

Industrial Water Systems Virtual INPLT Training & Assessment

Session 7 Tuesday – July 2nd, 2024 10 am – 12:30 pm

1111/1/1

Water Virtual INPLT Agenda

- Week 1 (May 21st) Introduction to Industrial Water Assessment and Plant Water Profiler
- Week 2 (May 28th) Understanding System Level Water use
- Week 3 (June 4th) True Cost of Water
- Week 4 (June 11th) Plant Water Profiler Working Session
- Week 5 (June 13th) Identifying Water Savings Opportunity
- Week 6 (June 25th) Virtual Treasure Hunt
- Week 7 (July 2nd) Estimating Water Savings Opportunities
- Week 8 (July 9th) Industrial Water System VINPLT Wrap-up Presentations

3

Agenda – Session Seven

Today's Content:

etter

- Resources for Treasure Hunt
- Resources to Estimate Savings
- National Alliance for Water Innovation (NAWI)

U.S. DEPARTMENT OF

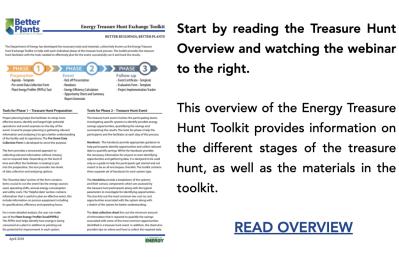
Treasure Hunt Event

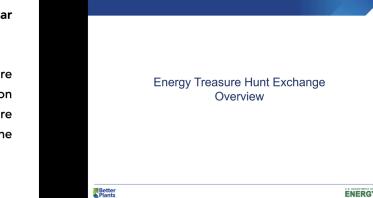
Energy Star – Treasure Hunt Guidance Document

FOUR PHASES FOCUSED ON RESULTS: A comprehensive Energy Treasure Hunt has four distinct phases:

- Preparation: Schedule discussions with your organization or facility's leadership to obtain their support. Gather data on current energy usage and costs, equipment specifications, and operating parameters.
- Pre-Training: Meet with facility team leaders to confirm roles and responsibilities and Energy Treasure Hunt agenda. Pre- training should begin at least one week before the onsite event.
- Three-day Onsite Event: Teams identify and quantify energy-saving opportunities at an onsite three-day event. Summarize and present the results for management review.
- **Follow-up**: Develop a schedule for pursuing the energy reduction opportunities identified during the Energy Treasure Hunt.

U.S. Environmental Protection Agency Energy Treasure Hunt Guide: Simple Steps to Finding Energy Savings JANUARY 2014





DOE Treasure Hunt Toolkit

READY TO START YOUR OWN TREASURE HUNT?

The Department of Energy has developed the necessary tools and materials, collectively known as the Energy Treasure Hunt Toolkit, to help with each individual phase of the treasure hunt process. This toolkit provides the treasure hunt facilitator with the tools needed to effectively plan and prepare for the event, successfully run it, and track the results. **Explore the resources listed below to prepare for your Treasure Hunt and execute the three phases.**

Download the Treasure Hunt Toolkit and begin your search

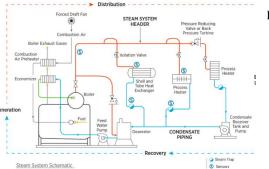
Explore the Treasure Hunt module in MEASUR

https://betterbuildingssolutioncenter.energy.gov/better-plants/energy-treasure-hunts

DOE Tools for Treasure Hunt

WHAT DOES AN ENERGY TREASURE HUNT LOOK LIKE?

PREPARATION	EVENT	FOLLOW-UP
Phase 1 and 2	Phase 3	Phase 4
 Event Logistics Save the Date (template) Event Agenda (template) 	Treasure Hunt Opening Presentation	Close out presentation (template)
 Facility Information Data collection sheet Plant Water Profiler Plant Energy Profiler 	System Specific Handouts Documenting Opportunity MEASUR Treasure Hunt Module Excel Based tools	Project Implementation Tracker
Diagnostic Equipment	Water Savings Calculators	



- System specific handout sheets are provided by DOE to help participants identify and quantify energy savings opportunities.
- Three sets of handouts for each system type is available;
 - System Checklist
 - Data Collection Sheet
 - System Cheat Sheet
- The handouts are not meant to be all encompassing
- Participants should only use the handouts as a tool to get started and not solely rely on it

Handouts

Better

Best Practices

- 1.) Reduce Steam demand and pressure
- 2.) Optimize Fuel/Air Ratio
- 3.) Fix Steam Traps
- 4.) Insulate Pipes and Tanks
- 5.) Recover condensate/ flash steam and capture water & heat

- 6.) Preheat boiler feed water
- 7.) Install automated blowdown controls
- 8.) Optimize deaerator vent rate
- 9.) Adjust steam system based on production
- team and 10) Identify and close off dead legs (unused to sections of steam header)

Steam System - Data Collection Sheet

Energy Treasure Hunt

Measure	Data to Collect	Data	How to Collect
	How many boilers?		
	How many boilers are running?		Interview the operators
Common System Data	Boiler capacity(s) (BTU or lbs./hour)		From panel
	Total generation capacity (lbs./hour)		From panel
	Average steam generation rate (lbs./hour)		From panel
	Average boiler blowdown rate		Interview the operators
	Current System Pressure		From pressure gauge in header line
	Highest Pressure on header		Interview the operators
	Highest Pressure Required at floor		Interview manager/ personnel on the floor
	Stack Temperature		
	How many leaks/ defective traps		Approximation based on the ones found
	Diameter of the leak		Ultrasonic Leak Detector / visual determination
Steam Leaks	Pressure on line		From nearby pressure gauge
	Hours of operation of the leak(or boiler)		

<u>Rule of Thumb</u>

- Average efficiency of a steam boiler is 80%.
- 10PSI drop in header pressure is 1% energy reduction
- Every 10.7 F rise in boiler feedwater temperature yields ~1% steam energy savings

Improve Boiler Combustion Efficiency

		Combustion Efficiency				
Exce	ess, %	Flue go	as Temper	ature min	us combu	stion
			air Te	mperatur	e, F	
Air	Oxygen	200	300	400	500	600
9.5	2.0	85.4	83.1	80.8	78.4	76.0
15.0	3.0	85.2	82.8	80.4	77.9	75.4
28.1	5.0	84.7	82.1	79.5	76.7	74.0
44.9	7.0	84.1	81.2	782.2	75.2	72.1
81.6	10.0	82.8	79.3	75.6	71.9	68.2

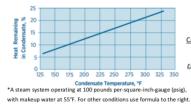
Unmaintained steam system - 15% to 30% of traps failed.
Ideal, maintained steam system - 5% of traps failed.

