

Industrial Process Cooling (Chilled Water) Systems Virtual INPLT Training & Assessment

Session 5 Wednesday – August 14, 2024 10 am – 12:30 pm

11////

Welcome

- Welcome to the 5th Chilled Water Systems Virtual INPLT training series
- Eight, 2-1/2 hour webinars, focused on Industrial Process Cooling (Chilled Water) Systems Energy Assessment and Optimization
- These webinars will help you gain a significant understanding of your industrial process cooling system, undertake an energy assessment using a systems approach, evaluate and quantify energy and cost-saving opportunities using CWSAT and other US DOE tools and resources
- Thank you for your interest!

Process Cooling (Chilled Water Systems) Virtual INPLT Facilitator

Riyaz Papar, PE, CEM, Fellow – ASME, ASHRAE

Industrial Energy Efficiency & Decarbonization Advisor Oak Ridge National Laboratory

paparra@ornl.gov (346) 610 8787

Process Cooling Virtual INPLT Agenda (2024)

- Session 1 (July 17) Industrial Chilled Water Systems Fundamentals
- Session 2 (July 18) Review of Chilled Water System Scoping Tool; Efficiency Metrics & Calculations
- Session 3 (July 31) Introduction to Chilled Water System Assessment Tool (CWSAT)
- Session 4 (August 1) Using CWSAT to Quantify Energy Efficiency Opportunities Part 1
- Session 5 (August 14) Using CWSAT to Quantify Energy Efficiency Opportunities Part 2
- Session 6 (August 15) US DOE MEASUR, 3EPlus, etc.; Undertaking a VINPLT Assessment & Reporting
- Session 7 (August 28) Case Studies; Refrigerants Past, Present & Future; Reclamation and O&M
- Session 8 (August 29) Industrial Process Cooling (Chilled water) System VINPLT Wrap-up Presentations

Agenda – Session 5

- Welcome and Introductions
- Safety and Housekeeping
- Today's Content:
 - Review of Sessions 3 and 4; Homework Discussion
 - Energy Efficiency Opportunities in chilled water systems
 - Quantifying Opportunities using CWSAT
- Kahoot Quiz Game
- Q&A

Safety and Housekeeping

Safety Moment

- As you trace chilled water supply and return headers to end-uses, watch for hazards along the way – follow human traffic pathways as much as possible
- $\circ~$ Wear hard hats to protect your head from bumping against headers
- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded
 - $\circ~$ A link to the recorded webinars will be provided, afterwards

Quick Review – Sessions 3 & 4

Integrated Part Load Value

- Generally, a chiller operates at <u>full load</u> design conditions for 1% of the total operating hours **ONLY**
- Hence, no decisions should be based on the design efficiency but instead they should be used as a guide to reach optimal solutions

Overall Chiller (Plant) Performance

U.S. DEPARTMENT OF

Chiller Lift

 Difference between Saturated Condensing Temperature and the Saturated Suction (Evaporating) Temperature

Food Manufacturing Plant Seasonal Operation

Planning for Measurement & Data Collection

- Use a template
- Characterize the measurement
 - Local sensor
 - Data Acquisition
 - Historian
- Instrumentation GAP Analysis Worksheet
- Tick mark the appropriate boxes
- Complete for the chiller system
- Define final plan

	Chiller #1							
Chiller Capacity (RT)								
Refrigerant								
Chiller Manufacturer								
Chiller Model Number								
	Local Sensor	Data Acquisition	Historian					
Condenser								
Saturation Temperature ("F)								
Condenser Pressure (psig)								
Inlet Water Temperature (°F)								
Outlet Water Temperature ("F")								
Water Flow rate (gpm)								
SubCooler								
Refrigerant Outlet Temperature ('F)								
Water Inlet Temperature ("F)								
Water Outlet Temperature ("F")								
Water Flow rate (gpm)								
Economizer								
Economizer Pressure (psig)								
Evaporator								
Saturation Temperature ("F)								
Evaporator Pressure (psig)								
Inlet CHW Temperature ("F)								
Outlet CHW Temperature ("F)								
CHW Flow rate (gpm)								
Compressor								
Surtice Temperature ('E)								
Suction Process (ocid)								
Discharge Temperature (F)								
Discharge Fengerature (Frig)								
envenerge Fressere [poig]								
	-	•						

Better Plants Diagnostic Equipment Program (DEP)

Diagnostic Equipment Program (DEP)

The Better Plants **Diagnostic Equipment Program (DEP)** allows partners to borrow over 22 different kinds of tools to collect energy data and improve equipment performance in their facilities.

Through this program, partners have the opportunity to test tools firsthand before deciding to purchase a piece of equipment on their own. This not only allows for the improved testing and collection of energy data, but also helps to demonstrate the value of certain tools in different applications throughout a facility.

EXPLORE SOME OF THE TOOLS THAT YOU CAN BORROW THROUGH BETTER PLANTS:

EXPLORE THE FULL SUITE OF DIAGNOSTIC EQUIPMENT AND SUBMIT AN APPLICATION:

The second second

Scan the QR Code above, or click here to download the DEP rental application.

Send this completed form to the Better Plants Diagnostic Equipment Program Manager, Daryl Cox at coxdf@ornl.gov.

HAVE QUESTIONS ABOUT BORROWING EQUIPMENT?

Scan the QR code bove, or click here to email Daryl Cox, DEP Program Manager.

Daryl Cox has over 20 years of experience managing industrial technology and equipment and can help you find the right tool for your energy needs.

Introducing CWSAT 3.0.1

Chilled Water System Analysis Tool

Version 3.0.1

Description: This program calculates the annual energy requirements of various chilled water systems. It also evaluates the energy and cost savings that result when a variety of changes are made to the chilled water system.

Copyright by The University of Massachusetts Amherst 2013 All Rights Reserved

Continue

CWSAT Folder & Files

Start CWSAT 3.0.1

Name ^	Status	Date modified	Туре
OUTPUTDATA	\odot	4/20/2022 8:42 AM	File folder
📙 Sample Weather Upload Files	\odot	4/20/2022 8:42 AM	File folder
User Manual	\odot	4/20/2022 8:42 AM	File folder
	\odot	4/20/2022 8:42 AM	File folder
USERPROFILE	\odot	4/20/2022 8:42 AM	File folder
WEATHER	\odot	4/20/2022 11:22 AM	File folder
CWSAT 3.0.1	0	4/20/2022 8:42 AM	Application
CWSAT	0	4/20/2022 8:41 AM	Compressed (zipp
			>
			8== 📼

Chilled Water System Analysis Tool

Version 3.0.1

Description: This program calculates the annual energy requirements of various chilled water systems. It also evaluates the energy and cost savings that result when a variety of changes are made to the chilled water system.

