

In-Plant Trainings

Virtual Platform Session 3 – Controls

1111/1/1

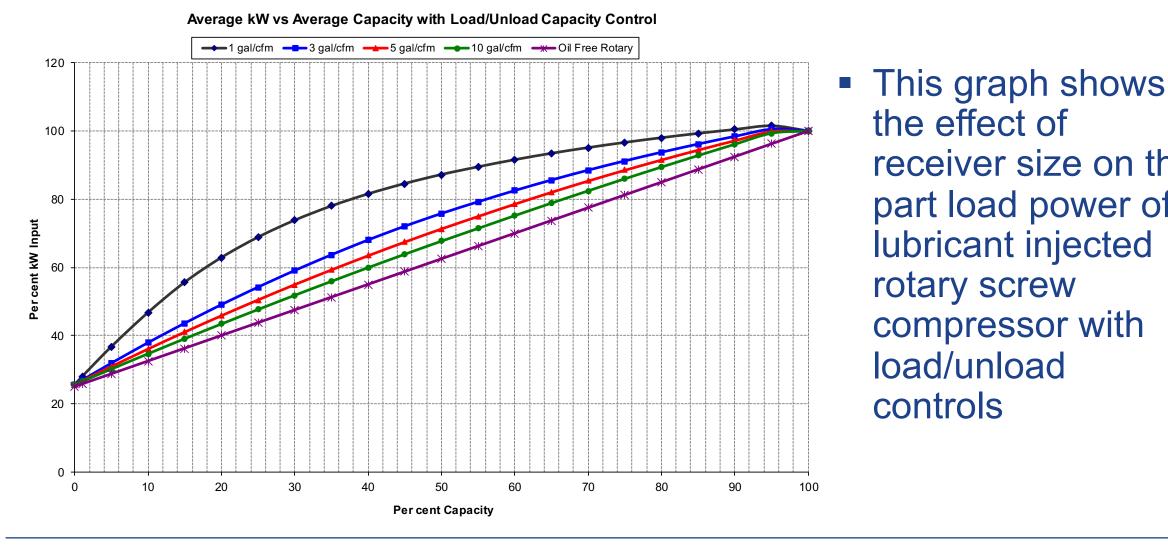
- What's the compression ratio of the single stage compressor below?
 - 13.5 psia inlet pressure
 - 113.5 discharge pressure
- Is discharge pressure psig or psia? If it is psig (assuming 1 atm=13.5 psi), $\frac{113.5gauge+13.5}{13.5a} = 9.4$ If it is psia, $\frac{113.5}{13.5} = 8.4$

- How can we find the compressor discharge pressure?
- I'd like to get feedback regarding dry air storage system in my facility. I have some doubts, that it is efficient. As for me, majority of air is going to consumers via two bypasses. If my thoughts are correct, do we need to keep all 6 dry tanks?
- How to calculate right size of dry (or wet tank)
- What material is best for compressed air lines copper, steel, etc.?
- Pressure settings on Gardner Denver screw compressor –Robert Barrier
- Baseline unit for continuous operation, can these be on VFDs?

- How do you know when you need additional wet or dry storage?
- How much moisture should an air dryer handle?
- Currently looking at installing another compressor in facility; question being which kind would be best for the space.
- Along with that; does it make sense to add a volume tank on the other side of the facility.
- What advantages do flow controllers have over the life of your compressor? Any situations when a controller would not help your overall system?

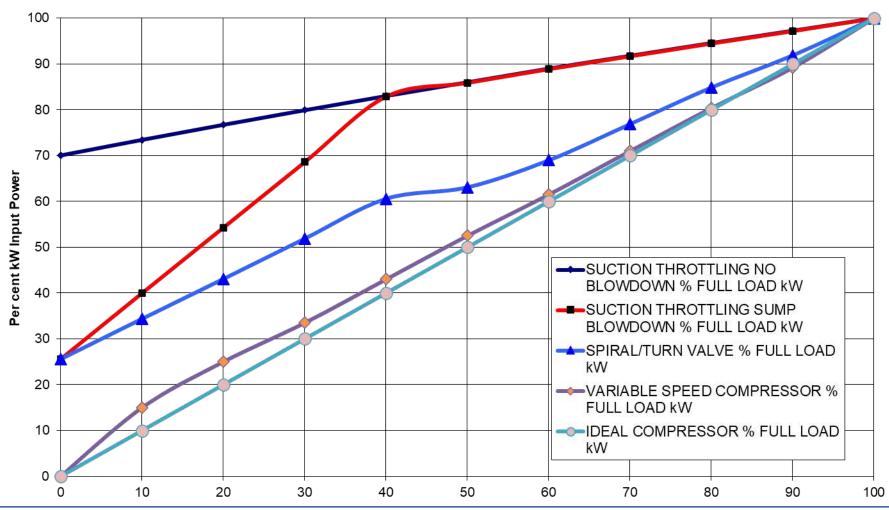
- With the compressors in our mill, 2x centrifugal and 2x rotary screw, what would be the best operating strategy you would recommend? Run two centrifugal and trim with the rotary screw load/unloading? I can't seem to make the required ~7,000 CFM with the two centrifugals.
- How can I accurately measure the flow rate coming off the centrifugal compressors when there is less than 10 feet straight run of pipe after the compressor?
- what would be a good Kw/100CFM to aim for?
- During months with higher humidity, we have to leave the blowdown valves cracked open in order to keep the compressors from accumulating significant amounts of condensate. How could we reduce the amount of condensation without wasting air.

What are some determining factors on what works best to transport the air from the Air Compressor System to the End Users? For example, what type of piping is ideal?