Steam System – Cheat Sheet

Energy Treasure Hunt

Calculating Steam Cost

Feed water Temperature, F						
50	100	150	200	250		
1178	1128	1078	1028	977		
1187	1137	1087	1037	986		
1184	1134	1084	1034	984		
	50 1178 1187	50 100 1178 1128 1187 1137	50 100 150 1178 1128 1078 1187 1137 1087	50 100 150 200 1178 1128 1078 1028 1187 1137 1087 1037		


Insulate Steam and Condensate Lines

Line Diameter, Steam Pressure, psig					
Inches	15	150	300	600	
1	140	285	375	495	
2	235	480	630	840	
4	415	850	1120	1500	
8	740	1540	2030	2725	
12	1055	2200	2910	3920	

Steam Trap Failure

Less Obvious signs
 Higher than necessary pressure
 Excessive condensate & Chemical
losses
 Condensate water too hot
 Boilers running continuously

Return Condensate to Boiler

Units LHV HHV

	Onics					
Natural Gas	Btu/CF	1,050	1,050			
#2 Fuel Oil	BTU/Gal	138,300	138,300			
#6 Fuel Oil	BTU/Gal	150,500	150,500			
Propane	BTU/CF	92,000	92,000			
Coal - Bituminous BTU/lbs 14,100 14,100						
* Higher Heating Value (HHV): Total energy from combustion process						

* Lower Heating Value (LHV): Assumes heat of condensation cannot be recovered

Losses with steam Trap Failure

Heating Value of Fuels

Trap Orifice	Steam Loss, lb/hr					
Diameter (inches)	15 psig 100 psig		150 psig	300 psig		
1/32	0.85	3.3	4.8	-		
1/16	3.4	13.2	18.9	36.2		
1/8	13.7	52.8	75.8	145		
3/16	30.7	119	170	326		
1/4	54.7	211	303	579		
3/8	123	475	682	1,303		

Calculating %Heat Remaining in condensate using formula

 $\begin{array}{l} \textit{Heat remaining in condensate (\%)} = \frac{h_{condensate} - h_{makeup water}}{h_{steam} - h_{makeup water}} \times 100 \\ \hline \underbrace{\texttt{Example}}{h_{condensate}} & \texttt{at 180 F} = 148 \textit{Btu}/lb \ ; \ h_{makeup water} = 23 \textit{Btu}/lb \\ h_{steam} \textit{at 100 psig} = 1,189 \textit{Btu}/lb \end{array}$

Heat remaining in condensate (%) = $\frac{148-23}{1189-23}$ = 11% (as in graph)

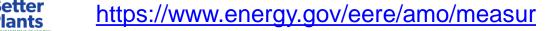
Documenting TH Opportunities

- An opportunity detail sheet is a tool that helps organize and document information about identified opportunities
- Each opportunity should have an individual "opportunity sheet"

Information captured

- Description
- Implementation costs
- Water/Energy Saved
- Cost Savings
- Payback Metrics

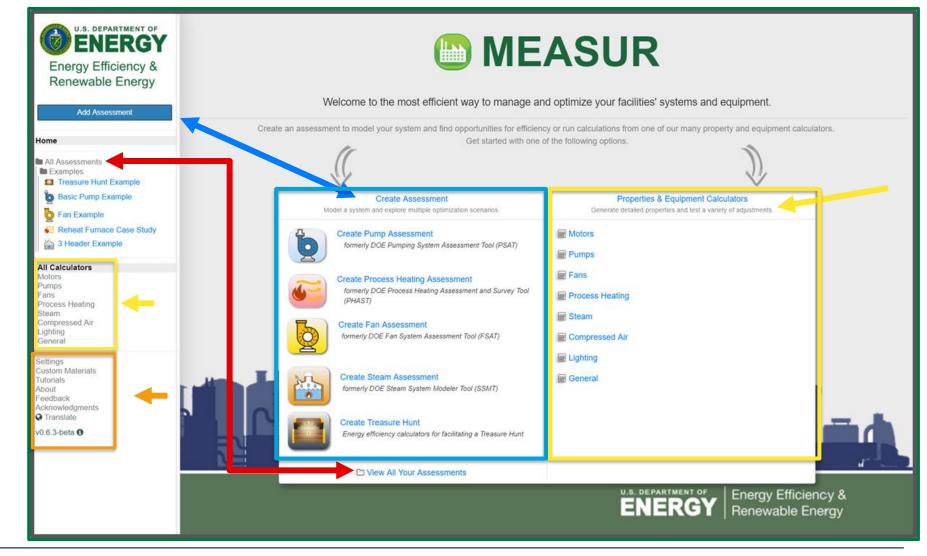
							Plant:	0
0	Title:						Business Unit:	
Info	Process /						Originator:	
	Equipment:						Date:	Set to Today
tion			(D-f F	Transie (het)	1	Designed of C		Tanana Ilaaki
rip			•	rgy Treasure Hunt)		-	-	rgy Treasure Hunt)
Description	Da	; Hours ours /Day ys/Month onths	Nun	nber of Units Eg. Number of leaks, Number of equipment to be turned off etc.	Annua	I Operating Hours Hours /I Days/Mo Months	Day	hber of Units Eg. Number of leaks, Number of equipment to be turned off etc. n and the values are not used in calculations
y	Energy uni	ts	Energy U	se Before TH (Energy units/yr)	Ene	rgy Use After TH (E		Energy Savings (Energy Units/yr)
Energy	Electricity - kW					8,		0.0
Ēn		MBTU						0.0
		Im	lementation	Cost	\$/unit Projected Annual Savings			
	Engineering Services:	:			\$ 0.10	Electricity	\$	-
	Material:	\$	-		\$ 6.50	Gas	\$	-
	Labor: Contract				\$ -	Compressed Air	\$	-
ng	Labor: In House			r	\$ -	Other Fuel	\$	-
Savings	Other:	\$	-	Cost Description:	\$ -	Steam	\$	-
/s	Other:	\$	-					
Cost /	Other:	\$	-		\$ 20.00	Water	\$	-
ő	Other:	\$	-		\$ -	WWT	\$	-
	Other:	\$	-			Other Caular		
					1	Other Savings		
	Total:	Ś				Total:	Ś	