Copyright by The University of Massachusetts Amherst 2013 All Rights Reserved

Continue

CWSAT INPUT Screenshots

- Geographic location
- System description
- Heat rejection setup
- Pump setups
 - Chilled water
 - Condenser water (if applicable)
- Chiller setup
 - Default
 - Custom
- Utility Cost

Better

Plants

Operation Schedule & Load Profile

Sub-System Information

<mark>ile <u>T</u>ools</mark>										
Basic System D Geographic Lo Number of Chil Chilled Water S Condenser Coc	ata cation: N lers: upply Temperatu vling Method: V	AO Saint Loui	~ °F	Э	Water-Cooled Data CWT = Condenser Coo Is the CWT constant? What is the CWT?	bling Water	Supply Yes 85	Temperatu	ure ∨ ∨ ºF	ок
Tower Data System with Free Tower Type: Num of Towers: Size Tower by:	Cooling ? Yes 2-Cell With 1-Sper 1 Tons 2 A	ed Motors ~ 2000 ~ tons/ Axial ~ Fan 1	tower	? ОК	Pump Data Variable Flow? Flow Rate [gpm/ton]: Motor Size (hp): Pump Efficiency [%]: Motor Efficiency [%]:	CHW No 2.4 Unknown 75 85	~ ~ ~ ~	CW No 3 Unknown 75 85		ОК
Current Chiller Da User Chiller ? (Y/N) Chiller 1 O Y IN Chiller 2 O Y IN Chiller 3 O Y IN	ta Compressor/ Type	Chiller F	full Load ff Known?	Chiller [t	Capacity ons] [Age Years]	•			

Chiller Specification Methodology – Method 3

System Information

ographic Location: MO Saint Loui V mber of Chillers: 3 V Iled Water Supply Temperature: 44 V SF OK	Water-Cooled Data CWT = Condenser Cooling Wate Is the CWT constant? What is the CWT?	er Supply Temperature Yes ✓ 85 ✓ ⁹ F	OK
ver Data term with Free Cooling ? Yes No ver Type: 2-Cell With 1-Speed Motors ~ n of Towers: 1 ~ Tower by: Tons ~ 2000 ~ tons/tower Avial ~ Ean Type	Pump Data CH Variable Flow? No Flow Rate [gpm/ton]: 2.4 Motor Size (hp): Unknow Pump Efficiency [%]: 75	W CW No 3 Unknown 75 nr	ОК
rent Chiller Data User Chiller ? Compressor/Chiller Full Load Chille (Y/N) Type Eff Known? Chiller 1 O Y N Centrifugal Yes 1000	ar Capacity FLE Value Age [tons] [kW/ton] [Years]	Electricity Cost	
Chiller 2 Y ● N Centrifugal Yes 1000 Chiller 3 O Y ● N Helical Rotary Yes 350	0.65 10 0 0.75 10	OK Natura vis Co [\$/kWh] Natura vis Co [\$/MMBtu]	st:

- The electricity utility rate is a very important number
- For CWSAT a bundled cost (annual average) should be used
- For more detailed analysis, multiple bin models can be developed
- Natural gas cost can be ignored

U.S. DEPARTMENT OF

System Schematic

Centrifugal Chillers Load Profile

 There are 2 centrifugal chillers that are operated in a manner such that they are at similar load conditions all the time unless there is maintenance activity on one of them

Loading Schedule Screen :	VINPLT_Example			
Provide the loading schedule	e for the chiller(s).	Current Chillen	Chiller #	Compressor Type Capacity [tons] Age [yrs]
		Current Chiller		Centrifugal 1000 10
Loading Schedule Time at:	0% 10% 20% 30% Load Load Load Load	40% 50% Load Load	60% Load	70% 80% 90% 100% Total % Load Load Load Load Load Load
All Months Copy Paste	5 0 0 0	10 20	20	20 15 10 0 100

Output Screen (Baseline)

- All the major inputs are shown here
- Annual energy consumption (kWh)
- Annual operating cost (\$)
- System graphic
- Energy / Cost graphic

Current Chiller System Basic System Summary Number of Chillers: 3 CHWT Setpoint: 44 Geographic Location: MO Saint Louis Condenser Cooling Method: Water-Cooled Tower Summary Pump Summary Type: 2-Cell With 1-Speed Motors #Towers: 1 Sizing: Tons Fan Motor HP: 75 Compressor Capacity Motor Efficiency [½]: 85 Pump Summary CHW Pump Summary CHW Variable Flow?: No Number of Cells per Tower: 2 Current Chiller Summary Motor Efficiency [½]: Compressor Capacity Igoal 100 Chiller 1 Chiller Energy: Chiller 2 1000	Output Screen : VINPLT_Example
Tower Summary Pump Summary CHW CW Type: 2-Cell With 1-Speed Motors Pump Summary CHW CW #Towers: 1 Sizing: Tons Flow Rate [gpm/ton]: 2.4 3 Fan Motor HP: 75 Tons: 2000 Pump Efficiency [%]: 75 75 Number of Cells per Tower: 2 Pump Efficiency [%]: 85 85 Return to Input Screen Current Chiller Summary Capacity Age FLE Energy Summary Energy: Chiller Energy: Chiller Energy: Chiller Energy: Chiller Energy: For Site Site Site Site Site Site Site Site	Current Chiller System Basic System Summary Number of Chillers: 3 CHWT Setpoint: 44 Geographic Location: MO Saint Louis Condenser Cooling Method: Water-Cooled
Centrifugal 1000 10 0.650 Chiller 3 Tower Energy: Show Energy/Cost Graphic Helical Rotary 350 10 0.750 Pump Energy: 898,807 kWh \$\$13,882 Exit Program Solution Comments 0uttemp 8,523,463 kWh \$\$852,346	Tower Summary Type: 2-Cell With 1-Speed Motors #Towers: 1 Sizing: Tons #Towers: 1 Sizing: Tons Fan Motor HP: 75 Tons: 2000 Number of Cells per Tower: 2 Current Chiller Summary Compressor Capacity Age FLE [years] [kW/ton] Chiller 1 Contrifugal 1000 10 0.650 Chiller 2 Centrifugal 1000 10 0.650 Chiller 3 100 10 0.750

Chiller Operating Details Screen (Baseline)

Current Chiller De	etails Scre	en : VINPLT	Example.	txt									
- Chiller 1: Contrifu	0% Load	10% Load	20% Load	30% Load	40% Load	50% Load	60% Load	70% Load	80% Load	90% Load	100% Load	Total	?
Chiller 1: Centhiu	gai (nateo	Capacity: It	Juu tons)										
[kW/ton]:	0.000	0.000	0.000	0.000	0.608	0.591	0.592	0.609	0.638	0.675	0.000		
Hours:	444	0	0	0	873	1,754	1,753	1,746	1,317	873	0	8,760	
Power [kW]:	0.0	0.0	0.0	0.0	243.1	295.6	355.2	426.4	510.1	607.3	0.0		
Energy [kWh]:	0	0	0	0	212,211	518,474	622,681	744,485	671,859	530,216	0	3,299,925	;
Chiller 2: Centrifu	gal (Rated	Capacity: 1(000 tons)										
[kW/ton]:	0.000	0.000	0.000	0.000	0.608	0.591	0.592	0.609	0.638	0.675	0.000		
Hours:	444	0	0	0	873	1,754	1,753	1,746	1,317	873	0	8,760	
Power [kW]:	0.0	0.0	0.0	0.0	243.1	295.6	355.2	426.4	510.1	607.3	0.0		
Energy [kWh]:	0	0	0	0	212,211	518,474	622,681	744,485	671,859	530,216	0	3,299,925	;
Chiller 3: Helical	Rotary (Ra	ted Capacity	: 350 tons)										
[kW/ton]:	0.000	0.000	0.000	0.932	0.000	0.820	0.000	0.000	0.000	0.000	0.826		
Hours:	2,634	0	0	2,627	0	2,626	0	0	0	0	873	8,760	
Power [kW]:	0.0	0.0	0.0	97.8	0.0	143.4	0.0	0.0	0.0	0.0	289.0		
Energy [kWh]:	0	0	0	257,036	0	376,682	0	0	0	0	252,271	885,988	

Saving the Baseline Model file – MOST IMPORTANT!

