 VF OK                                                                                                                                                      | Water-Cooled Data<br>CWT = Condenser Cooling Wat<br>Is the CWT constant?<br>What is the CWT?                                                  | er Supply Temperature<br>Yes ~<br>85 ~ PF                   | ОК   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| wer Data<br>tem with Free Cooling ? O Yes  No wer Type: 2-Cell With 1-Speed Motors n of Towers: Toms 2000 tons/tower                                                           | Pump Data Cł<br>Variable Row? No<br>Row Rate [gpm/ton]: 2.4<br>Motor Size (hp): Unknow<br>Pump Efficiency [%]: 75<br>Mater Efficiency [%]: ps | HW CW No<br>S 3<br>Vn V Unknown V<br>75 S                   | ОК   |
| rrent Chiller Data<br>User Chiller ? Compressor/Chiller Full Load Chille<br>(Y/N) Type Eff Known?<br>Chiller 1<br>○ Y ⊚ N Centrifugal ✓ Yes ✓ 100                              | er Capacity FLE Value Age<br>[tons] [kW/ton] [Years]                                                                                          | Energy Cost Data<br>Bectricity Cost                         |      |
| Chiller 2         Y         ● N         Centrifugal         Yes         100           Chiller 3         O         Y         ● N         Helical Rotary         Yes         350 | 00     0.65     10       0     0.75     10                                                                                                    | 0.10<br>[\$:/kWh]<br>OK Natura Gris Co<br>[\$:/MMBtu]<br>OK | bst: |

- The electricity utility rate is a very important number
- For CWSAT a bundled cost (annual average) should be used
- For more detailed analysis, multiple bin models can be developed
- Natural gas cost can be ignored

U.S. DEPARTMENT OF



#### System Schematic









#### **Operating Schedule Information**

- Operating Schedule provides information on when the chilled water plant is ON or OFF.
- Simplest option plant is ON all year round (24x7) 8,760 hours
- ONLY if the chilled water plant is turned OFF manually or if it is on an automatic ON/OFF schedule based on day of the week, shift schedule, etc. should this operating schedule screen be used for details
- If a chiller turns OFF automatically because the chilled water system load is met, that information is captured on the load profile