Integrated Energy Software - MEASUR

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy			ASUR	
Add Assessment		Welcome to the most efficient way to manage a	nd optimize your facilities' systems and equipment.	
Home All Assessments Examples	Create an asse		icy or run calculations from one of our many property and equipment calculations of the following options.	ulators.
Examples Treasure Hunt Example Basic Pump Example Fan Example		Create Assessment Model a system and explore multiple optimization scenarios.	Properties & Equipment Calculators Generate detailed properties and test a variety of adjustments.	
Reheat Furnace Case Study	6	Create Pump Assessment formerly DOE Pumping System Assessment Tool (PSAT)	₩ Motors ₩ Pumps	
All Calculators Motors Pumps Fans Process Heating		Create Process Heating Assessment formerly DOE Process Heating Assessment and Survey Tool (PHAST)	■ Fans■ Process Heating	
Steam Compressed Air Lighting General		Create Fan Assessment formerly DOE Fan System Assessment Tool (FSAT)	i ∰ Steam ∰ Compressed Air	
Settings Custom Materials Tutorials About Feedback Acknowledgments		Create Steam Assessment formerly DOE Steam System Modeler Tool (SSMT)	Ighting Ighting Ighting Ight	
v0.6.3-beta €		Create Treasure Hunt Energy efficiency calculators for facilitating a Treasure Hunt		ā
		C View All Your Assessments		I

- All system level software tools will be available to through one platform
- Includes system modelers and individual calculators for field validation
- Includes built-in guides and tutorials

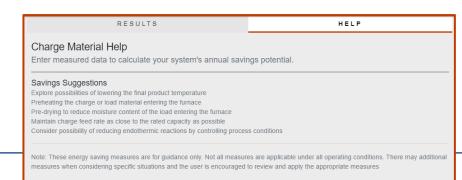

Getting Started

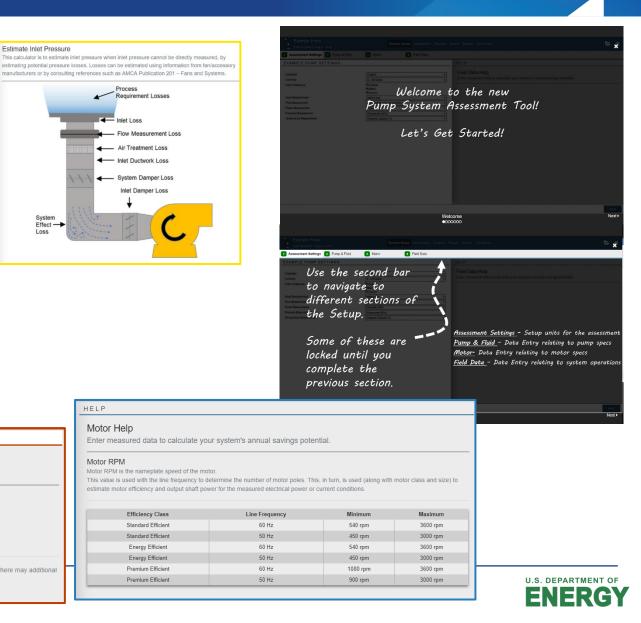
Start an assessment

View Assessment Dashboard

 Use Properties & Equipment Calculators

- Help and User Experience
 - Change Settings
 - View Tutorials
 - Manage Custom Materials
 - Provide Feedback
 - Translate