Name: Matt Kanuch Company: Bendix

2. List your questions about the compressors in your facilities. We have two rotary screw compressors, A VSD and a LOAD/UNLOAD. If our facility can be run off one 80-90% of the time, which type would you use as the lead compressor?

Load/No-load Control Curve


the effect of receiver size on the part load power of a lubricant injected rotary screw compressor with load/unload controls

Performance Curves

Various Compressor Control Performance Curves

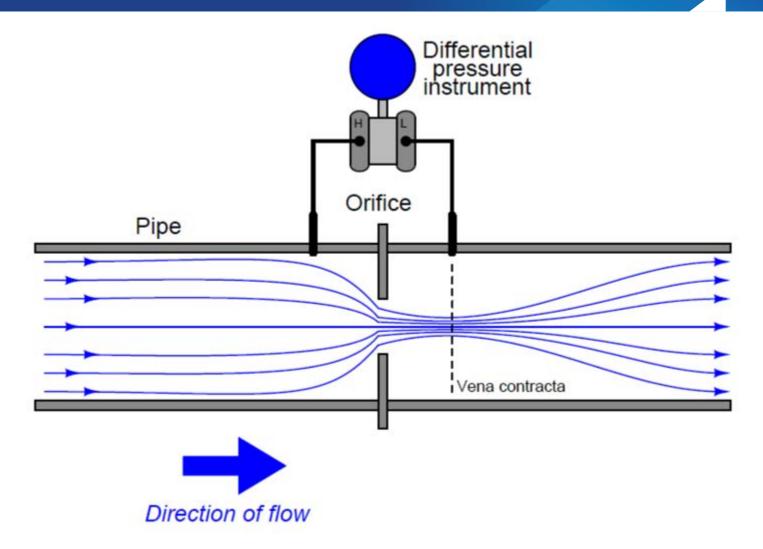
Per cent Capacity (Flow Out)

Quick Review on Flowmeters

Types of Meters - Comparisons

Better Plants

				\leftrightarrow			
	Thermal	Vortex	DP – Orifice plate	DP – Insertion	Coriolis	Turbine/ rotary displacement	Clamp on ultrason ic
Mass flow	Yes	Optional	Optional	Optional	Yes	Optional	Optional
Meter run	20D	15D	15D	20D	0D	10D	20D
Pressure loss	Low	Medium/hig h	high	Low	Low	Low	Low
Dirty air	Fouling	OK	Clogging	Fouling/Clog	Internal fouling	Faillure	OK
Wet Air	Spikes	OK, spikes	OK	OK, orientation	Yes, but affects reading	Faillure	Spikes
Range	1:250	1:10	1:10	1:10	1:100	1:100	1:100
Accuracy	2%	2%	2%	2%	0.5 1%	0.51 %	1%
Purchase price	\$	\$	\$	\$S	\$\$\$\$	\$\$	\$\$\$
Maintenance	Medium	Low	Medium	Medium	Low	High	Low

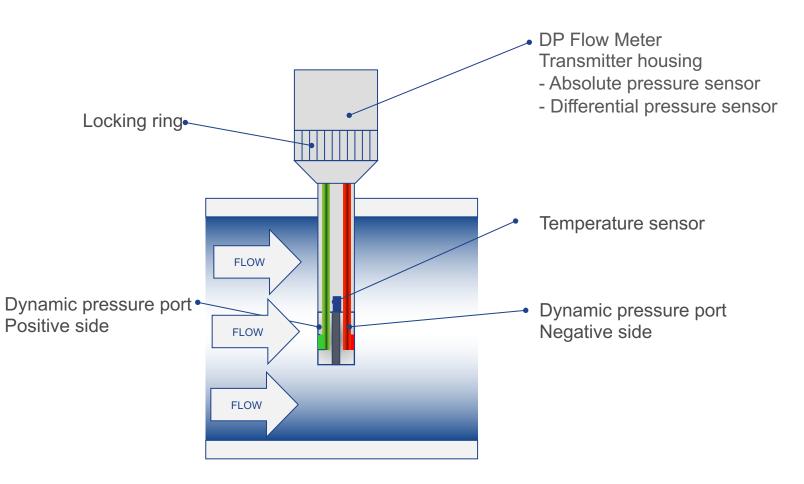


Orifice Plate Flow Meters

These meters are another carry over from fluid engineering.

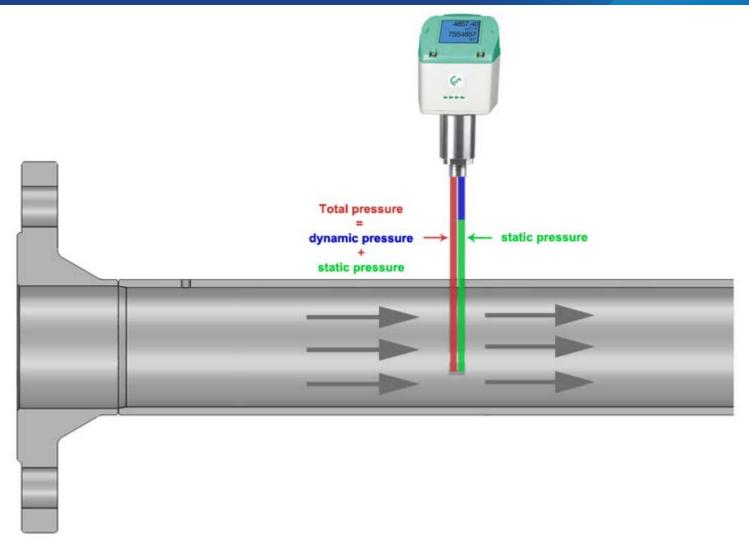
They operate on the physics of a pressure drop being created as a medium flows through an orifice.