#### **Operating Schedule Information**

| Weekly Operating                                                                                      | Schedule -                                                                  |                                      |                                     |                                       |                     | 2           | Monthly Ope                                              | erating                                      | Schedule                                              |                                                      |                                                           |                             |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|---------------------|-------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|
| Please input the<br>chiller. This infor<br>for non-operating<br>If system is ON a<br>If system is OFF | typical week<br>mation is use<br>hours.<br>Il day, start:<br>all day, set y | dy ope<br>ed to e<br>0000;<br>values | erating<br>exclud<br>finish<br>equa | hours fo<br>le weathe<br>: 2400<br>I. | r the<br>er data    |             | Please inpu<br>system. The<br>24 hours. T<br>annual oper | t the ty<br>e allow<br>This info<br>rating h | pical mon<br>able input<br>ormation is<br>nours of th | thly operat<br>values an<br>used to c<br>e chilled w | ing hours f<br>e in increm<br>alculate th<br>rater syster | or the<br>ents of<br>e<br>n |
| Sunday                                                                                                |                                                                             |                                      |                                     |                                       |                     |             | January                                                  |                                              |                                                       | July                                                 |                                                           |                             |
|                                                                                                       | 0000                                                                        | ~                                    | To                                  | 2400                                  | ~                   |             | 744                                                      |                                              | hours                                                 | 744                                                  |                                                           | hour                        |
| Monday                                                                                                | 0000                                                                        | ~                                    |                                     | 2400                                  | $\sim$              |             | February<br>672                                          |                                              | hours                                                 | August<br>744                                        |                                                           | hours                       |
| - Tuesday                                                                                             | 0000                                                                        | ~                                    |                                     | 2400                                  | ~                   |             | March<br>744                                             |                                              | hours                                                 | Septer                                               | nber<br>~                                                 | hours                       |
| Wednesday                                                                                             | 0000                                                                        | ~                                    |                                     | 2400                                  | $\sim$              |             | April                                                    |                                              | , included                                            | Octobe                                               | er                                                        | , inclusion                 |
| Thursday                                                                                              | 0000                                                                        | ~                                    |                                     | 2400                                  | ~                   |             | May                                                      |                                              | hours                                                 | V44<br>Nover                                         | nber                                                      | hours                       |
| Friday                                                                                                | 0000                                                                        | ~                                    |                                     | 2400                                  | ~                   |             | 744<br>June                                              |                                              | hours                                                 | 720                                                  |                                                           | hours                       |
| Saturday                                                                                              | 0000                                                                        | ~                                    |                                     | 2400                                  | ~                   |             | 720                                                      |                                              | hours                                                 | 744                                                  |                                                           | hour                        |
| Weekly: M-F,<br>8-5 only                                                                              | Loading<br>Does the<br>accordin                                             | Data<br>e chille<br>g to th          | ed wat<br>ne AR                     | er system<br>I 550/59                 | n load v<br>O sched | ary<br>ule? |                                                          | ~                                            |                                                       |                                                      | Mor<br>Maximu                                             | thly:<br>m hour             |
| Weekly: Copy<br>Mon to Tue-Fri                                                                        |                                                                             |                                      |                                     |                                       |                     |             |                                                          |                                              |                                                       |                                                      |                                                           |                             |
| Input: 8,760                                                                                          |                                                                             |                                      |                                     |                                       |                     |             |                                                          |                                              |                                                       |                                                      | Restart                                                   | Screer                      |
| Hours                                                                                                 |                                                                             |                                      |                                     |                                       |                     |             |                                                          |                                              |                                                       |                                                      | Exit P                                                    | ogram                       |





- The geographic location's weather data, load profile along with the operating schedule allows the CWSAT to allocate actual cooling load (RT) for each hour of operation to each chiller
- CWSAT does a very detailed chilled water system analysis 8,760 individual runs representing each specific hour of the year
- CWSAT has an algorithm to match every hour of the year with the actual operating load and corresponding efficiency based on the system





CWSAT offers a default AHRI chiller load profile

#### This can be used when

- The cooling load is purely HVAC (or predominantly HVAC > 90%)
- Chiller load information is not available yet but it is clear that a major portion of the load (50% or so) is comfort cooling for personnel and environment

| Chiller Loading Schedule |      |      |      |      |      |      |      |      |      |      |      |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Chiller                  | 0%   | 10%  | 20%  | 30%  | 40%  | 50%  | 60%  | 70%  | 80%  | 90%  | 100% |
| Chiner                   | load |
|                          |      |      |      |      |      |      |      |      |      |      |      |
|                          |      |      |      |      |      |      |      |      |      |      |      |
| ARI                      | 0%   | 0%   | 1%   | 5%   | 13%  | 23%  | 26%  | 19%  | 9%   | 3%   | 1%   |







- AHRI Load profile selection
- Chiller load variation – month to month
- Load variation between chillers





- Most Complex
- Most Detailed
- Recommended for Assessments
- Can capture seasonality of operations, weather impacts, etc.

