aquafficiency[®]

Wastewater Treatment Efficiency FACTS AND FIGURES

1 TOP 10 CATEGORIES OF WASTEWATER

O&M Energy Savings

1 Control & Optimize DO Levels6 Optimize Mixing2 Control & Minimize Blower Discharge Pressures7 Control Your Odor Control3 Optimize Pumps & Pumping8 Control Your UV System4 Non-potable Water: Flow & Pressure9 HVAC & Lights in Unoccupied Rooms5 Nitrification (needed?) w/o Denitrification10 Record/Standardize/Document

2 IMPACT OF DO LEVELS ON ENERGY

Saturated DO

DO in basin = driving force for oxygen transfer Driving force UP means Energy goes DOWN

DO rule of thumb

0.5 mg/l reduction creates ~ 6% energy savings

DO calibration & cleaning

A probe that reads 10% low (e.g. 2.0 when actual is 2.2) is costing you 2.4% at the blower.

DO level increases

As mixed liquor temp increases, the impact of elevated DO levels increases.

3 IMPACT OF BLOWER PRESSURE ON ENERGY

Disch. pressure	Reduction in pressure of psig					
	-0.2	-0.4	-0.6	-0.8	-1.0	
12	1.3%	2.7%	4.0%	5.4%	6.7%	
11	1.5%	2.9%	4.4%	5.9%	7.4%	
10	1.6%	3.3%	4.9%	6.6%	8.3%	
9	1.8%	3.7%	5.5%	7.4%	9.3%	
8	2.1%	4.2%	6.3%	8.4%	10.6%	
7	2.4%	4.8%	7.3%	9.7%	12.2%	

*Assumes 70% blower eff & 92% motor/drive eff

Reduce pressure across blower by

- Clean inlet air filter
- Clean the aeration basin diffusers (which also improves OTE = reduces air demand)
- Use most open valve control strategies
- Reduce or eliminate throttling
- Hold return stream flows (e.g. centrate) until low load conditions at night (lower airflow lowers friction losses)

PSIG	IN H ₂ 0	
0.1	2.8	
0.2	5.5	
0.3	8.3	
0.4	11.1	
0.5	13.8	
0.6	16.6	
0.7	19.4	
0.8	22.1	
0.9	24.9	
1 PSI = 2.31 feet of water		
1 foot of water = 0.43 PSI		

IMPACT OF AVERAGE DO LEVEL ON BLOWER ENERGY

Mixed liquor temp		DO sat	Energy savings potential if D0 reduced from to 2.0 mg/l			
°C	°F	mg/l	2.5	3	4	5
0	32	14.6	4.0%	7.9%	15.9%	23.8%
2	36	13.8	4.2%	8.5%	16.9%	25.4%
5	41	12.8	4.6%	9.3%	18.5%	27.8%
10	50	11.3	5.4%	10.8%	21.5%	32.3%
15	59	10.1	6.2%	12.3%	24.7%	37.0%
20	68	9.1	7.0%	14.1%	28.2%	42.3%
25	77	8.2	8.1%	16.1%	32.3%	48.4%
NOTE Higher impact as elevation increases						

NOTE Higher impact as elevation increases

4 PUMPING ENERGY

Basic equation

Include transmission loss between motor and machine if not direct coupled:

Gear box - 92-98% depending on type V-belt - 89-95% depending on proper tension "cogged" or "synchronous" belt - 98%

VFD efficiency

VFD efficiency = 97%

Running at 100% speed consumes 3% more energy than running without a VFD.