The problem with these meters is just that; they, themselves are a pressure drop.



Differential Pressure Technology

- Speed of air creates differential pressure signal over the positive and negative port.
- Low speeds do not generate a stable Dif. Pressure.



Differential Pressure Technology

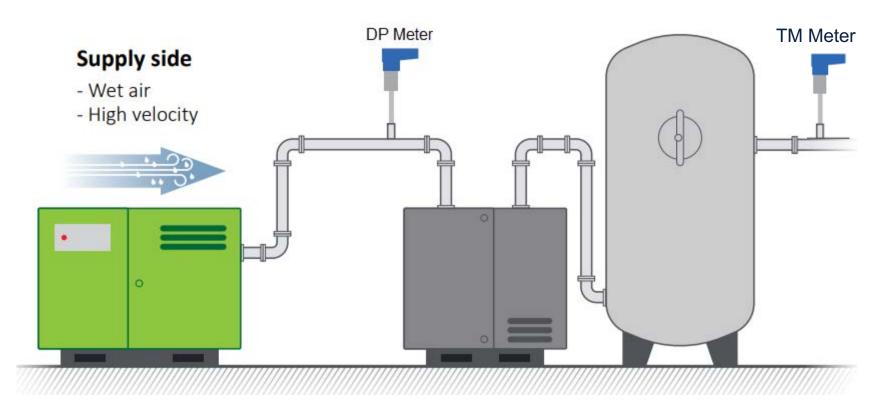
- Unique sensitivity in the lower measuring range: Measures from as little as 2 m/s and thus covers the complete operating range of variable speed drive (VSD) compressors
- Particularly suitable for extremely high flow rates
- Flow, total consumption, temperature and pressure
- Measurement at high temperatures, max. temperature 180 °C
- Installation via 1/2" ball valve under pressure.

Min and Max Flow per Pipe Size

- DP flow meters have a min and max flow range. Below the minimum range the flow meter will read flaky or no flow, we call this the dead zone, 0 to 20 m/sec (0 to 65 ft/sec).
- In different pipe sizes this dead zone will have a different Q min, see the tables below.

Schedule 40 Standard Seamless Carbon Steel Pipe						Schedule 10 Standard Seamless Carbon Steel Pipe							
Size (inch)	DN	ID (inch)	ID (mm)	Min flow (scfm)	Max flow (scfm)	Min flow (m³₁/hr)	Max flow (m ³ n/hr)	ID (inch)	ID (mm)	Min flow (scfm)	Max flow (scfm)	Min flow (m³₀/hr)	Max fla (m³"/h
2	50	2,1	52,5	92	917	156	1559	2,2	54,8	100	999	170	1697
3	80	3,1	77,9	202	2021	343	3434	3,3	82,8	228	2282	388	3877
4	100	4,0	102,3	348	3481	591	5913	4,3	108,2	390	3897	662	6621
6	150	6,1	154,1	790	7899	1342	13420	6,4	161,5	868	8678	1474	14743
8	200	8,0	202,7	1368	13678	2324	23238	8,3	211,6	1490	14897	2531	25309
10	250	10,2	259,1	2234	22341	3796	37957	10,4	264,7	2332	23316	3961	39612
12	300	11,9	303,2	3060	30604	5199	51994	12,4	314,7	3296	32965	5601	56006
16	400	15,0	381,0	4832	48316	8209	82087	15,6	396,8	5242	52420	8906	89058
20	500	18,8	477,8	7599	75994	12911	129110	19,6	496,9	8219	82191	13964	13963

Flow Meter Location


Picture	Description	Upstream length ²	Downstream length ²	Effect
	Single elbow	30 * D1	10 * D1	Distorted flow profile
	Complex feed-in situation (header)	40 * D1	10 * D1	Flow profile will be distorted
	Double elbow, multiple elbows following each other	40 * D1	10 * D1	Distorted profile + swirl
	Diameter change from small to large (gradual or instant)	40 * D1	5 *D1	Jet shaped flow
	Diameter change from large to small (gradual change, between 7 and 15 degrees)	10 * D1	5 * D1	Flattened flow profile

DP Insertion Flow Meters

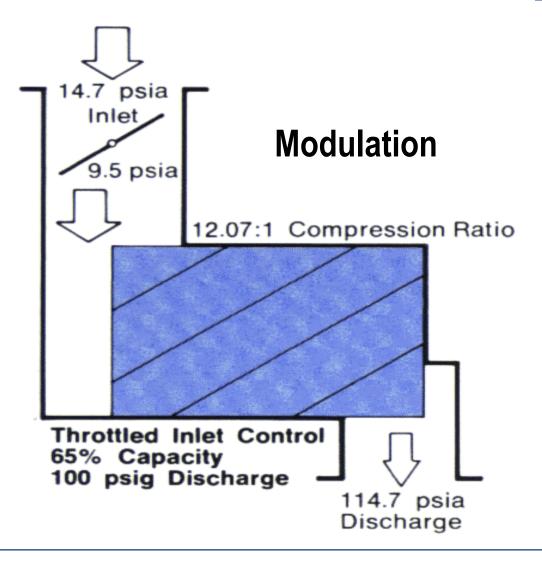
- Insertion style Differential Pressure meter for saturated compressed air flow measurements.
- A differential pressure flow sensor measures bidirectional flow, pressure, temperature and total flow simultaneously.
- They are intended for use in high velocity applications where there is a continuous flow over a minimum value, such as compressor efficiency monitoring.