| ovide the lo | ading schedu | le for the chill | er(s).      | )           |             | Cum         | ent Chiller | Chiller #   | Compressor Type     | e Capacity [to  | nsj Age [yrs]             |
|--------------|--------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------------|-----------------|---------------------------|
|              |              |                  |             |             |             | Cum         |             | 1           | Centrifugal         | 1000            | 10                        |
| oading Sc    | hedule       |                  |             |             |             |             |             |             |                     |                 |                           |
| Time at:     |              | 0%<br>Load       | 10%<br>Load | 20%<br>Load | 30%<br>Load | 40%<br>Load | 50%<br>Load | 60%<br>Load | 70% 80%<br>Load Loa | s 90%<br>d Load | 100% Total %<br>Load Load |
| January      |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 (             | 100 100                   |
| February     |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 0             | 100 100                   |
| March        |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 0             | 100 100                   |
| April        |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 0             | 100 100                   |
| May          |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 0             | 100 100                   |
| June         |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 (             | 100 100                   |
| July         |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 (             | 100 100                   |
| August       |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 (             | 100 100                   |
| Septembe     | r            |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0                   | 0 (             | 100 100                   |
| October      |              |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0 (                 | 0 0             | 100 100                   |
| November     | ,            |                  |             |             |             |             |             |             |                     |                 |                           |
| Сору         | Paste        | 0                | 0           | 0           | 0           | 0           | 0           | 0           | 0 (                 | 0 0             | 100 100                   |
| December     |              |                  |             |             |             |             |             |             |                     | _               |                           |





# Example System Chiller Load Profile

| /eekly Operating Schedule<br>Please input the typical weekly operating hours for the<br>chiller. This information is used to exclude weather data<br>for non-operating hours.<br>If system is ON all day, start: 0000; finish: 2400 |                     |                |         | 1         | Nonthly Op<br>Please inp<br>system. Ti<br>24 hours. | erating<br>ut the ty<br>ne allow<br>This info | Schedule<br>pical mon<br>able input<br>ormation is | thly operatin<br>values are<br>used to ca | ig hours f<br>in increm<br>Iculate th | or the<br>ents of |               |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|---------|-----------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------|-------------------|---------------|------------------|
| If system is OFF                                                                                                                                                                                                                    | all day, set v      | /alues         | equal   |           |                                                     |                                               |                                                    | adung n                                   |                                       | L.L.              | ter system    |                  |
| Sunday                                                                                                                                                                                                                              | 0000                | ~              | То      | 2400      | $\sim$                                              |                                               | 744                                                | ~                                         | hours                                 | 744               | ~             | hours            |
| Monday                                                                                                                                                                                                                              | 0000                | ~              |         | 2400      | ~                                                   |                                               | February                                           |                                           |                                       | August            |               |                  |
| Turada                                                                                                                                                                                                                              | 0000                |                |         | 2400      |                                                     |                                               | 672                                                | ~                                         | hours                                 | 744               | ~             | hours            |
| Tuesday                                                                                                                                                                                                                             | 0000                | ~              |         | 2400      | ~                                                   |                                               | March                                              |                                           |                                       | Septemb           | ber           |                  |
| Wedneeday                                                                                                                                                                                                                           |                     | 19402          |         |           |                                                     |                                               | 744                                                | ~                                         | hours                                 | 720               | ~             | hours            |
| weariesday                                                                                                                                                                                                                          | 0000                | ~              |         | 2400      | $\sim$                                              |                                               | April                                              |                                           |                                       | October           |               |                  |
| Thursday                                                                                                                                                                                                                            |                     |                |         |           |                                                     |                                               | 720                                                | ~                                         | hours                                 | 744               | ~             | hours            |
| mulsudy                                                                                                                                                                                                                             | 0000                | ~              |         | 2400      | ~                                                   |                                               | May                                                |                                           |                                       | Novemb            | er            |                  |
| Friday                                                                                                                                                                                                                              |                     |                |         |           |                                                     |                                               | 744                                                | ~                                         | hours                                 | 720               | ~             | hours            |
|                                                                                                                                                                                                                                     | 0000                | $\sim$         |         | 2400      | ~                                                   |                                               | June                                               |                                           |                                       | Decemb            | er            |                  |
| Saturday                                                                                                                                                                                                                            |                     |                |         |           |                                                     |                                               | 720                                                | ~                                         | hours                                 | 744               | ~             | hours            |
|                                                                                                                                                                                                                                     | 0000                | ~              |         | 2400      | ~                                                   |                                               |                                                    |                                           |                                       |                   |               |                  |
| Weekly: M-F,<br>8-5 only                                                                                                                                                                                                            | Loading<br>Does the | Data<br>chille | ed wate | er system | load va                                             | ary                                           | No                                                 | ~                                         |                                       |                   | Mon<br>Maximu | thly:<br>m hours |
| N. 51 910 8                                                                                                                                                                                                                         | Does chi            | iller loa      | ading   | vary from | month t                                             | to month?                                     | No                                                 | ~                                         |                                       |                   |               |                  |
| Weekly: Copy<br>Mon to Tue-Fri                                                                                                                                                                                                      | Does chi            | iller loa      | ading   | vary from | chiller t                                           | o chiller?                                    | Yes                                                | ~                                         |                                       |                   |               |                  |
| Input: 8,760<br>Hours                                                                                                                                                                                                               |                     |                |         |           |                                                     |                                               |                                                    |                                           |                                       |                   | Restart       | Screen           |