Key Features - Help Text & Tutorials

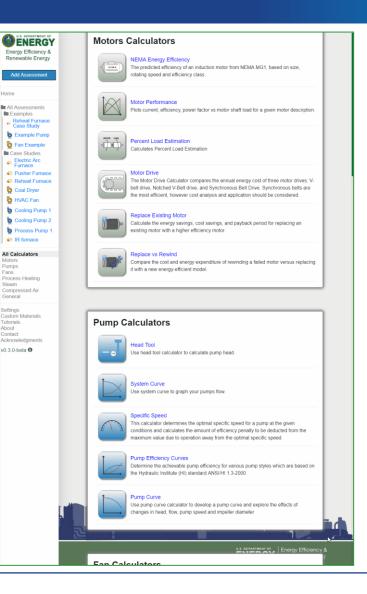

Estimate Inlet Pressure

System

Effect -

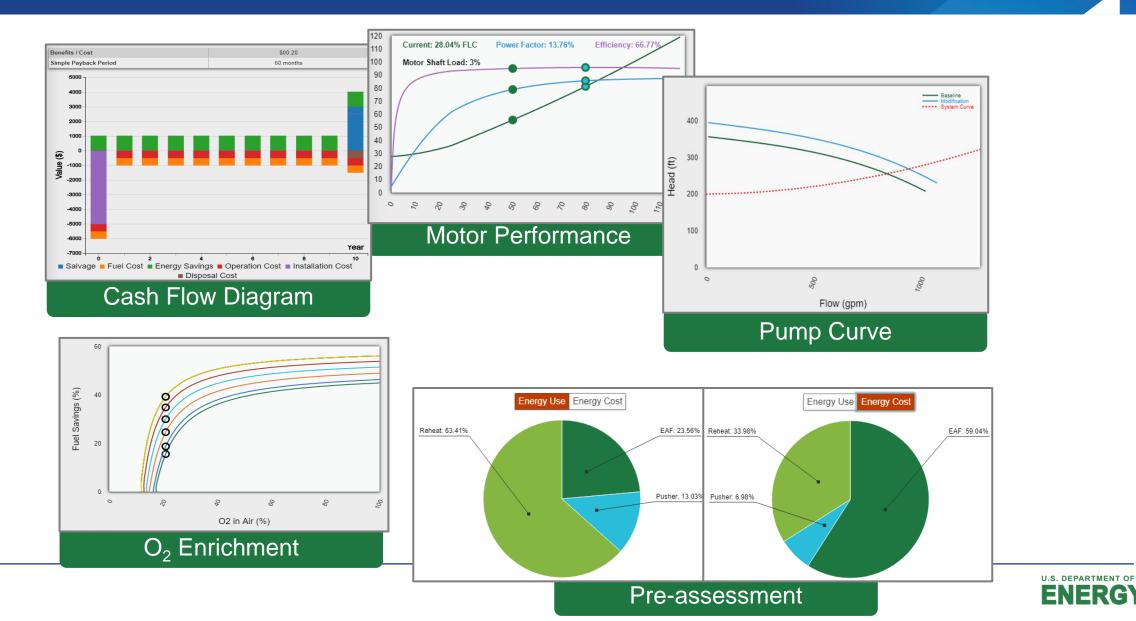

- Tutorials
 - Help to get started using tool
- Help text for each data entry field
 - Diagrams to help understand where to obtain data
 - Can switch between help or results being shown by default

Treasure Hunt Module


 Find low/no cost energy savings opportunities in motor systems, process heating, compressed air, lighting, etc.

Calculators

- 50+ Stand alone Calculators
 - Motors
 - Pumps
 - Fans
 - Process Heating
 - Steam
 - Compressed Air
 - Lighting
 - General
- Most have graphical results



Example Calculators

Better Plants

GY

Treasure Hunt Calculator for Water

WATER/WASTEWATER	REDUCTION

BASELINE	+A	dd Equipment	MODIFICATION	1	+Add Equipment	RESU	LTS	HELP
							Baseline	Modification
Equipment #1			Equipment #1			Water Use	15,768 kgal/yr	10,512 kgal/yr
Annual Operating Hours	8760	hrs/yr	Annual Operating Hours	8760	hrs/yr	Water Cost	\$78,840 /yr	\$52,560 /yr
Calculator Type	Water	\$	Calculator Type	Water	\$	Annual Water	5,256	kgal/yr
Water Cost	0.005	\$/gal	Water Cost	0.005	\$/gal	Savings		
Measurement Method	Bucket Metho	d 🗘	Measurement Method	Bucket Me	thod	Cost Savings	\$26,2	280 /yr
Bucket Volume	10	gal	Bucket Volume	10	gal		Copy Table	
Bucket Fill Time	20	sec	Bucket Fill Time	30	sec			•
Water Consumption	15,768 k	gal/yr	Water Consumption	10,512	2 kgal/yr			
	ate Example	Reset Data						

To estimate the savings associated with typical operational opportunities, e.g. Scheduling the equipment, reducing the load on the equipment etc.

Excel Version of Treasure Hunt Tools

Opportunity detail sheet helps document the projects and the calculators helps quantify the savings

Step 2 - Determine Electricity Consump	otion								
Identify the method to be used: Electricity consumption can be determined by several different methods. The calculator sheets provide three options to determine consumption. The methods are listed starting with the most accurate and end with the least accurate.									
a. Power Meter Method			al consumption is with a power meter. Man nents were done with a power meter.	nufacturer's da	a on lights				
b. Multimeter Reading			second most accurate means of measuri C (When combined with the plant's uncor						
c. Name Plate Data			a reasonable estimation of the energy the tetr. Nameplate data does not tell the use						
d. Offsheet/Other Method	Choose this option if you are u	using	g a different method to find the electricity of	ISE					
Choose Method of Measurement			b. Multimeter Rea	ading					
Option 2: Multimeter Readings									
Current Situ	ation		Projected Situa	tion					
Determine the voltage, current, and pequipment.	oower factor of the		Determine the voltage, current, and po	wer factor of	the				
			equipment.		lile				
Data Item	Value Unit			Value	<u>Unit</u>				
Voltage	volts		equipment. Data Item Voltage	Value					
	volts amps		equipment. Data Item	Value	<u>Unit</u>				
Voltage Current	volts amps		equipment. <u>Data Item</u> Voltage Current	<u>Value</u>	<u>Unit</u> volts				
Voltage Current Power Factor Determine the power consumption. Three Phase?	volts amps - Yes		equipment. <u>Data Item</u> Voltage Current Power Factor Determine the power consumption. Three Phase?	Yes	<u>Unit</u> volts amps -				
Voltage Current Power Factor Determine the power consumption.	volts amps - - <u>Yes</u> 0.00 kW		equipment. <u>Data Item</u> Voltage Current Power Factor Determine the power consumption.		<u>Unit</u> volts				
Voltage Curren Power Factor Determine the power consumption. Three Phase? Power	volts amps - - <u>Yes</u> 0.00 kW		equipment. <u>Data Item</u> Voltage Current Power Factor Determine the power consumption. Three Phase? Power	Yes	<u>Unit</u> volts amps - kW				
Voltage Curren Power Factor Determine the power consumption. Three Phase Power Units	Volts amps - ·		equipment. <u>Data Item</u> Vottage Current Power Factor Determine the power consumption. Three Phase? Power Units	Yes	<u>Unit</u> volts amps - kW				

Treasure Hunt Calculators

							Plant:	0
.0	Title:						Business Unit:	:
lnfo	Process /						Originator:	
	Equipment:						Date:	Set to Today
tion		Cit.	ion (Bolovo F	ergy Treasure Hunt)	1	Projected Si	in the father F	nergy Treasure Hunt)
운								
Description	Annual Oper	Hours /Da Days/Mor Months	۲ (Eg. Number of leaks, Number of equipment to be turned off etc.	Annua	Hours /D Days/Mo Months	lay	Lumber of Units E.g. Number of leaks, Number of equipment to be turned off etc.
						* This section	is part of the descrip	tion and the values are not used in calculati
Energy	Energ	y units	Energy	Use Before TH (Energy units/yr)	Ener	gy Use After TH (E	nergy Units/yr)	Energy Savings (Energy Units/
E.	Electricity	- kWh						
<u>۳</u>	Gas	- MMBTU						
			Implementatio	in Cost	\$/unit		Projected /	Annual Savings
	Engineering Ser	vices:			\$ 0.10	Electricity	\$	-
	Material:	\$	-		\$ 6.50	Gas	s	-
	Labor: Contract				\$ -	Compressed Air	\$	-
ě.	Labor: In House				\$ -	Other Fuel	\$	-
-	Other:	\$	-	Cost Description:	\$ -	Steam	\$	-
š	Other:	\$	-					
Cost / Savings	Other:	S	-		\$ 20.00	Water	\$	-
0								
Ŭ	Other:	\$	-		5 -	WWT	\$	-
Ŭ	Other: Other:		-		5 -		\$	-
Ŭ		\$ \$	-		\$ -	WWT Other Savings		-
Ŭ		\$	-		5 -	Other Savings Total:	S S back Period (yrs):	