Energy Efficiency Opportunities in Chilled Water Systems

Chiller System Optimization Objectives

Reducing Operating Costs

- Improving energy efficiency of the system
- Improving overall system reliability
- Implementing operational and maintenance BestPractices
- Retrofitting with state-of-the-art controls
- Avoiding costly and unplanned shutdowns
- Enhancing product quality
- Reducing electricity- related GHG emissions

Typical Chiller Energy Management

- The current standard practice is to provide enough cooling capacity to meet the needs of the facility while minimizing ton hours
- This is achieved manually by operators or by a Building Automation System (BAS) / Energy Management System (EMS) with operator oversight

This Does Not Address the Enormous Potential Savings Opportunity of Maximizing Chiller Efficiency!

Typical Chiller Energy Management

- Modern Energy Management Systems can easily do the following:
 - Collect chiller operating data
 - Perform calculation blocks (such as kW/Ton)
 - Sequence multiple chillers with auto on and off capability
 - Control chiller and cooling tower set-points
 - Notify plant personnel when limit alarms are exceeded
 - Provide simple trending (e.g., chilled water temps, loads, etc.)
 - Basic Fault Detection and Diagnostics (FD&D)

3 Methods of Maximizing Chiller Plant Efficiency

Preventive

- Identify problems before they become expensive (cost avoidance)
- Maintain optimum chiller plant efficiency

Restorative

- Identify heat transfer problems (i.e. off-design water flow, fouling or scaling, etc.)
- Remove non-condensable gases
- Maintain proper refrigerant levels

Opportunity

- Identify optimal chilled water set points
- Proper chiller sequencing and load balancing
- Proper tower basin water management
- Peak demand management
- Condition-based maintenance versus scheduled preventive maintenance

Examples of Energy Efficiency Opportunities (EEOs)

- Implement Entering Condenser Water Temperature (ECWT) management
- Optimize settings for Chilled Water Set-Point Temperature (ChWST)
- Eliminate refrigerant leaks
- Maintain design water flow rates in evaporator / condenser
- Remove non-condensable gases and moisture
- Reclaim refrigerant
- Insulate chilled water lines, tanks and end-users

Cost

MO

No Cost /]

Examples of Energy Efficiency Opportunities (EEOs)

- Clean fouled and scaled evaporators
- Clean fouled and scaled condensers
- Sequence multiple chillers to optimize efficiency
- Maintain compressor isentropic efficiency
- Investigate application of VFDs to pumps and fans
- Minimize compressor surging
- Improve drive efficiency
- Eliminate inappropriate uses of chilled water

Medium Cost EEOs

Examples of Energy Efficiency Opportunities (EEOs)

- Apply VFDs to chillers
- Investigate implementation of high-efficiency chillers
 - Retrofit from air-cooled to water-cooled
- Undertake peak load management strategy
 - Thermal Energy Storage
- Install water-side economizers (free cooling)
- Evaluate process heat recovery & integration
- Implement a smart real-time chilled water plant optimizer

33

- Artificial intelligence / Machine Learning based
- Continuous commissioning

gher

Quantifying EEOs using CWSAT Software

Chilled Water System – CWSAT

- Open CWSAT
- Load the system model file
- Review the Baseline
 - Schematic
 - Overall system energy and costs including sub-systems
- Data Validation
 - Can be done if actual energy numbers are available for the whole system and/or sub-systems
 - Aim to be within 10% of actual energy usage and costs

Next Steps with CWSAT Baseline Model

- Several system optimization opportunities can be modeled using a parametric "what-if" scenario configuration
- CWSAT allows for the following ("Adjusted Model" or "New Input"):
 - New Equipment Specification
 - Chillers, Towers, Pumps
 - Variable Speed Drive Installation
 - Centrifugal Chillers, Tower Fans, & Pumps
 - Various Chilled and Condenser Water Strategies
 - Air-cooled to Water-cooled system conversion
 - Using Free Cooling, when possible
 - Sequencing chillers

Operating Cost Reduction Screen

- Asks basic questions to allow the user to understand gaps
- Analyze energy conservation options simply by modifying one or more of the system inputs
- This feature allows combinatorial "What-If?" analyses

Operating Cost Reduction Opportunities Screen
The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. Potential savings opportunities include:
Increase Chilled Water Temperature Setpoint
Decrease Condenser Cooling Water Supply Temperature
Use Sliding Condenser Water Temperature Use Sliding Temperature? No ~
Apply Variable Speed Control to Chilled and/or Condenser Water Pump(s) Apply VSD to CHW Pump? No
Replace Chiller(s) Replace Chiller(s)? No ~
Upgrade Cooling Tower Fan Speed Control Upgrade Fan Control? No
Use Free Cooling when Possible Implement free cooling? No V
Replace Chiller Refrigerant Change Refrigerants? No
Install a VSD on each Centrifugal Compressor Motor Number of centrifugal chillers: 2 Install VSDs? No
Go Back to Output Go To New Input Screen Help Exit Program

"Adjusted Model" or "New Input" Screen

- This allows the user to make very specific and targeted modifications so that the exact quantification of the energy conservation opportunities can be done
- Multiple inputs and "What-If?" scenarios can be modeled