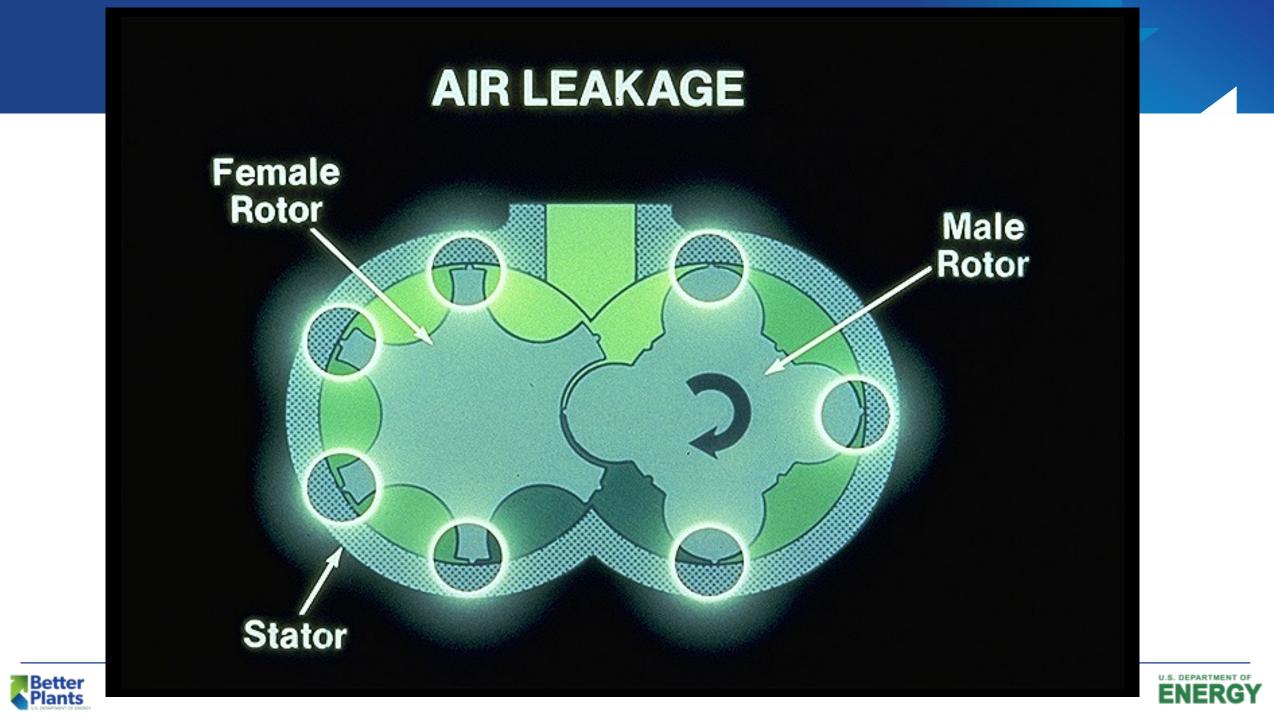
Compressor Controls



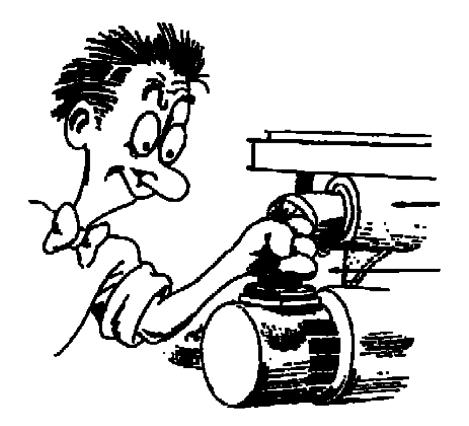
Compressor Control Types

- Start/Stop
- Load/Unload
- Modulating
- Variable Displacement
- Variable Speed





Inlet Throttling

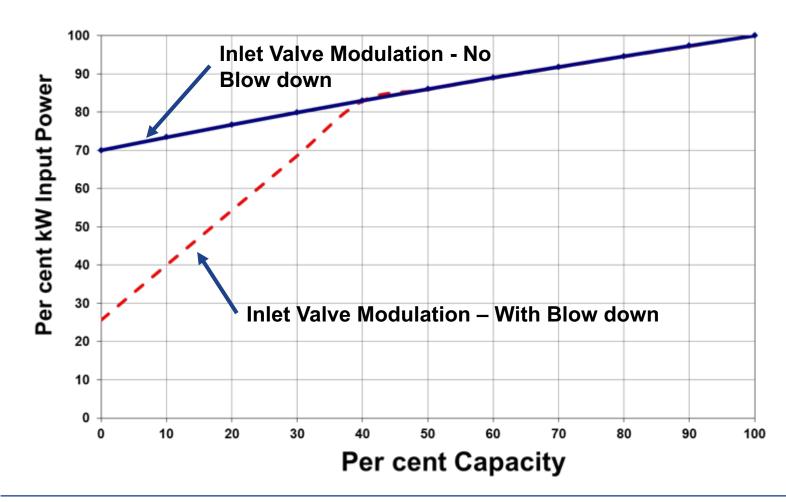


Capacity Control by Inlet Throttling



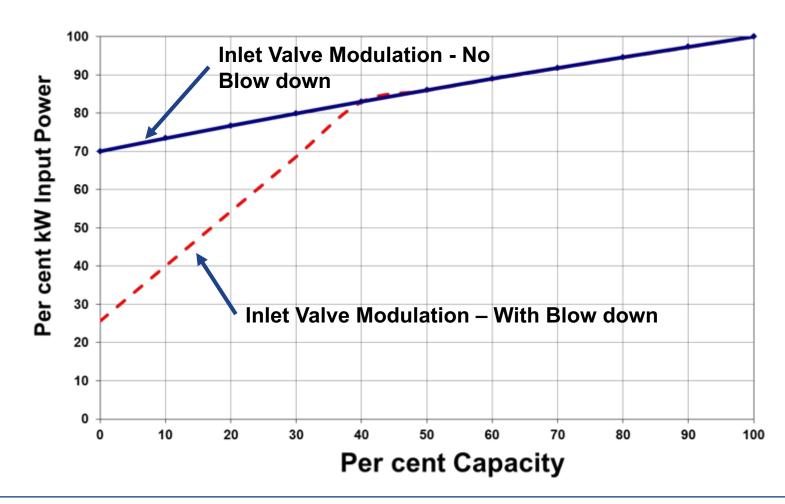
- Atmospheric pressure 14.7 psia
- Intake pressure 9.0 psia
- Discharge pressure 114.7
- Compression ratio: 114.7/9.0 = 12.7 to 1
- End Result?? Increased internal leakage due to a higher compression ratio