## Centrifugal Chillers Load Profile

 There are 2 centrifugal chillers that are operated in a manner such that they are at similar load conditions all the time unless there is maintenance activity on one of them

| Loading Schedule Screen :    | VINPLT_Example                        |                      |             |                                                                                                                                          |
|------------------------------|---------------------------------------|----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Provide the loading schedule | e for the chiller(s).                 | Current Chillen      | Chiller #   | Compressor Type Capacity [tons] Age [yrs]                                                                                                |
|                              |                                       | Current Chiller      |             | Centrifugal 1000 10                                                                                                                      |
| Loading Schedule<br>Time at: | 0% 10% 20% 30%<br>Load Load Load Load | 40% 50%<br>Load Load | 60%<br>Load | 70%         80%         90%         100%         Total %           Load         Load         Load         Load         Load         Load |
| All Months<br>Copy Paste     | 5 0 0 0                               | 10 20                | 20          | 20 15 10 0 100                                                                                                                           |





## Centrifugal Chillers Load Profile

 There are 2 centrifugal chillers that are operated in a manner such that they are at similar load conditions all the time unless there is maintenance activity on one of them

| Loading Schedule Screen :    | VINPLT_Example                     |                                    |                                                                                         |
|------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|
| Provide the loading schedule | for the chiller(s).                | Chiller #                          | Compressor Type Capacity [tons] Age [yrs]                                               |
|                              |                                    | Current Chiller                    | Centrifugal 1000 10                                                                     |
| Loading Schedule<br>Time at: | 0% 10% 20% 30<br>Load Load Load Lo | % 40% 50% 60%<br>ad Load Load Load | 70%     80%     90%     100%     Total %       Load     Load     Load     Load     Load |
| All Months<br>Copy Paste     | 5 0 0                              | 0 10 20 20                         | 20 15 10 0 100                                                                          |





## Screw Chiller Load Profile

 Chiller #3 is a screw chiller that does come ON periodically when loads are high or when one of the centrifugal chillers is down for maintenance

| Loading Schedule Screen :    | VINPLT_Exa     | mple        |             |             |             |             |             |             |             |              |              |                 |
|------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-----------------|
| Provide the loading schedule | for the chille | er(s).      | ō           |             |             |             | Chiller #   | Compress    | or Type     | Capacity (to | ons] Age     | [yrs]           |
| Loading Schedule             |                | ,           |             |             | Currer      | nt Uniller  | 3           | Helical     | Rotary      | 350          | 1            | 0               |
| Time at:                     | 0%<br>Load     | 10%<br>Load | 20%<br>Load | 30%<br>Load | 40%<br>Load | 50%<br>Load | 60%<br>Load | 70%<br>Load | 80%<br>Load | 90%<br>Load  | 100%<br>Load | Total %<br>Load |
| All Months<br>Copy Paste     | 30             | 0           | 0           | 30          | 0           | 30          | 0           |             | 0           | 0            | 10           | 100             |