eographic Loc	ation: ZA J	ohannesburg	j ~		CWT Is the	= Condense CWT consta	r Cooli ant?	ng Water	Supply Yes	Temper	ature ~	
hilled Water Si ondenser Coo	upply Tempera	ature: 6.5 Water-Coole	℃	OK	What	is the CWT?			25		~ 20	OK
wer Data					Pump	Data		CHW	/	CW		
ower Type:	2-Cell With 1-9	Speed Motors	\sim		Vari	iable Flow?	[No		No	\sim	
um of Towers:	1 ~				Flov	w Rate [(l/s)/k	:W]:	0.0431		0.0538	\sim	
- T	Toursell	E 070		ОК	Mot	or Size (kW):		11.19		14.92	\sim	ОК
e Tower by:	Idwerkt V	5,276 V	kW/tower		Pur	np Efficiency [%]:	75		75	\sim	
		Axial 🗸	Fan Type									
oposed Chiller [Data		Edited	Chiller	Mot	FLE Velue	.%]:	85		85 Er	nergy Cost	Data
roposed Chiller [User Chiller ? (Y/N) - Chiller 1	Data Compress	or Type	Full Load Eff Known	Chiller 1?	r Capacity [kW]	FLE Value [COP]	[%]: Ai [Ye	ge ars]		85 Er	nergy Cost	Data
User Chiller [User Chiller ? (Y/N) - Chiller 1 - Y IN	Data Compress Centrifugal	or Type	Full Load Eff Known Yes	Chiller 1? V 2640	r Capacity [kW]	FLE Value [COP] 0.65009; ~	[%]: Aı [Ye	ge ars]		85 Er	Electricity	Data Cost:
User Chiller ((Y/N) Chiller 1 O Y O N Chiller 2	Data Compress Centrifugal	or Type	Full Load Eff Known Yes	Chiller	r Capacity [kW]	FLE Value [COP]	A, [Ye 10	ge ears]		85 Er	Electricity 1.000 [\$/kW	Data Cost: /h]
oposed Chiller I User Chiller ? (Y/N) -Chiller 1 ○ Y ◎ N -Chiller 2 ○ Y ◎ N	Data Compress Centrifugal Centrifugal	or Type	Full Load Eff Known Yes Yes	Chiller	r Capacity [kW]) ~	FLE Value [COP] 0.65009. ✓	Ai [Ye] 10	ge aars]		E	Electricity 1.000 [\$/kW	Data Cost: /h]
User Chiller I (Y/N) Chiller 1 Y N Chiller 1 Y N N Chiller 2 Y N Chiller 3 Y N	Data Compress Centrifugal Centrifugal Helical Rotary	or Type	Full Load Eff Known Yes Yes Yes	 Chiller 2640 2640 705 	r Capacity [kW]	FLE Value [COP] 0.65009. 0.65009. 0.74989.	A, [Ye 10 10	ge aars]		E	Electricity 1.000 [\$/kW	Data Cost: /h]
User Chiller I (Y/N) Chiller 1 O Y ⊙ N Chiller 2 O Y ⊙ N Chiller 3 O Y ⊙ N	Compress Centrifugal Centrifugal Helical Rotary	or Type	Full Load Eff Known Yes Yes	2640 2640 2640 705	r Capacity [kW]	FLE Value [COP] 0.65009. ✓ 0.74989. ✓	Ar [Ye 10 10	je jars]		E	Electricity 1.000 [\$/kW	Data Cost: /h]

U.S. DEPARTMENT OF

New Input Screen : Class Demo.tx

New Equipment Specification

- Within the Adjusted Model "NEW INPUT" Screen
 - Specify New Chillers
 - Optimize sizing
 - Optimize efficiency
 - Raise chilled water supply temperature
 - Specify New Cooling Tower(s)
 - Specify larger unit(s)
 - Install two-speed fans or variable speed drive-controlled fan motor(s)
 - Specify new condenser water control strategies
 - Specify New Pumps
 - Lower kW
 - Lower gpm/ton
 - Variable speed drives

Opening a SAVED file in CWSAT

Input Screen		
File Tools	_	
Import Saved Data		
Restart / Clear Screen	~	?
 Exit	-	
	*	

Go to the Folder, where the Example Chiller Plant file is saved and select the Text File to be opened

ganize 🔻 🛛 New fold	ler				· · · ·
^	Name	Status	Date modified	Туре	Size
Quick access	ClassExample	ø	5/23/2021 7:29 PM	Text Document	9 KB
Desktop 🗶	ClassExample_AirCooled	\odot	5/23/2021 5:48 PM	Text Document	5 KB
🕹 Downloads 🖈	ClassExample_CWST	\odot	5/24/2021 11:13 AM	Text Document	9 KB
🔮 Documents 🖈	ClassExample_ECWT	Ø	5/23/2021 7:29 PM	Text Document	9 KB
📰 Pictures 🛛 🖈	ClassExample_WaterCooled	ø	5/23/2021 5:18 PM	Text Document	5 KB
2 Day Training					
Admin					
Section 48:5					
VINPLT_0321					
Dropbox					
OneDrive					
This PC					
No. V					

Output Screen (Baseline)

- All the major inputs are shown here
- Annual energy consumption (kWh)
- Annual operating cost (\$)
- System graphic
- Energy / Cost graphic

utput Screen : VINPLT_Example		
Aurrent Chiller System Basic System Summary Number of Chillers: 3 CHWT Setpoint: 44 Geographic Location: MO Saint Louis Condenser Cooling Method: Water-Cooled	Water-Cooled Summary Constant CWT?: Yes Constant CWT Setpoint: 85	Go To Operating Cost Reduction Screen Go To Current Chiller Details Screen
Tower Summary Type: 2-Cell With 1-Speed Motors #Towers: 1 Sizing: Tons Fan Motor HP: 75 Tons: 2000 Number of Cells per Tower: 2 Current Chiller Summary Compressor Capacity Age FLE [years] [kW/ton] Chiller 1 1000 10 0.650 Chiller 2 1000 10 0.650 Chiller 3 1000 10 0.750	Pump Summary CHW CW Variable Flow?: No No Flow Rate [gpm/ton]: 2.4 3 Motor Size (hp): 20 25 Pump Efficiency [%]: 75 75 Motor Efficiency [%]: 85 85 Energy Summary Chiller Energy: 7.485.839 kWh \$748.584 Tower Energy: 138.817 kWh \$13.882 Pump Energy: 898.807 kWh \$89.881 Total Energy: 8.523.463 kWh \$852.346 \$852.346	Go To Current Tower Details Screen Go To Current Pump Details Screen Return to Input Screen <u>Export to File</u> Show System Graphic Show Energy/ Cost Graphic Exit Program Comments Outtemp

Entering Condenser Water Temperature (ECWT) Management

Implement ECWT Management

ECWT – Entering Condenser Water Temperature

Cooling Tower Approach

 The approach is the difference in temperature between the cooled-water temperature and the air "wet bulb temperature"

Wet Bulb

- Wet bulb temperature is the lowest temperature that can be reached by the evaporation of water only
- It is determined by the atmospheric pressure, ambient temperature and relative humidity

Remember Lift!

ECWT Management

80°F ECWT drops to 70°F ECWT

kW/ton drops from 0.7 to 0.47 (33% improvement)

Questions: Can it be achieved? At what cost?

Implement ECWT Management

Student Exercise

- The industrial plant engineer recently completed a chilled water system audit and found that the cooling tower water supply temperature was fixed at 85°F.
- They wanted to determine if there would be a benefit to let the cooling tower water supply temperature be reduced by 2°F.
- Use the CWSAT model to determine how much system energy could be saved if the plant was able to reduce the cooling tower supply temperature by 2°F.
- Additionally, determine the energy and cost savings if the cooling tower water be allowed to float automatically based on the ambient conditions
- Discuss concerns and issues with the chosen option and what steps can be taken to mitigate them

Operating Cost Reduction Opportunities Screen	
The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. Potential savings opportunities include:	5
Increase Chilled Water Temperature Setpoint	
Decrease Condenser Cooling Water Supply Temperature Decrease CWT? Yes Current Temperature 85 %F Proposed Temperature? 83 ~ %F	
Use Sliding Condenser Water Temperature Cannot be used when Decreasing Condenser Water Supply Temperature	
Apply Variable Speed Control to Chilled and/or Condenser Water Pump(s) Apply VSD to CHW Pump? No Apply VSD to CHW Pump? No	
Replace Chiller(s) Replace Chiller(s)? No ~	
Upgrade Cooling Tower Fan Speed Control Upgrade Fan Control? No ~	
Use Free Cooling when Possible Implement free cooling? No ~	
Replace Chiller Refrigerant Change Refrigerants?	
Install a VSD on each Centrifugal Compressor Motor Number of centrifugal chillers: 2 Install VSDs? No	