Capacity Control by Inlet Throttling



- Varies capacity by throttling (restricting) the inlet flow
- Provides a relatively stable output pressure
- Energy hog... least efficient
- Every 10% reduction in capacity yields only a 3% reduction in power(BHP)
- At zero capacity, power remains at 70% of full load power

Inlet Valve Modulation



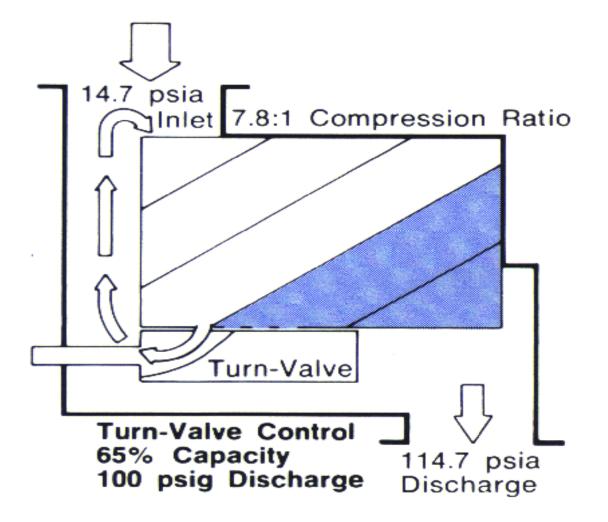
- The example shows a discharge pressure range of 100 - 110 psig.
- As discharge pressure rises from 100 to 110 psig, a proportional pressure regulator provides a control pressure from 0 - 30 psig, to progressively close the inlet valve.
- As the inlet valve closes, the absolute pressure at the inlet of the air end is reduced.

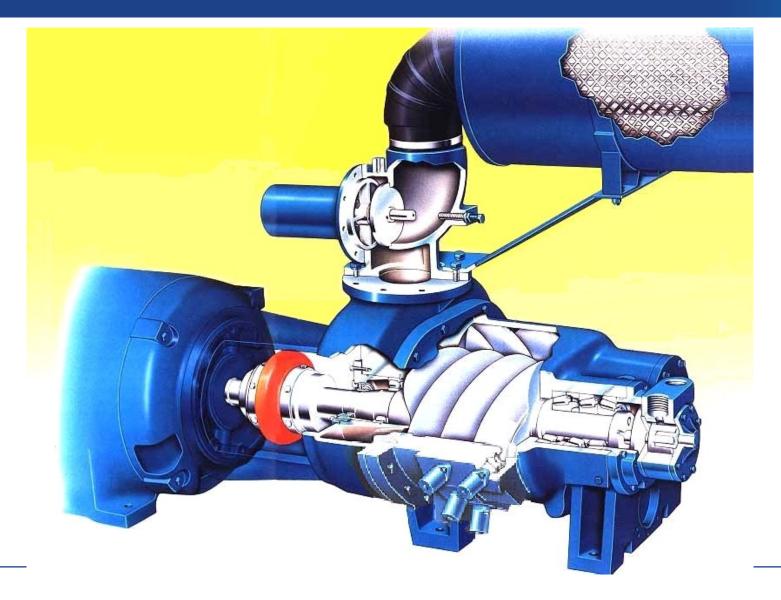
Inlet Valve Modulation

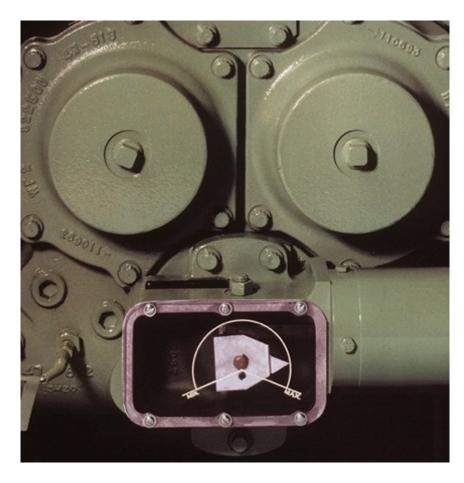
- This reduces the mass flow of air entering the air end in direct proportion to the absolute pressure.
- However, the reduced inlet pressure, with increasing discharge pressure, results in increasing pressure ratio.
- At 40% capacity the pressure ratio will be 124.7/5.88 = 21.21.
- This is why there is not much reduction in the power requirement.