Opportunity Sheets

Treasure hunt module helps create and track opportunity sheets for documenting TH activities

Calculators help quantify the savings associated with an identified opportunity

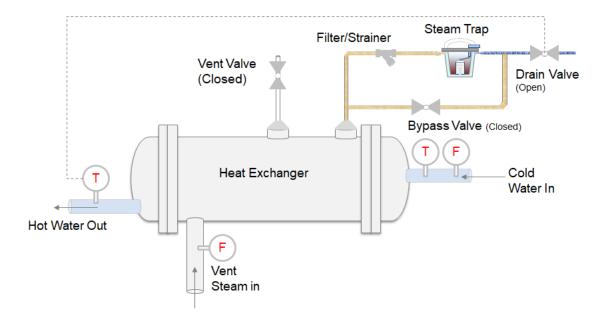
The results from the calculator are used to populate the opportunity sheets.

Two types of Utility Efficiency Calculators are available

- I. Treasure Hunt General Calculators
 - To estimate the savings associated with typical operational opportunities, e.g. Scheduling the equipment, reducing the load on the equipment etc.

II. Opportunity Specific Calculators

• Available for some common opportunities that cant be easily quantified using the treasure hunt calculator e.g. cooling tower, boiler etc.


Participants can use their own method or tool to quantify savings, however, the result of the calculation and description still needs to be captured in a standard opportunity sheet.

Vent Steam to Heat Exchanger

- Calculates energy and water cost saving when vent steam is used to heat hot water.
- The steam source can be deaerator water tanks, flash steam from condensate return tank or any other equipment / process that vents steam into the atmosphere.

Savings from

- Elimination of energy used to heat water that will be heated by using vent steam.
- Returning condensate back to boiler reducing makeup water and treatment costs

Blowdown Rate Calculator

BLOWDOWN RATE CALCULATOR

BASELINE		MODIFICATION	1		RESULTS		HELP
Conductivity Readings		Conductivity Readings				Baseline	Modification
Feedwater Conductivity	400 µS/cm	Feedwater Conductivity	200	µS/cm	Blowdown Rate (%)	7.84 %	3.45 %
Blowdown Conductivity	5500 µS/cm	Blowdown Conductivity	6000	µS/cm	Blowdown Rate (klb/hr)	85.11	35.71
Boiler	-	Boiler			Feedwater Rate (klb/hr)	1,085.11	1,035.71
Steam Flow	1000 klb	Steam Flow	1000	klb	Fuel Cost	\$1,894,827	\$833,071
Steam Temperature	500 °F	Steam Temperature	500	۰F	Makeup Water Cost	\$223,402	\$93,749
Boiler Efficiency	85 %	Boiler Efficiency	85	%	Total Cost	\$2,118,229	\$926,820
Operations	-	Operations		//	Fuel Savings	\$1,061,757	
Operating Hours	🔢 8760 hrs/yr	Operating Hours	8760	hrs/yr	Makeup Water Savings	\$129,653	
Fuel Cost	4.99 \$/MMBtu	Fuel Cost	4.99	\$/MMBtu	Total Savings	\$1,191,410	
Water Cost	0.0025 \$/gal	Water Cost	0.0025	\$/gal	Co	oy Table	
Makeup Water Temperature	50 °F	Makeup Water Temperature	50	°F	_		
Generate	Example Reset Data						

Calculate Costs associated with boiler blowdown

Cooling Tower Water Use Calculator

Analyze the effect of drift eliminators/cycles of concentration on cooling tower water consumption and estimate the resulting water savings.

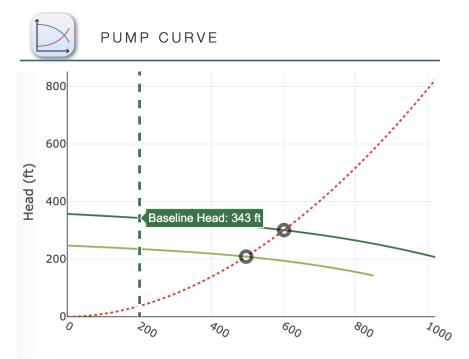
Case #1	+Remove Case
Water Flow Rate	1000 gpm
Cooling Load Calculate Cooling Load	100 MMBtu/h
Annual Operating Hours	8760hrs/yr
Cycles of Concentration	2
Drift Eliminator	No 🖨
Drift Loss Factor	0.2 %
Evaporation Loss Correction Factor	85 %
Results	
Water Consumpt	ion 179,755.2 kGal

Boiler and Cooling Tower Calculator from PWP

						Foodurator	Makeup Water	Blowdown	Million Gallon per Year (% of Gross Water Use)				
	Hours of Operation Boiler Horsepower Load Factor Steam Generation	Conductivity	Feedwater	Makeup Water	Blowdown	Steam Lost	Steam Lost Condensate Return						
						TDS ppm	TDS ppm	TDS ppm		Incoming	Out	going	
- [Boiler for:	8,000	100.0	0.8	34.5				-	-	-	-	-
									-	-	-	-	-
									-	-	-	-	-
									-	-	-	-	-
									-	-	-	-	-