New Input Screen : VINPLT_Example Basic System Data Water-Cooled Data CWT = Condenser Cooling Water Supply Temperature Geographic Location: MO Saint Louis Is the CWT constant? What is the CWT? 83 Chilled Water Supply Temperature: 44 ₽F Condenser Cooling Method: Water-Cooled Pump Data CHW -CW Tower Data Variable Flow? No No Tower Type: 2-Cell With 1-Speed Motors 2.4 Flow Rate [gpm/ton]: 3 Num of Towers: Motor Size (hp): 25 20 Size Tower by: 2000 Tons tons/tower 75 Pump Efficiency [%]: 75 Axial \vee Fan Type Motor Efficiency [%]: 85 85 Proposed Chiller Data Energy Cost Data User Chiller ? Full Load Chiller Capacity FLE Value Age (Y/N) Compressor Type Eff Known? [tons] [kW/ton] [Years] -Chiller 1 Electricity Cost: OY ON Centrifugal Yes 0.65 0.100 Chiller 2 [\$/kWh] OY ON Centrifugal 1000 0.65 Yes -Chiller 3 Natural Gas Cost: Yes 0.75 6.00 [\$/MMBtu]

Current Chiller System			Current Chiller System				
Basic System Summary	Water-Cooled Summary		Basic System Summary		Water-Cooled Summary		
Number of Chillers: 3	Constant CWT?: Yes	Go To Operating Cost	Number of Chillers:	3	Constant CWT?:	Yes	Return to New
CHWT Setpoint: 44	Constant CWT Setpoint: 85	Reduction Screen	CHWT Setpoint:	44	Constant CWT Setpoint:	83	Input Screen
Geographic Location: MO Saint Louis]		Geographic Location:	MO Saint Louis		1	Go To
Condenser Cooling Method: Water-Cooled]	Chiller Details	Condenser Cooling Method:	Water-Cooled			Proposed Chiller Details
Tower Summary	Pump Summary CHW CW	Screen	Tower Summary		Pump Summary CHW	CW	Screen
Type: 2-Cell With 1-Speed Motors	Variable Flow?: No No	Go To Current Tower Details	Type: 2-Cell With 1-S	peed Motors	Variable Flow?: No	No	Go To Proposed
#Towers: 1 Sizing: Tons	Flow Rate [gpm/ton]: 2.4 3	Screen	#Towers: 1 Sizing:	Tons	Flow Rate [gpm/ton]: 2.4	3	Tower Details Screen
Fan Motor HP: 75 Tons: 2000	Motor Size (hp): 20 25	Go To Current Pump Details	Fan Motor HP: 60 T	ons: 2000	Motor Size (hp): 20	25	C- T-
Number of Cells per Tower: 2	Pump Efficiency [%]: 75 75	Screen	Number of Cells per Tower:	2	Pump Efficiency [%]: 75	75	Proposed
Current Chiller Summary	Motor Efficiency [%]: 85 85	Return to Input	Current Chiller Summary		Motor Efficiency [%]: 85	85	Screen
Compressor Capacity Age FLE [tons] [years] [kW/ton]	Energy Summary Chiller Energy:	Export to File	Compressor Capacity [tons]	Age FLE years] [kW/ton]	Energy Summary Chiller Energy:		Show System
Chiller I Centrifugal 1000 10 0.650	7,485,839 kWh \$748,584	Shaw Suntan	Chiller Chiller Centrifugal 1000	10 0.650	7,417,338 kWh \$74	41,734	Graphic
Chiller 2		Graphic	Chiller 2			:	Show Energy
Centrifugal 1000 10 0.650	Tower Energy:	Show Energy/	Centrifugal 1000	10 0.650	Tower Energy:		Cost Graphic
Chiller 3 Helical Botany 350 10 0.750	138,817 kWh \$13,882	Cost Graphic	Chiller 3 Helical Botany 350	10 0 750	150,247 kWh \$1	5,025	Show Savings
	Pump Energy:	Exit Program		0.750	Pump Energy:	0.001	Screen
	030,007 KWN \$03,001	?			030,007 KVVII \$0	55,001	?
	Total Energy:	Comments			Total Energy:		
	8,523,463 kWh \$852,346	Outtemp		C	8,466,392 kWh \$84	46,639)

U.S. DEPARTMENT OF

ECWT Management

- Can the plant continue to reduce the entering condenser water temperature further?
- Is there is an OPTIMUM cooling tower water temperature?
- What is the optimum temperature dependent on?
- CWSAT can be used iteratively to determine if such an optimum does exist and where

Optimal Entering Condenser Water Temperature Setpoint

Constant Condenser Water Flow Rate; Same Load/Load Profile

ECWT Management

- Another control strategy for controlling ECWT is by managing (fixing / floating) approach to wet-bulb
 - This will automatically float the ECWT based on the ambient conditions
- Is there is an OPTIMUM approach to wet-bulb temperature?
- What factors determine this optimum approach temperature?
- CWSAT can be used iteratively to determine if such an optimum does exist and where

Student Exercise (Floating Entering Condenser Water Temperature)

- There are 2 separate analysis that will be required to determine the optimum
- 1st Step comparison of fixed ECWT with varying ECWT (but with a fixed wet-bulb approach)
- 2nd Step vary the wet-bulb approach temperature to determine optimum

U.S. DEPARTMENT OF

ENERGY

Student Exercise (Floating Entering Condenser Water Temperature)

- 1st Step comparison of fixed ECWT with varying ECWT (but with a fixed wet-bulb approach)
- Use Base Model
- Turn on "Use Sliding Condenser Water Temperature"
- Set Approach to 6°F

The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. Potential savings opportunities include:	2
Increase Chilled Water Temperature Setpoint	
Decrease Condenser Cooling Water Supply Temperature Cannot be used with Sliding Condenser Water Temperature	
Use Sliding Condenser Water Temperature Current Proposed V Use Sliding Temperature? Yes CWT follows ambient wet-bulb plus 0 % 6 %	
Apply Variable Speed Control to Chilled and/or Condenser Water Pump(s) Apply VSD to CHW Pump? No Apply VSD to CW Pump? No No	
Replace Chiller(s) Replace Chiller(s)? No ~	
Upgrade Cooling Tower Fan Speed Control Upgrade Fan Control? No ~	
Use Free Cooling when Possible Implement free cooling? No v	
Replace Chiller Refrigerant Change Refrigerants? No	
Install a VSD on each Centrifugal Compressor Motor Number of centrifugal chillers: 2 Install VSDs? No	

Operating Cost Reduction Opportunities Screen

Student Exercise (Floating Entering Condenser Water Temperature)

Student Exercise (Floating Condenser Water Temperature Setpoint)