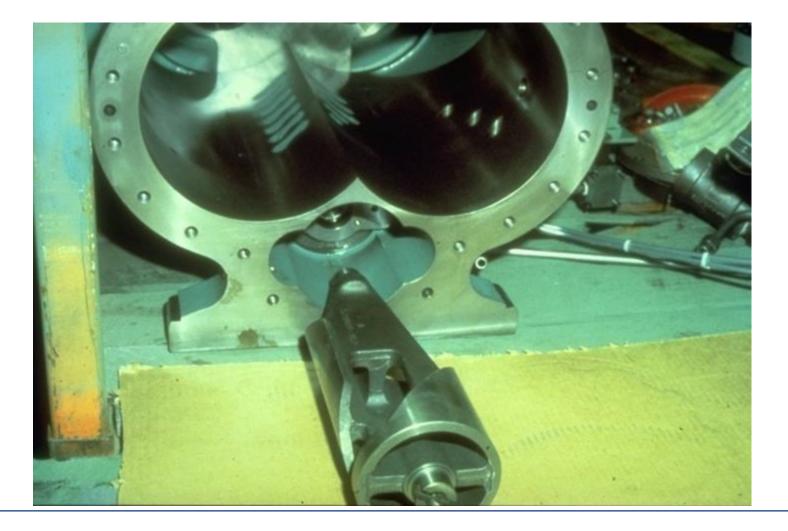
- Valves progressively opens ports connecting the compression chamber back to the compressor intake in response to rising discharge pressure. This allows some of the intake air to be returned to the compressor inlet before it gets compressed and uses power
- This progressive opening of by-pass ports has the effect of shortening the length of the rotors after the lobes seal without choking the intake and increasing the compression ratio