Cooling Tower	Hours of Operation	Cooling Tower	Load Factor	Evaporation Rate	Tomp Drop Across	Makeup Water	Blowdown	Million Gallon per Year (% of Gross Water Use)				
	Hours of Operation	Cooling Tower	(Fraction of	ner 10°F Temp	Temp. Drop Across	Conductivity	Conductivity	Cases Weter Here	Incoming	Out	Outgoing	
	per Year	Tonnage	Tonnage)	Drop (%)	Cooling Tower (°F)			Gross Water Use	Makeup Water	Blowdown	Evaporation	Recirculated Water
								-	-	-	-	-
								-	-	-	-	-
								-	-	-	-	-
								-	-	-	-	-

Calculators in MEASUR are similar and follow the same principals



Pumping System

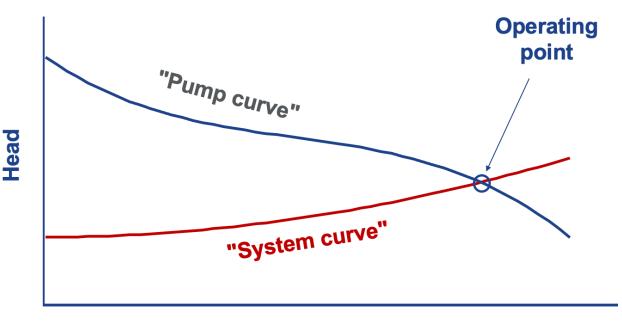
Pumping system characteristics can be estimated by using the Pump Head Calculator and Pump Curves

римр н	EAD TOOL			
	Suction tank elevation	Suction gauge elevation		
		ses from the tank to the pump		
K _d	represents all discharge loss	es from the pump to the gaug	je P _d	
Fluid Specific Gravity		1.002		
Flow Rate		3000		gpm
Suction		Discharge		
Pipe diameter (ID)	12 in	Pipe diameter (ID)	12	in
Tank gas overpressure (Pg)	0 psi	Gauge pressure (Pd)	124	psi
Tank fluid surface elevation	10 ft	Gauge elevation (Z _d)	10	ft
(Z _s)		Line loss coefficients (K _d)	1	
Line loss coefficients (K_s)	0.5			
		Generat	te Example Reset	Data

Given a measured pressure, elevation, flow rate, and line size data calculate the head for a pump

Use pump curve calculator to develop a pump curve and explore the effects of changes in head, flow, pump speed and impeller diameter.

U.S. DEPARTMENT OF



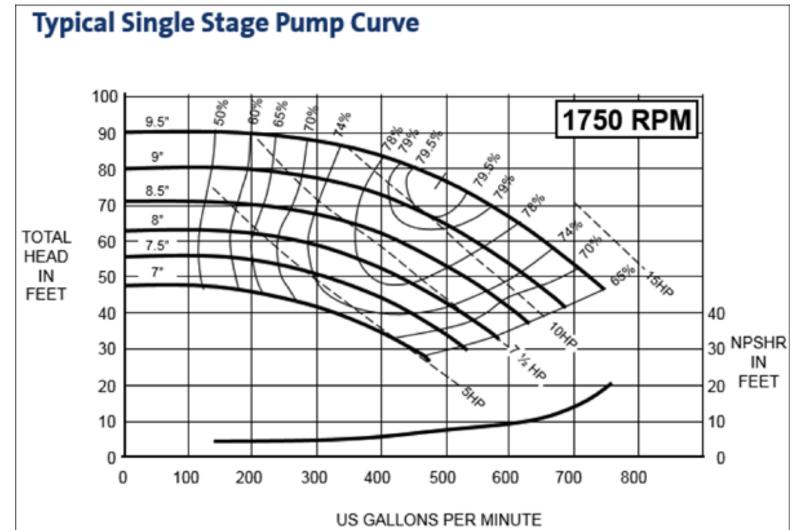
Pump Curves & System Curves

The system curve represents the energy required to move fluid through the system.

If anything in the system changes – including valve positions, flow paths, tank levels, etc., the system curve will change.

A pump curve gives the performance of a pump when working against a given system pressure to produce a flow

Flow rate

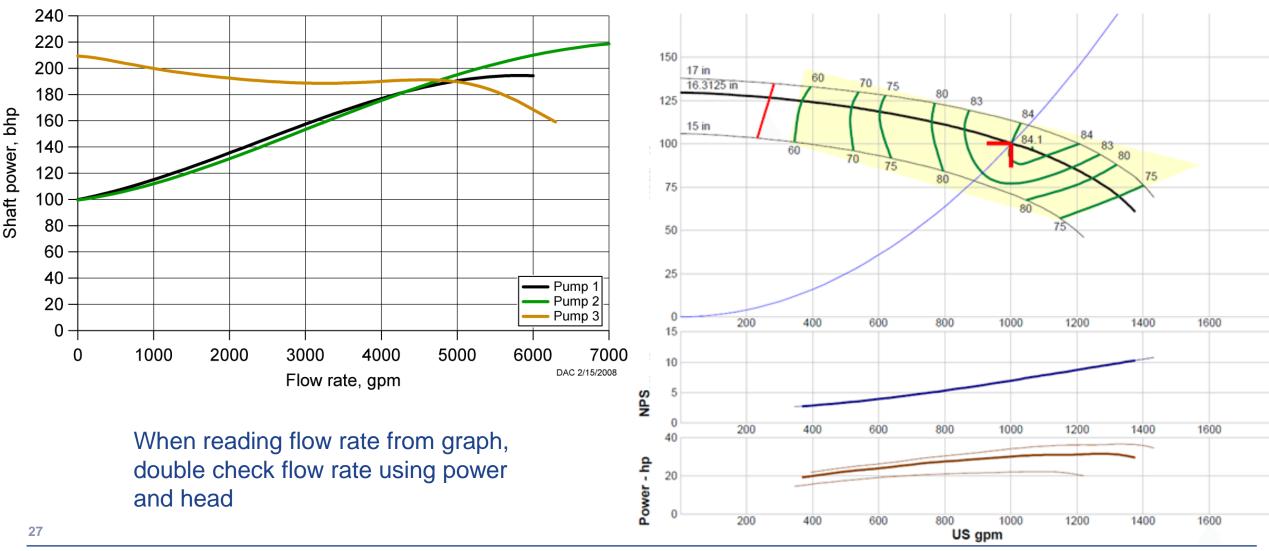

Knowing the system and pump curves can help optimize the flow though a pumping system