Output Screen : VINPLT_Example_FloatECWT

- Create a new base model with ECWT following 6°F approach to wet-bulb
- Do a parametric analysis by changing the approach to wetbulb in the energy efficiency opportunity

ment Chiller System		
asic System Summary	Water-Cooled Summary	-
lumber of Chillers: 3	Constant CWT?: No	Go To
HWT Setpoint: 44		Reduction
eographic Location: MO Saint Louis	Following Difference:	Screen
Condenser Cooling Method: Water-Cooled		Go To Current Chiller Details
ower Summary	Pump Summary	Screen
une: 2.Cell With 1-Speed Motors	Variable Bow?: No No	Go To Current
spec. 2-dei With Popeed Motors		Screen
Towers: 1 Sizing: Tons	Flow Rate [gpm/ton]: 2.4 3	
an Motor HP: 75 Tons: 2000	Motor Size (hp): 20 25	Go To Current Pump Details
umber of Cells per Tower: 2	Pump Efficiency [%]: 75 75	Screen
urrent Chiller Summary	Motor Efficiency [%]: 85 85	Return to Input
Capacity Age FLE	Energy Summary	Screen
tions] [years] [kW/ton]	Chiller Energy:	Export to File
Centrifugal 1000 10 0.650	6,829,160 kWh \$682,916	Change Contains
niller 2		Graphic
Centrifugal 1000 10 0.650	Tower Energy:	
Chiller 3	694,625 kWh \$69,463	Cost Graphic
Helical Rotary 350 10 0.750	Pump Energy:	
	898,807 kWh \$89,881	Exit Program
		1
	Total Energy:	Comments
	8,422,592 kWh \$842,259	Outtemp

Eliminate Refrigerant Stacking

- Refrigerant stacking is an abnormal accumulation of refrigerant in the condenser
- Common causes
 - Decrease in the differential pressure or "lift" between the condenser and the evaporator
 - Reduced pressure drop prevents the refrigerant from flowing back to the evaporator to complete the refrigerant cycle
 - Too low ECWT for the part load of the chiller
- Refrigerant stacking impacts heat transfer efficiency in both the evaporator and condenser
 - Higher kW/Ton and energy costs
- Leads to reduced compressor capacity
- May Cause:
 - Chiller surging or stalling
 - Shut down on low refrigerant temperature/pressure

Refrigerant Stacking

Refrigerant Stacking

U.S. DEPARTMENT OF

Optimizing Chilled Water Set-Point (ChWST)

Optimize Settings for ChWST

- ChWST Chilled Water Supply Temperature
- Approach
 - The Refrigerant Approach Temperature is the difference in temperature between the chilled-water supply temperature and the refrigerant saturated temperature in the evaporator
 - It provides the driving force to transfer the heat from the water to the refrigerant
- Tell-tale signs for sub-optimal operations in chiller plants
 - Lower chilled water return temperature than design
 - High chilled water bypass flows
 - Chilled water flow control valves throttled at end-users
- Optimized ChWST will also allow for better load control and optimal number of chiller operation
 - Required cooling controlled by chilled water flow bypass
 - Alternate methodology variable pumping

Remember Lift!

Chiller Plant Efficiency and Chilled Water Set-Point

Student Exercise

- The industrial plant engineer recently completed a chilled water system audit and found that the chilled water supply temperature was fixed at 44°F.
- They wanted to determine if there would be a benefit to let the chilled water supply temperature be increased by 1°F.
- Use the CWSAT model to determine how much system energy could be saved if the plant was able to increase the chilled water supply temperature by 1°F.
- Discuss concerns and issues with the chosen option and what steps can be taken to mitigate them

Operating Cost Reduction Opportunities Screen The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. ? Potential savings opportunities include: Increase Chilled Water Temperature Setpoint Increase CHWT? Yes V Current Temperature 44 Proposed Temperature? 45 ✓ ⁹F Decrease Condenser Cooling Water Supply Temperature Decrease CWT? No 🗸 Use Sliding Condenser Water Temperature Use Sliding Temperature? No 🗸 Apply Variable Speed Control to Chilled and/or Condenser Water Pump(s) Apply VSD to CW Pump? No ~ Apply VSD to CHW Pump? No ~ Replace Chiller(s) Replace Chiller(s)? No 🗸 **NOTE:** This Upgrade Cooling Tower Fan Speed Control Upgrade Fan Control? No 🗸 opportunity does not Use Free Cooling when Possible Implement free cooling? No 🗸 change the chilled Replace Chiller Refrigerant Change Refrigerants? No water flow rate Install a VSD on each Centrifugal Compressor Motor Number of centrifugal chillers: 2 Install VSDs? No <

Basic System Da	ata			Water-Cooled Data				
Geographic Loc	ation: MO Saint Lou	is 🗸		CWT = Condenser C	ooling Water	Supply Tem	perature	
				Is the CWT constant	?	Yes	\sim	
Chilled Water St	upply Temperature: 45	∽ ºF	OK	What is the CWT?		85	∨ ºF	Oł
Condenser Cool	ling Method: Water-Co	oled \vee						
Tower Data				Pump Data	CHV	/	CW	_
Tower Type:	2-Cell With 1-Speed Moto	rs 🗸 🗸		Variable Flow?	No	∼ No	\sim	
Num of Towers:	1 ~			Flow Rate [gpm/ton]	2.4	~ 3	\sim	
Size Tower by:	Tons V 2000 N	tops tower	OK	Motor Size (hp):	20	~ 25	\sim	
	Axial			Pump Efficiency [%]:	75	~ 75	\sim	
		Tan type		Motor Efficiency [%]:	85	~ 85	\sim	
Troposed entiter E	, ata	Full Load	Chiller		A		Energy Cost [Data —
User Chiller ? (Y/N)	Compressor Type	Eff Known	? [Capacity FLE Value tons] [kW/ton]	Age [Years]		Electricity	Cost:
User Chiller ? (Y/N) Chiller 1 O Y N	Compressor Type	Eff Known Yes	? [1000	Capacity FLE Value tons] [kW/ton] V 0.65 V	Age [Years]		Electricity 0.100	Cost:
User Chiller ? (Y/N) Chiller 1 Y IN Chiller 2 Y N	Compressor Type Centrifugal Centrifugal	 Eff Known Yes Yes 	? [~ 1000 ~ 1000	Capacity FLE Value tons] [kW/ton] 0.65 1 0.65 1	Age [Years] 0 \vee		Electricity 0.100 [\$/kWł	Cost: n]
User Chiller ? (Y/N) Chiller 1 O Y O N Chiller 2 O Y O N Chiller 3 O Y N	Compressor Type Centrifugal Centrifugal Helical Rotary	Yes Yes Yes Yes	 ? 1000 350 	Capacity FLE Value tons] [kW/ton] 0.65 1 0.65 1 0.75 1	Age [Years] 0 ~ 0 ~		Electricity 0.100 [\$/kWh Natural Ga	Cost: n] as Cost:
User Chiller ? (Y/N) Chiller 1 Y IN Chiller 2 Y N Chiller 3 Y N	Compressor Type Centrifugal Centrifugal Helical Rotary	Yes Yes Yes	 China 1 1000 1000 350 	Capacity FLE Value tons] [kW/ton] 0.65 1 0.65 1 0.75 1	Age [Years] 0		Electricity 0.100 [\$/kWł Natural Ga 6.00 [\$/MMB	Cost: n] as Cost tu]