# All INPUT is COMPLETE!

- At this point in CWSAT all the inputs required for modeling the chilled water system are completed
- The next step is to "Go to Output Screen"
- The Output Screen is a high-level summary of the overall chilled water plant operations
- It has options to go into details of the sub-systems





# Output Screen (Baseline)

- All the major inputs are shown here
- Annual energy consumption (kWh)
- Annual operating cost (\$)
- System graphic
- Energy / Cost graphic

| Current Chiller System         Basic System Summary         Number of Chillers:       3         CHWT Setpoint:       44         Geographic Location:       MO Saint Louis         Condenser Cooling Method:       Water-Cooled         Tower Summary       Pump Summary         Type:       2-Cell With 1-Speed Motors         #Towers:       1         Sizing:       Tons         Fan Motor HP:       75         Compressor       Capacity         Motor Efficiency [½]:       85         Pump Summary       CHW         Pump Summary       CHW         Variable Flow?:       No         Number of Cells per Tower:       2         Current Chiller Summary       Motor Efficiency [½]:         Compressor       Capacity         Igoal       100         Chiller 1       Chiller Energy:         Chiller 2       1000 | Output Screen : VINPLT_Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tower Summary       Pump Summary       CHW       CW         Type:       2-Cell With 1-Speed Motors       Pump Summary       CHW       CW         #Towers:       1       Sizing:       Tons       Flow Rate [gpm/ton]:       2.4       3         Fan Motor HP:       75       Tons:       2000       Pump Efficiency [%]:       75       75         Number of Cells per Tower:       2       Pump Efficiency [%]:       85       85       Return to Input Screen         Current Chiller Summary       Capacity       Age       FLE       Energy Summary       Energy:       Chiller Energy:       Chiller Energy:       Chiller Energy:       Chiller Energy:       For Site Site Site Site Site Site Site Site                                                                                                         | Current Chiller System<br>Basic System Summary<br>Number of Chillers: 3<br>CHWT Setpoint: 44<br>Geographic Location: MO Saint Louis<br>Condenser Cooling Method: Water-Cooled                                                                                                                                                                                                                                                                                                                                                             |
| Centrifugal         1000         10         0.650           Chiller 3         Tower Energy:         Show Energy/Cost Graphic           Helical Rotary         350         10         0.750           Pump Energy:         898,807         kWh         \$\$13,882           Exit Program         Solution         Comments           8,523,463         kWh         \$\$852,346                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tower Summary         Type:       2-Cell With 1-Speed Motors         #Towers:       1       Sizing:       Tons         #Towers:       1       Sizing:       Tons         Fan Motor HP:       75       Tons:       2000         Number of Cells per Tower:       2         Current Chiller Summary         Compressor       Capacity Age [kW/ton]         Chiller 1       Contrifugal       1000       10       0.650         Chiller 2       Centrifugal       1000       10       0.650         Chiller 3       100       10       0.750 |