25

Pump performance characteristics

Identifying the right pump curve requires knowing the following

- Manufacturer
- Model Number
- Diameter of impeller
- Associated motor system

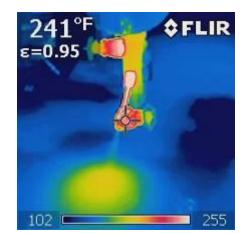

In addition to head, pump curves are also drawn against

- Shaft power
- Efficiency
- Net positive suction head required (NPSHR)

Reading Flow from power curves

U.S. DEPARTMENT OF

C


EN

Steam Leaks

- Steam leaks occur everywhere but most common places are:
 - Flanges and gasketed joints
 - Pipe fittings
 - Valves, Stems and packings
 - Steam traps
 - Relief valves
 - Pipe failures, etc.
- An "order of magnitude" steam loss estimate can provide enough information to determine if the repair must be made immediately, during a future shutdown, or online
- Pipe failures (steam leaks) often present a "safety issue" that demands immediate attention

Steam Leaks

Orifice			Le	ak Rate	[lb/hr]				
Diameter	Steam Supply Pressure [psig]								
[inch]	20	50	100	150	300	400	500		
1/16	3	6	11	16	30	39	49		
1/8	13	25	43	62	119	157	195		
3/16	30	55	98	140	268	353	439		
1/4	53	98	174	249	477	628	780		
5/16	82	153	271	390	745	981	1,218		
3/8	118	221	391	561	1,073	1,413	1,754		
7/16	161	300	532	764	1,460	1,924	2,388		
1/2	210	392	695	998	1,907	2,513	3,118		
	3	18	43	68	143	193	243		
		[Discharg	e Pressi	ure [psig]				
Discharge coeffic	cient	0.6	dimensic	onless					

Third party Tools - Steam Trap Loss Calculator

- The calculator will give you the cost of steam losses associated with a failed trap.
- Leak rate calculated from size of orifice and pressure

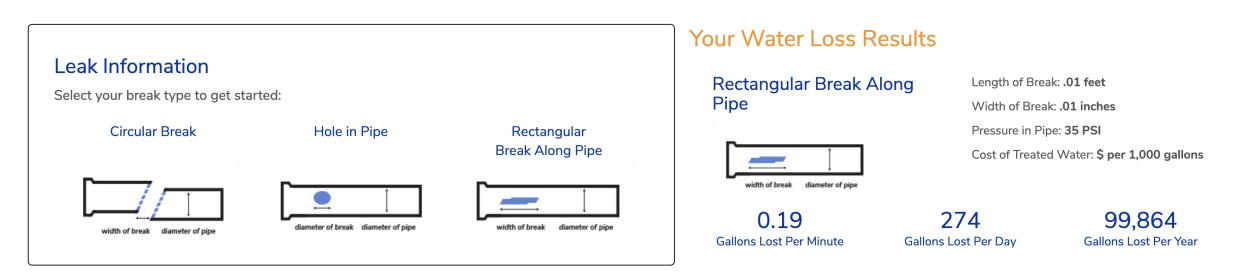
STEAM LOSS THROUGH A FAILED TRAP

All too often, steam traps are selected and installed, only to be forgotten. All steam traps fail with time. On average, plants without a regularly scheduled maintenance program experience failure in about 15-25 percent of their traps at any given time.

When failed traps are ignored, hundreds to thousands of dollars worth of steam can be wasted. The following calculator will give you the cost of steam losses associated with a failed trap

Inlet Pressure (psig)	100	
Outlet Pressure (psig)	50	
Orifice diameter	1/16"	
Application	Coil/Process	
Reset	CALCULATE	

- 7 pounds/hour
- 61320 pounds/year
- \$307/year

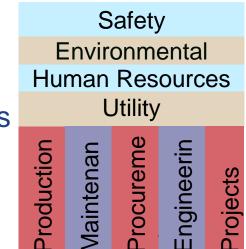


Third party Tools - Water Leak

Water cost calculator tool to show how much water and cost associated with a leak

Leak rate calculated from size of leak and pressure

Water Leak Calculator



U.S. DEPARTMENT OF

Treasure Hunt – Best Practices

- Include participants from across all operations and from outside the host facility
- Operational opportunities can be ideally identified when facility is ideal. Treasure hunts should ideally start on Sundays which typically a non-production day for many facilities
- Target 3 teams of 5 participants, select focus areas based on your facility
- Energy and water treasure hunts can be done together
- Have an effective follow through
 - Have a closing meeting with all stakeholders including management
 - Assign specific tasks to people

Presenting the Results

- Present results in the language of the management
 - Tie it to facility/ organizational priorities
- Include next steps for each measure
- Include the best practices that you found along with opportunities
- Keep it brief and visual

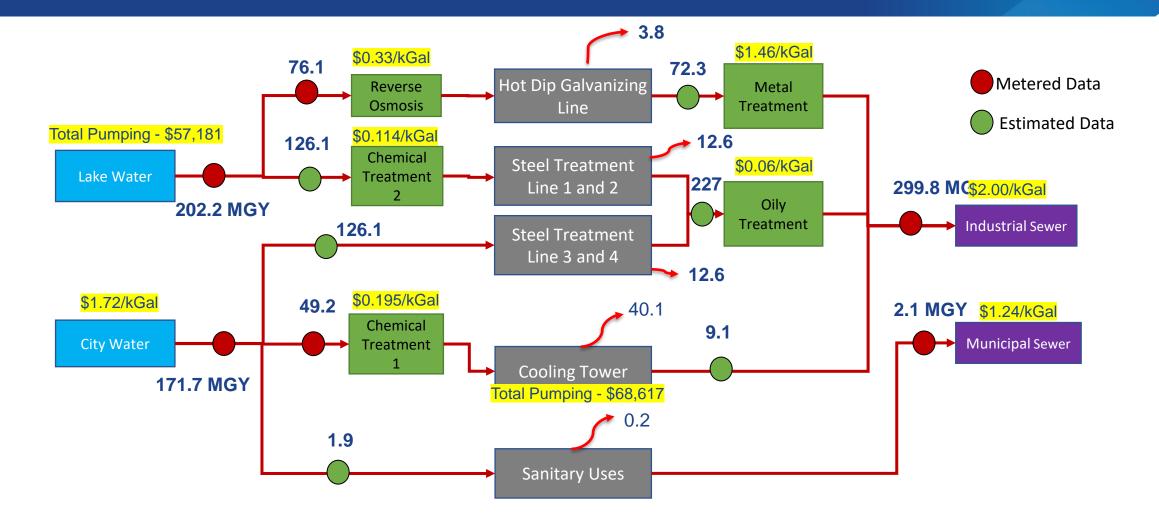
Closeout presentations helps make immediate discissions and identify steps of actions