urrent Chiller System			Current Chiller System		
Basic System Summary	Water-Cooled Summary		Basic System Summary	Water-Cooled Summary	
Number of Chillers: 3	Constant CWT?: Yes	Go To	Number of Chillers: 3	Constant CWT?: Yes	Return to New
CHWT Setpoint: 44	Constant CWT Setpoint: 85	Reduction	CHWT Setpoint: 45	Constant CWT Setpoint: 85	Input Screen
Geographic Location: MO Saint Louis		Jueen	Geographic Location: MO Saint Louis		Go To
		Go To Current Chiller Details	Condenser Cooling Method: Water Cooled		Proposed
		Screen	Condenser Cooling Method. Water-Cooled		Chiller Details Screen
Fower Summary	Pump Summary CHW CW	Go To Current	Tower Summary	Pump SummaryCHWCW	
Type: 2-Cell With 1-Speed Motors	Variable Flow?: No No	Tower Details	Type: 2-Cell With 1-Speed Motors	Variable Flow?: No No	Go To Proposed
#Towers: 1 Sizing: Tons	Flow Rate [gpm/ton]: 2.4 3	Screen	#Towers: 1 Sizing: Tons	Flow Rate [gpm/ton]: 2.4 3	Tower Details Screen
Fan Motor HP: 75 Tons: 2000	Motor Size (hp): 20 25	Go To Current Pump Details	Fan Motor HP: 60 Tons: 2000	Motor Size (hp): 20 25	
Number of Cells per Tower: 2	Pump Efficiency [%]: 75 75	Screen	Number of Cells per Tower: 2	Pump Efficiency [%]: 75 75	Proposed
Current Chiller Summary	Motor Efficiency [%]: 85 85	Return to Input	Current Chiller Summary	Motor Efficiency [%]: 85 85	Pump Details Screen
Compressor Capacity Age FLE	Energy Summary	Screen	Compressor Capacity Age FLE	Energy Summary	a
Chiller 1	Chiller Energy:	Export to File	Chiller 1	Chiller Energy:	Graphic
Centrifugal 1000 10 0.650	7,485,839 kWh \$748,584	Show System	Centrifugal 1000 10 0.650	7,404,067 kWh \$740,407	
Chiller 2		Graphic	Chiller 2		Show Energy/
Centrifugal 1000 10 0.650	Tower Energy:	Show Energy/	Centrifugal 1000 10 0.650	Tower Energy:	Cost Graphic
Chiller 3 Holiopi Potony 250 10 0.750	138,817 kWh \$13,882	Cost Graphic	Chiller 3	110.909 kWh \$11.091	Show Savings
	Pump Energy:	Exit Program		Pump Energy:	Screen
	898,807 kWh \$89,881	2		898,807 kWh \$89,881	?
		Commente			,0
	I otal Energy:	Outtemp		Total Energy:	

U.S. DEPARTMENT OF

Combinatorial Savings

As the chilled water supply temperature setpoint is increased

- The Lift reduces
- This reduces the work done by the compressor implying a lower kW/RT
- This results in direct chiller savings
- The heat rejected by the condenser is the sum of the evaporator load (which is the same) and the compressor work (which has reduced)
- So the heat rejected by the condenser reduces
- This reduces the cooling tower fan energy
- Hence, the savings are combinatorial and higher the chilled water supply temperature, higher the savings – <u>if the chilled water flow</u> remains constant

A Simple Chilled Water System

Simplified Chilled Water Loop (Constant Speed Pump)

73

Simplified Chilled Water Loop (Constant Speed Pump)

Simplified Chilled Water Loop (Constant Speed Pump)

Normal (Design) Operation

- Bypass flow = 0
- Process end use cooling demand = 100 RT
- Chilled water flow through HX = 240 gpm
- Chilled water supply temperature = 44°F
- Chilled water return temperature = 55°F
- Evaporator refrigerant saturation temperature = 42°F
- LMTD on the evaporator = 5.88°F
- Qevap = UA*LMTD
- UAevap = Qevap / LMTD = 17.01 RT/°F

LMTD =	(Tout –Tsat)–(Tin –Tsat)	
	ln (Tout –Tsat)	
	(Tin –Tsat)	

Easy Tell-tale Signs to Raise ChWST

- An inline valve typically, at chilled water pump discharge is throttled
 - Chilled water flow is being restricted
 - Pump may not be designed properly
 - The end-use HX may not be designed correctly for full design flow
- Opportunity to raise ChWST and increase flow in the loop
- Opportunity to use VFD on pump and also raise ChWST

Easy Tell-tale Signs to Raise ChWST

- The Bypass flow is significant (> 20%)
 - Flow to the process end-use HX is less than 80% of the chilled water supply flow
 - Pump may not be designed properly
 - The end-use HX may not be designed correctly for the full design flow
 - The end-use HX has significant more area than required for the process heat duty
 - Process end-use demand is LOWER than design
- Opportunity to raise ChWST and increase flow in the end-use HX
 - Opportunity to raise ChWST and may be to use VFD on pump

Impact of Optimizing ECWT & ChWST

Modeling Multiple EEOs in CWSAT

- CWSAT has the ability to model combinatorial impacts of multiple energy efficiency opportunities (EEOs)
 - Allows the user to NOT double-count
 - Avoids pitfalls where one EEO may negate or offset another EEO
- While doing an overall analysis model CWSAT with all the EEOs together
- For each specific project and to determine priority in EEOs based on budget constraints, schedules and return on investments – also model each opportunity in CWSAT individually

Individual EEO Results

Reduce ECWT by 2°F

Increase ChWST by 1°F

Total Savings: \$16,675

Modeling both the EEOs together in CWSAT

	Operating Cost Reduction Opportunities Screen	
	The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. Potential savings opportunities include:	2
	Increase Chilled Water Temperature Setpoint	
	Increase CHWT? Yes \checkmark Current Temperature 44 °F Proposed Temperature? 45 \checkmark °F	
\prec	Decrease Condenser Cooling Water Supply Temperature	
	Decrease CWT? Yes V Current Temperature 85 °F Proposed Temperature? 83 V °F	
	Use Sliding Condenser Water Temperature	
	Cannot be used when Decreasing Condenser Water Supply Temperature	

- One word of caution It is always best to start CWSAT from the base model whenever modeling EEOs
 - It avoids leaving past evaluated projects ON in error

Modeling both the EEOs together in CWSAT

Why do the Savings NOT Match

- EEO savings may not be additive
 - Savings may not be linear when comparing them with Lift
- Chiller performance curves (kW/RT) are not linear when comparing them with changes in Lift
- The distribution of load, operation of cooling tower fan can all play a very significant role
- The higher the confidence level in the base model results, chiller performance curves – higher the fidelity of the CWSAT EEOs results

Applying VFDs to Pumps

Application of Variable Frequency Drives to Pumps

- VFD pumps can play a very important role in reducing total system energy consumption
- The centrifugal pump follows the cube law
 - Flow \propto Speed
 - Power \propto Speed³
- The example chilled water central plant facility
 - Primary chilled water pumps
 - Secondary chilled water pumps
 - Condenser water (cooling tower) pumps

Modeling Application of VFDs to Pumps in CWSAT

- Remember CWSAT models primary chilled water loop ONLY
- Model the VFD pumps application individually
 - Chilled water
 - Condenser water