# Energy Usage & Cost Graphic (Baseline)







## Chiller Operating Details Screen (Baseline)

| Current Chiller De    | etails Scre | en : VINPLT  | Example.    | txt      |          |          |          |          |          |          |           |           |   |
|-----------------------|-------------|--------------|-------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|---|
| - Chiller 1: Contrifu | 0% Load     | 10% Load     | 20% Load    | 30% Load | 40% Load | 50% Load | 60% Load | 70% Load | 80% Load | 90% Load | 100% Load | Total     | ? |
| Chiller T. Centhiu    | gai (nateo  | Capacity: It | Juu tons)   |          |          |          |          |          |          |          |           |           |   |
| [kW/ton]:             | 0.000       | 0.000        | 0.000       | 0.000    | 0.608    | 0.591    | 0.592    | 0.609    | 0.638    | 0.675    | 0.000     |           |   |
| Hours:                | 444         | 0            | 0           | 0        | 873      | 1,754    | 1,753    | 1,746    | 1,317    | 873      | 0         | 8,760     |   |
| Power [kW]:           | 0.0         | 0.0          | 0.0         | 0.0      | 243.1    | 295.6    | 355.2    | 426.4    | 510.1    | 607.3    | 0.0       |           |   |
| Energy [kWh]:         | 0           | 0            | 0           | 0        | 212,211  | 518,474  | 622,681  | 744,485  | 671,859  | 530,216  | 0         | 3,299,925 | ; |
| Chiller 2: Centrifu   | gal (Rated  | Capacity: 1( | 000 tons)   |          |          |          |          |          |          |          |           |           |   |
| [kW/ton]:             | 0.000       | 0.000        | 0.000       | 0.000    | 0.608    | 0.591    | 0.592    | 0.609    | 0.638    | 0.675    | 0.000     |           |   |
| Hours:                | 444         | 0            | 0           | 0        | 873      | 1,754    | 1,753    | 1,746    | 1,317    | 873      | 0         | 8,760     |   |
| Power [kW]:           | 0.0         | 0.0          | 0.0         | 0.0      | 243.1    | 295.6    | 355.2    | 426.4    | 510.1    | 607.3    | 0.0       |           |   |
| Energy [kWh]:         | 0           | 0            | 0           | 0        | 212,211  | 518,474  | 622,681  | 744,485  | 671,859  | 530,216  | 0         | 3,299,925 | ; |
| Chiller 3: Helical    | Rotary (Ra  | ted Capacity | : 350 tons) |          |          |          |          |          |          |          |           |           |   |
| [kW/ton]:             | 0.000       | 0.000        | 0.000       | 0.932    | 0.000    | 0.820    | 0.000    | 0.000    | 0.000    | 0.000    | 0.826     |           |   |
| Hours:                | 2,634       | 0            | 0           | 2,627    | 0        | 2,626    | 0        | 0        | 0        | 0        | 873       | 8,760     |   |
| Power [kW]:           | 0.0         | 0.0          | 0.0         | 97.8     | 0.0      | 143.4    | 0.0      | 0.0      | 0.0      | 0.0      | 289.0     |           |   |
| Energy [kWh]:         | 0           | 0            | 0           | 257,036  | 0        | 376,682  | 0        | 0        | 0        | 0        | 252,271   | 885,988   |   |





## Pumps Operating Details Screen (Baseline)

- Be <u>careful</u> with this output water flow rate allocation is an issue
- It's a good estimate but actual operation may be different
- Assumes no flow when chiller is OFF
- Primary loop ONLY

| Chilled Water Dump Summan                                                                                                    | Condenses Water Pump Summary                                                    |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Chilled Water Pump Summary                                                                                                   | Condenser Water Fump Summary                                                    |
| Variable Flow?: No                                                                                                           | Variable Flow?: No                                                              |
| Flow Rate [gpm/ton]: 2.4                                                                                                     | Flow Rate [gpm/ton]: 3                                                          |
| Motor Size (hp): 20                                                                                                          | Motor Size (hp): 25                                                             |
| Pump Efficiency [%]: 75                                                                                                      | Pump Efficiency [%]: 75                                                         |
| Motor Efficiency [%]: 85                                                                                                     | Motor Efficiency [%]: 85                                                        |
| Constant Flow           Chiller 1:         145,970           Chiller 2:         145,970           Chiller 3:         107,529 | Constant Flow<br>Chiller 1: 182,463<br>Chiller 2: 182,463<br>Chiller 3: 134,412 |
| Total: 399,470                                                                                                               | Total: 499,337                                                                  |