Example Presentation

Best Practices

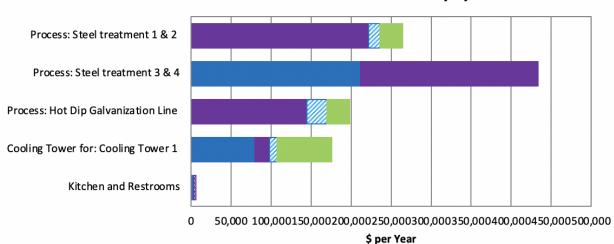
Water flow Metering

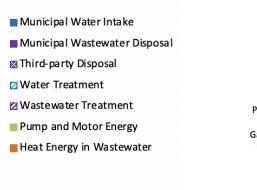
Recirculation System

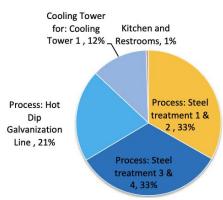


High Cycles on Tower

Plant Water Flows




Assessment Results - True Cost of Water


Annual Water Use and Cost Summary by System

Water-Using System	Source Water Intake	Gross Water Use	Direct Co	osts	True Cost of	Water*	True Cost/Direct
	Million Gall	on per Year	\$/Year	\$/kGal	\$/Year	\$/kGal	Cost
Process: Steel treatment 1 & 2	123.19	123.19	\$ 221,742 \$	1,800 \$	264,376 \$	2,146	1.192
Process: Steel treatment 3 & 4	123.19	123.19	\$ 433,629 \$	3,520 \$	433,629 \$	3,520	1.0
Process: Hot Dip Galvanization Line	76.1	76.1	\$ 144,590 \$	1,900 \$	198,293 \$	2,606	1.371
Cooling Tower for: Cooling Tower 1	46.4	4,727.131	\$ 98,008 \$	2,112 \$	175,673 \$	3,786	1.792
Kitchen and Restrooms	1.916	1.916	\$ 5,672 \$	2,960 \$	5,672 \$	2,960	1.0
PLANT TOTAL	370.796	5,051.527	\$ 903,641 \$	2,437 \$	1,077,644 \$	2,906	1.193

True Cost of Water by System

Percent Source Water Intake by System

Water Assessment – Key Conclusions

- Metering production water will help understand water flows better
- Water used in steel treatment is most expensive
- RO brine water needs to be investigated
- Pumping energy and recirculation can be reduced with better controls

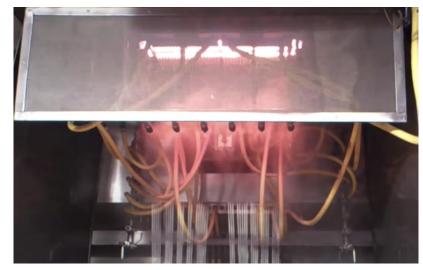
Water Savings Opportunity

- Water Treasure Hunt approach to find savings
- Two teams where formed to identify opportunities
 - Team 1 Production
 - Team 2 Facility

Reduce Number of Spray Nozzles per Position

It was observed that majority of nozzles spraying water at the end of positions lack contact with the glass

Opportunity:


40 MGY used in forming tunnels (from sub metering) 90% of water used in forming is from nozzle spraying (from water balance)

Water used in nozzles = 36 MGY (90% of 40 MGY)

20% reduction of nozzles can be reduced (1 per position) – by comparing it to industry standards

True cost of water = \$3.5 /kgal

Potential Cost Savings = \$27,527

Automated water nozzles

Low Flow Nozzles for Wash Bay

- The wash bay uses warm pressurized water for cleaning
- The flow through the nozzle is determined to be 3GPM
- Using Low flow nozzles this can be cut down by half

Reduction in Water = 1.06 MGY Estimated Cost savings = \$12,000 Implementation Cost = \$100 Payback = Immediate

Additional Water Savings Opportunity

- Splash out around dip stands
- Cooling Tower replacement
- Use wireless meters to evaluate leaks, drains left open etc.

National Alliance for Water Innovation (NAWI)

Public-private partnership supported by the United States Department of Energy (DOE)

Peter Fiske

Peter S. Fiske is the founder and Executive Director of NAWI and the Director of the Water-Energy Resilience Research Institute (WERRI) at Lawrence Berkeley National Laboratory.

Prior to joining Berkeley Lab, Fiske was the Chief Executive Officer of PAX Water Technologies, Inc. PAX Water pioneered the use of biomimicry to develop innovative and energy-efficient technologies for the water industry.

Fiske has also led research team at Lawrence Livermore National Laboratory and holds Ph.D. from Stanford University and an M.B.A. from the Haas School of Business at the University of California at Berkeley.

Prepare summary slides for next weeks wrap-up presentation

1 on 1 calls can be setup anytime this week to help with finalizing water baselining, determining true cost ,quantifying savings from projects etc.

Meeting Goal: Review opportunities from walkthrough and identify projects to pursue further

List of all opportunities identified and separate them in two categories

- 1. Most promising opportunities identified
 - What additional data is needed to quantify savings
 - Cost and payback of each measure.
 - Make a slide for management presentation
- 2. Additional opportunities that may require large capital expenditures, or opportunities that require more analysis and should be completed later.

Thank You all for attending today's webinar. See you all on next Tuesday – July 9th, 2024 – 10 am ET If you have specific questions, please stay online and we will try and answer them. Alternately, you can email questions to me at