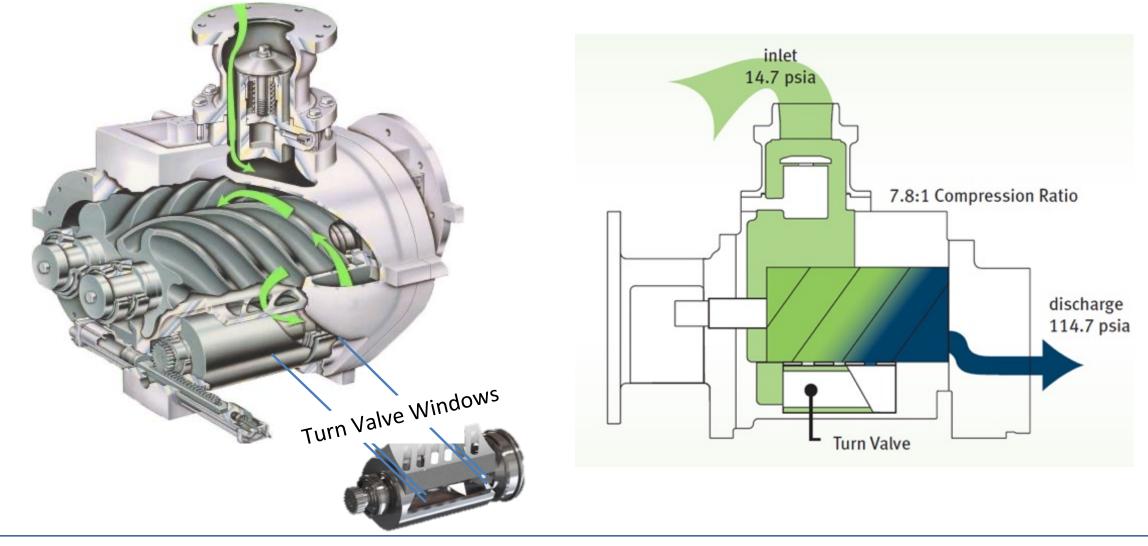


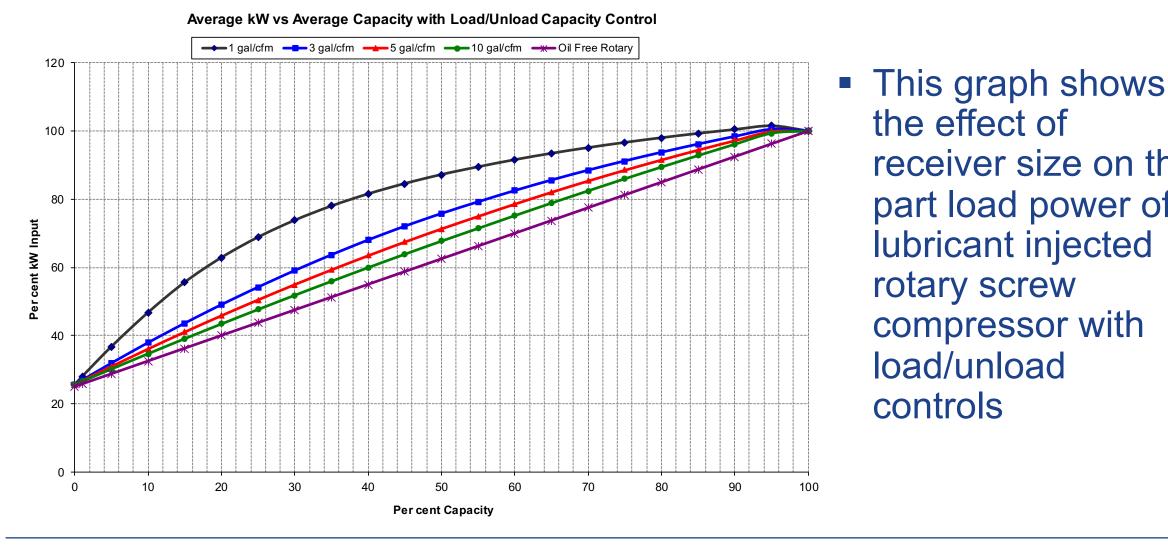


Original Version



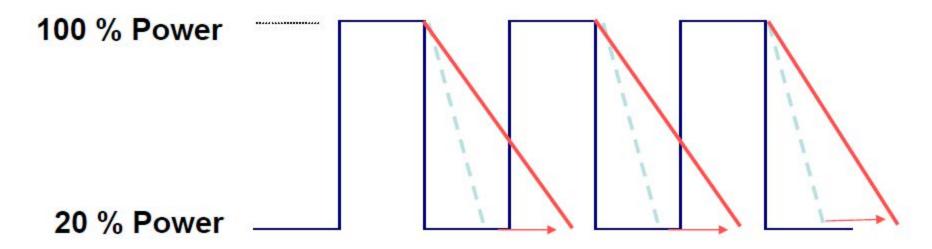
- UP TO 55% TURN DOWN


GY

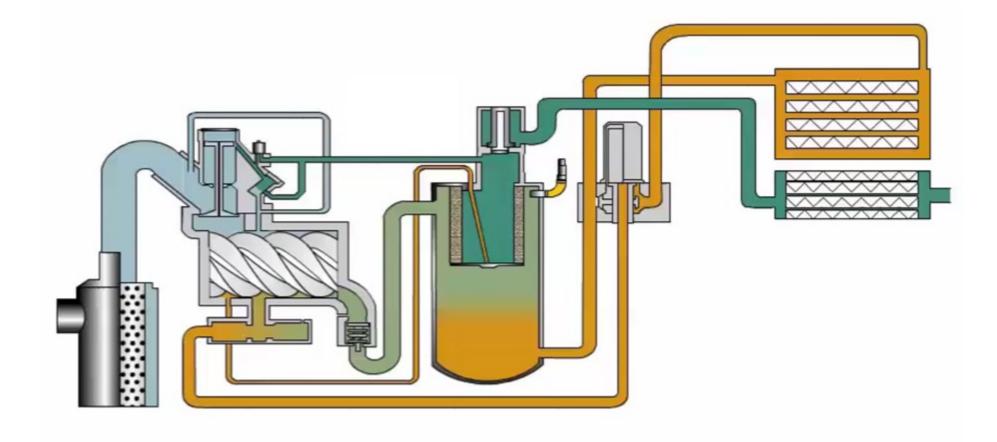


Load/No-load Control Curve

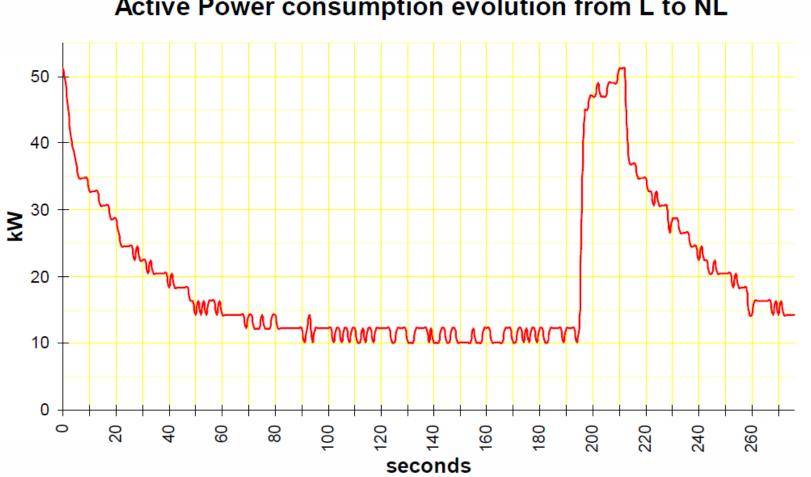
the effect of receiver size on the part load power of a lubricant injected rotary screw compressor with load/unload controls

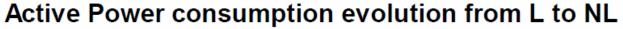

Load/Unload and Storage Size

- It is falsely assumed that a straight line, from full load bhp to unloaded bhp, represents the actual power requirement in this mode of operation.
- Sump blow down times will vary by machine size, but typically this takes in the range of 20 to 60 seconds to prevent foaming of the lubricant with the potential of excessive lubricant carry-over.
- In many cases, the system pressure will fall and the compressor will re-load before the fully unloaded power is realized.

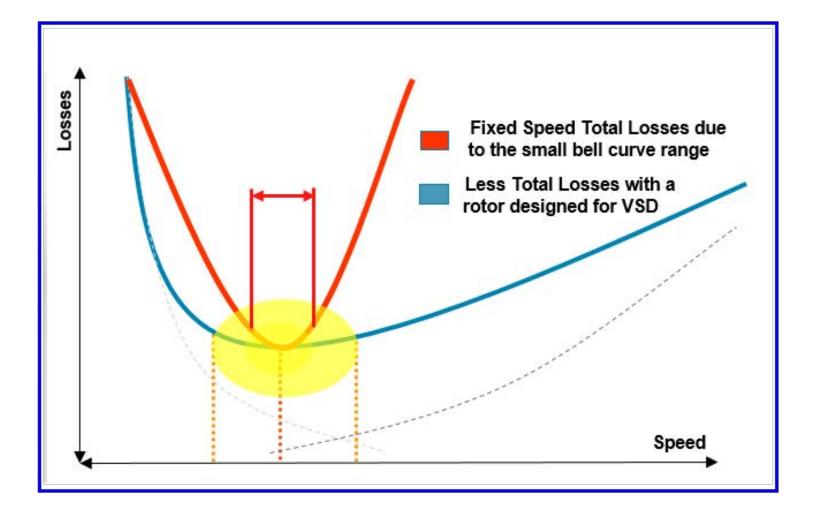

Capacity Control by Load/No-Load

- During blow-off, the compressor is still running against significant back pressure and consuming a lot of power
- Bigger sump vessels lead to longer blow-off times and more energy consumption