#### Tower Operating Details Screen (Baseline)

Current Tower Details Screen : VINPLT\_Example.txt

- Model provides good results when the cooling towers are within reasonable design limits
- Look for number of hours when the tower setpoint is NOT achieved

|                |                 | Туое            | of Tower:          | 2-Cell With 1⊰ | Speed Motors       |            |         |
|----------------|-----------------|-----------------|--------------------|----------------|--------------------|------------|---------|
|                |                 | Numb            | er of Towers:      |                | 1                  |            |         |
|                |                 | Numb            | er of Cells per To | wer:           | 2                  |            |         |
|                |                 | Towe            | r Sized by:        |                | Tons               |            |         |
|                |                 | Towe            | r Tons:            |                | 2000               |            |         |
|                |                 | Fan M           | lotor Size (hp):   |                | 75                 |            |         |
|                |                 | Fan C           | WT Setpoint Not    | Achieved:      | 48                 |            |         |
| Tower Energy S | ummary          |                 |                    |                |                    |            |         |
| WB Bin:        | -<br>WB < 35 ºF | 35 - 45 ºF      | 45 - 55 ºF         | 55 - 65 ºF     | 65 - 75 ºF         | WB > 75 ºF | Total   |
| Hours:         | 2,030           | 1,464           | 1,296              | 1,680          | 1,898              | 392        | 8,760   |
| Energy [kWh]:  | 0               | 0               | 0                  | 13,965         | 91,048             | 33,804     | 138,817 |
|                | Note: Tower c   | alculations are | made on an hour    | ly basis. Bins | are shown here for | brevity    |         |
|                |                 |                 |                    |                |                    | -          |         |





## Saving the Baseline Model file – MOST IMPORTANT!







## The HELP Button

#### Use it as often as you need







# Additional CWSAT Topics

- Installing and weather folder location / use
- Input Sensitivity
- Hourly text files output
- Detailed results screens
- Tool Benefits:
  - Energy end-use distribution
  - Identify areas to examine for conservation
  - "What-if" analyses





# **CWSAT Folder & Files**

- CWSAT 3.0.1 Application file which runs CWSAT
- Folder USERCHILLER Stores data of all user-defined chillers and their performance curves so that one can retrieve them for modeling in the chilled water system
  - Ideal when user has all the information about their chillers and DO NOT want to use the default performance curve built-in in CWSAT
- Folder WEATHER Stores weather data for all the geographical locations that can be used by CWSAT (pull down menu on INPUT screen)
  - One can add more weather data in this folder using the same format provided in any of the weather files
  - WEATHER folder is weather files for cities in US/Canada





# **CWSAT Folder & Files**

- Folder OUTPUTDATA Stores all the Output data in an extremely detailed hour-by-hour (8,760) manner
  - Can be used when user wants to export results, operational information to another program (for example - Excel)
  - Ability to debug and additionally, parse data for specific day/time operation
- Chilled water plant models can be stored anywhere on your computer -They don't need to be in a specific location
  - SUGGESTION Make your personal model folder within the CWSAT main folder and store all your work there – easier to reach the files since they will all be in one place and will minimize searching
- Please DO NOT move any other files and folders





# Key Points / Action Items



- 1. A chilled system consists of multiple chillers and NOT all chillers have the same performance curves full load and part-load
- 2. To do an accurate model, it is important to have the part-load design performance of each chiller and define the chillers in CWSAT
- 3. CWSAT can model a chilled water system and provide significant details to understand overall operations of the plant





#### Homework #4

- Attempt to build a chilled water system model in CWSAT of your own chilled water plant
- Use default information of CWSAT wherever your information is not available
- Compare the CWSAT annual energy usage and costs with information that you may have on your plant
- Identify areas that you had difficulty in understanding and modeling
- Identify discrepancies and shortcomings, if any, in the CWSAT software





Thank You all for attending today's webinar.

See you all on Wednesday – August 14, 2024 – 10 am ET

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at <u>paparra@</u>ornl.gov



# Kahoot Quiz Time

| Kahoot !          |  |
|-------------------|--|
| Game PIN<br>Enter |  |
|                   |  |