Operating Cost Reduction Opportunities Screen	
The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. Potential savings opportunities include: Increase Chilled Water Temperature Setpoint Increase CHWT? No v	?
Decrease Condenser Cooling Water Supply Temperature	
Use Sliding Condenser Water Temperature Use Sliding Temperature? No ~	
Apply Variable Speed Control to Chilled and/or Condenser Water Pump(s) Apply VSD to CHW Pump? Yes Apply VSD to CW Pump? No No	
Replace Chiller(s) Replace Chiller(s)? No ~	
Upgrade Cooling Tower Fan Speed Control Upgrade Fan Control? No ~	
Use Free Cooling when Possible Implement free cooling? No v	
Replace Chiller Refrigerant Change Refrigerants? No	
Install a VSD on each Centrifugal Compressor Motor	

Modeling Application of VFDs to CW Pumps in CWSAT

Pump Summary	CHW	CW
Flow Rate [gpm/ton]:	24	
Motor Size (hp):	20	25
Pump Efficiency [%]:	75	75
Motor Efficiency [%]:	85	85

Better Plants

U.S. DEPARTMENT OF

Modeling Application of VFDs to CHW Pumps in CWSAT

Modeling Application of VFDs to CHW & CW Pumps in CWSAT

Comments on Using CWSAT for VFD on Pumps

- Personal thought CWSAT allows user to get a good idea of the potential energy and cost savings of VFDs on pumps
- Better tools exist USDOE MEASUR that can be used to more accurately quantify VFD savings on pumps
- CWSAT has a limited pump loop definition
- The specific pump curve at the plant may be very different compared to the generic pump curve in CWSAT

Cooling Tower Fan Speed Control

- There are different types of cooling tower fan controls
 - Constant speed motor goes ON/OFF
 - 2-speed control motor goes High speed, Low speed and Off
 - Variable speed control
 - Fan pitch control in axial fans ONLY
- The centrifugal fan follows the cube law
 - Flow \propto Speed
 - Power \propto Speed³
- CWSAT allows selection of fan and type of speed control

- CWSAT cooling tower model uses the fundamental principles of psychrometrics, heat transfer, mass transfer and fluid flow
- Evaluate the cooling tower fan control
 - 2-speed
 - VFD

 CWSAT cooling tower model w/2-speed fan control

	Tower Summary	
	Type: 2-Cell With 2-Speed Motors	
\langle	#Towers: 1 Sizing: Tons	
	Fan Motor HP: 60 Tons: 2000	
	Number of Cells per Tower: 2	

Savings Summary Screen : VinPET_Example			
	Electricity Savings [kWh]	Natural Gas Savings [MMBtu]	Cost Savings
Chiller Summary:	0		\$0
Tower Summary:	78,759		\$7,876
Pump Summary:	0		\$0
Total:	78,759		\$7,876

Savings Summary Screen : VINPLT_Example

 CWSAT cooling tower model w/VFD fan control

	Tower Summary	
	Type: Tower With Variable Speed Motor(s)	Chill
$\mathbf{\langle }$	#Towers: 1 Sizing: Tons	Tow
	Fan Motor HP: 60 Tons: 2000	Pun
	Number of Cells per Tower: 2	

2-speed fan control (2 cells) & VFD control – provide very similar savings

Implement Free Cooling (Water side Economizer)

Install Water-side Economizers (Free Cooling)

- This energy efficiency opportunity is applicable and cost-effective in certain geographical areas only but can have a huge impact on energy savings
- Installing a water-side economizer allows for "free cooling" during times of the year when the outdoor ambient conditions allow for very low wet-bulb temperatures
- The cooling tower water provides a portion or all of the chilled water load and reduces the chilled water plant's operating time
- NOTE: Always evaluate if any portion of the chilled water end-use load can be offset by using cooling tower water!

- Different configurations of free cooling are possible
- Direct (without HX) allows for maximum potential but may not be practical in chilled water loops
- Indirect (with HX) requires temperature approach as an input

Operating Cost Reduction Opportunities Screen	
The operating cost for the chilled water system can be reduced by altering various system parameters. It is generally recommended that each measure be applied alone to gage the relative benefits of each. Then, multiple measures can be applied to determine the total savings. Potential savings opportunities include:	?
Increase Chilled Water Temperature Setpoint	
Increase CHWT? No ~	
Decrease Condenser Cooling Water Supply Temperature	
Use Sliding Condenser Water Temperature	
Use Sliding Temperature? No V	
Apply Variable Speed Control to Chilled and/or Condenser Water Pump(s) Apply VSD to CHW Pump? No Apply VSD to CW Pump? No <	
Replace Chiller(s) Replace Chiller(s)? No ~	
Upgrade Cooling Tower Fan Speed Control Upgrade Fan Control? No ~	
Use Free Cooling when Possible	
Implement free cooling? Yes v Heat exchanger required? Yes v HEX approach temperature? 10 v °F	
Replace Chiller Refrigerant	
Change Refrigerants? No ✓	
Install a VSD on each Centrifugal Compressor Motor	
Number of centrifugal chillers: 2 Install VSDs? No <	

Savings Summary Screen : VINPLT_Example

Implementing Free Cooling – Exercise Caution

- Be careful with this opportunity a lot of misapplications occur
- Proper temperature and flow control loops have to be incorporated and retrofitting may make it a little more challenging if 3-way tie-ins on the chilled water loop and cooling tower loop are not easily available
- On several occasions, a separate cooling tower (separate basin) and water loop maybe needed

Implementing Free Cooling – Exercise Caution

- When cooling towers are sized by Tower Tons in CWSAT, the algorithm continues to optimize and evaluate the cooling tower fan power necessary - which does reduce as chiller load reduces
- Nevertheless, pay attention to proposed tower details screen to understand if it all makes sense – overall tower energy use has to increase with this opportunity!
- CWSAT is limited in some ways there maybe increased pumping power depending on the loop and flow control configuration

Proposed Tower Details Screen : VINPLT_Example

 If designed correctly, this is a great opportunity to offset partial chiller loads

Tower Summary 2 2-Cell With 1-Speed Motors Type of Tower: 1 Number of Towers: 2 Number of Cells per Tower: Tons Tower Sized by: 2000 Tower Tons: 60 Fan Motor Size (hp): 1,000 Fan CWT Setpoint Not Achieved: Tower Energy Summary WB < 35 °F WB Bin: 35 - 45 ºF 45 - 55 ºF 55 - 65 ºF 65 - 75 ºF WB > 75 °F Total Hours: 2.030 1.464 1,296 1.680 1.898 392 8,760 103,573 Energy [kWh] 0 0 11,172 72,838 27,043 214,626 Note: Tower calculations are made on an hourly basis. Bins are shown here for brevity

Replace Refrigerant

Replace Refrigerant

DO NOT USE

- This was setup for drop-in replacements of R11 w/R123 and R12 w/R134a
- It may provide some ballpark information but there are better ways to model this EEO

Homework #5

- Finalize your plant's chilled water system model in CWSAT
- Build confidence in the total energy consumed and the cost of operation of your chilled water system
- From CWST exercises (HW#2), identify two or three opportunities that can be modeled in CWSAT as operating cost reduction strategies
- Use the CWSAT model to quantify these opportunities
- Identify discrepancies and shortcomings, if any, in the CWSAT software

Thank You all for attending today's webinar.

See you all tomorrow – August 15, 2024 – 10 am ET

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at paparra@ornl.gov

Kahoot Quiz Time

Kahoot !	
Game PIN Enter	