5 CALCULATING kWh

It takes 3.14 kWh to lift 1 million gallons 1 foot at 100% efficiency

Estimating energy from nameplate data

$$\begin{split} BHP &\approx Motor \ Nameplate \ HP \ x \ 90\% \ (for \ mixers) \ x \ "\% \ of \ Full \ Load \ Power" \\ BHP &\approx Motor \ Nameplate \ HP \ x \ 80\% \ (for \ pumps) \ x \ "\% \ of \ Full \ Load \ Power" \\ BHP &\approx Motor \ Nameplate \ HP \ x \ Operating \ Amps \ / \ Full \ Load \ Amps \ (FLA) \end{split}$$

Brake Horsepower (BHP) x 0.746 Motor Efficiency x hours = kWh

Amp to kWH calculation

For three phase power (be wary of using amps from a VFD panel readout)

Amps x Volts x 1.73 x Power Factor x $\frac{1}{1,000}$ x hours = kWh

Saving energy in pumping

- Reduce the head: static and/or friction
- Reduce the flow: pump only what is needed
- Improve equipment efficiency: new equipment or better operating point

6 REDUCING ENERGY AT PUMPS, MIXERS, AND FANS

Reduce flow

- Put non-potable spray systems on timers; use PRV's & non-clog nozzles to reduce flow
- Run RAS and internal recycle pumps at an "intentional" multiple of plant flow; if pumps are oversized, trim impellers or install VFDs
- Run sludge pumps intermittently to move more solids with less water
- Equalize return stream flows (e.g. centrate) to load aeration basin at night when influent loads are lowest
- Minimize water used for "sluicing" screenings and grit
- Go to intermittent or reduced speed operations on mixers
- Does odorous airflow depend on number of trains on-line?
- Does odor vary seasonally?

Reduce head

- Increase wet well level on influent, effluent, RAS, WAS, intermediate, and collection system pump stations when possible A 2-foot increase on a 20' TDH system is a 10% reduction in energy
- Lower non-potable water system pressure to a default low pressure; use timers or SCADA system to boost pressure when needed for washdown; use booster pumps for those single uses that require high pressure (e.g. belt press)
- Use dedicated low pressure blower for channels that are not as deep as aeration basin
- Dampered fans are common; resheave to lower flow and eliminate throttling

Improve efficiency

- Consider semi-open impellers in lieu of open impellers if influent screens are 1/4" or less
- Check pump operating conditions against factory curve; adjust to maximize gal/kWh
- Run "best" equipment in lead & leave it until it is no longer the best

7 USEFUL TIME AND ENERGY CALCS

Constant (24/7) running is 8,760 hrs annually

8 hr/day for 7 days/week = 2,920 hours

8 hr/day for 5 days/week = 2,085 hours

Runtime reductions

1/24th = 4.2% 1/7th = 14.3% 1/12th = 8.3% 1/52 = 1.9%

Quick conversions **1 HP** = 0.75 kW **100 HP** = 75 kW **10 kW** = 13.4 HP

Rough kWh 10 HP 24/7 = 65,000 kWh

8 DEFINITIONS

NAME	DEFINITION
Efficiency	Energy "Out' divided by Energy "In"
HP	Motor Nameplate Horsepower, this is motor output
BHP	Brake Horsepower, the shaft power at pump
WHP	Water Horsepower, theoretical minimum power required to move water
BTU	British Thermal Unit, enough energy to raise 1 pound of water by 1°F
kW	Kilowatt, unit of power (1,000 watts)
kWh	Kilowatt Hour = Units of energy, kW x hours
kVA	Kilovolt-amps, "Apparent Power" = Volts x Amps x 1.73 / 1,000 (skip x 1.73 if single phase)
kVAR	Kilovolt-amps reactive - "Reactive Power," non-useful power that the utility still has to carry
PF	Power Factor = kW / kVA, or % of power that is "real"

9 MOTOR EFFICIENCY

MOTOR NAMPLATE HP	STANDARD EFF.	PREMIUM EFF.
1	74%	82%
5	84%	90%
10	87%	91%
25	90%	93%
50	91%	94%
100	92.2%	94.7%
250	93.3%	95.2%
500	94.0%	95.5%
1000	94.5%	95.7%

TALK TO AQUAFFICIENCY TODAY

© 2020 Cascade Energy, Inc.®