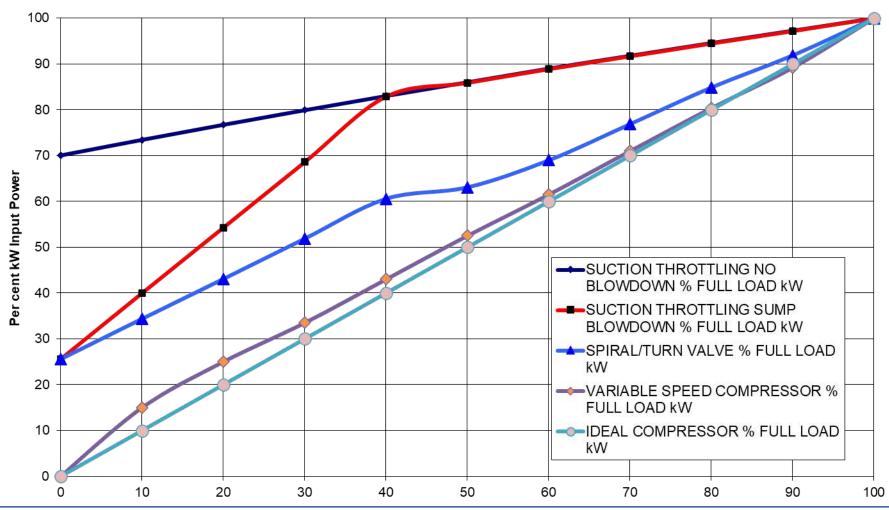


Capacity Control by Load/No-Load



- Efficient means of rotary compressor capacity control,
- Integrated variable frequency AC or
- Switched reluctance DC drives.
- Compressor discharge pressure can be held to within +/- 1
- In order to provide efficient VSD regulation over the complete range of the customer's air profile, the VSD operational flow from min to max, needs to be sized so it will always be in its turndown range.

Variable Speed



Performance Curves

Various Compressor Control Performance Curves

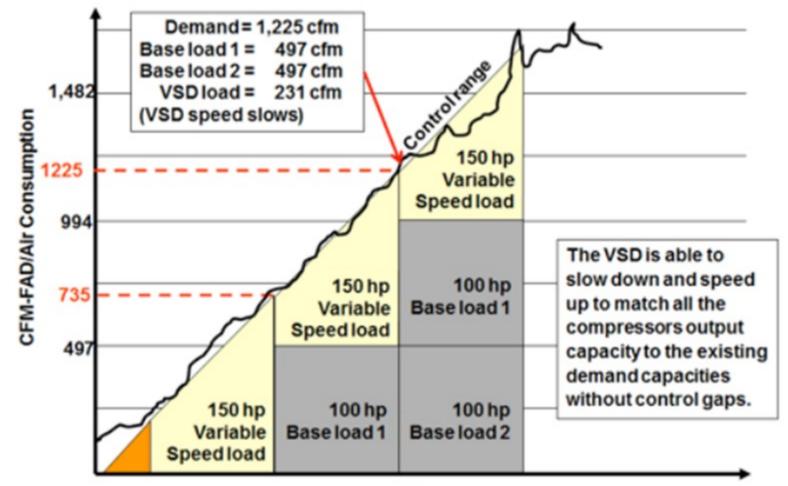
Per cent Capacity (Flow Out)

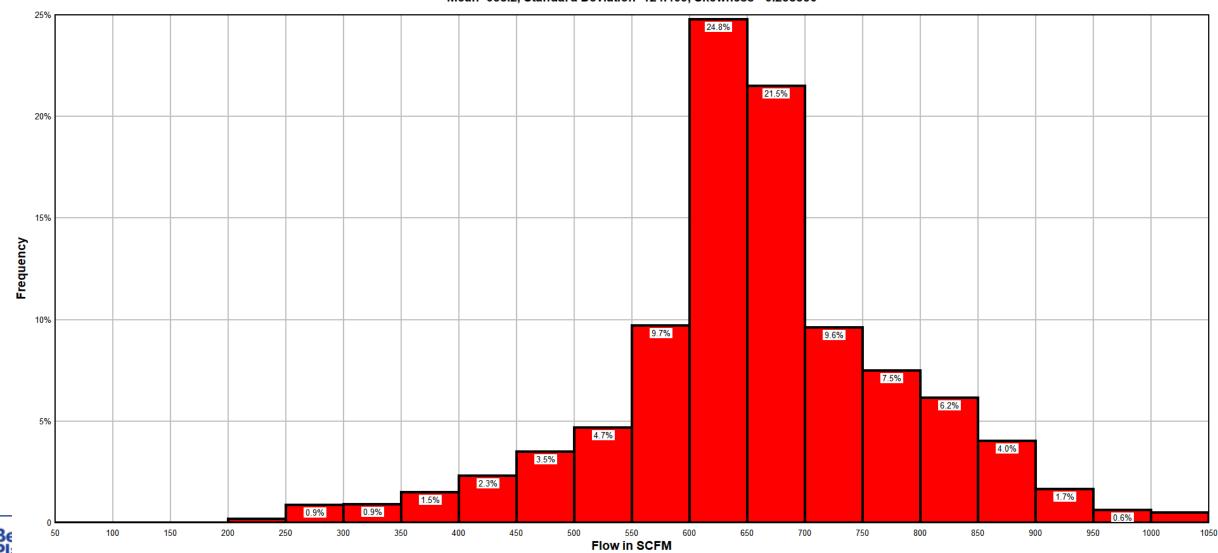
- The most common VSD is the variable frequency drive, which converts 60 Hz alternating current to direct current and then reconverts it to the proper frequency required to turn the drive motor at the desired speed.
- The variable frequency drive is less efficient at full load compared to modulation controls because the electrical conversions usually consume an additional two to four percent more energy.



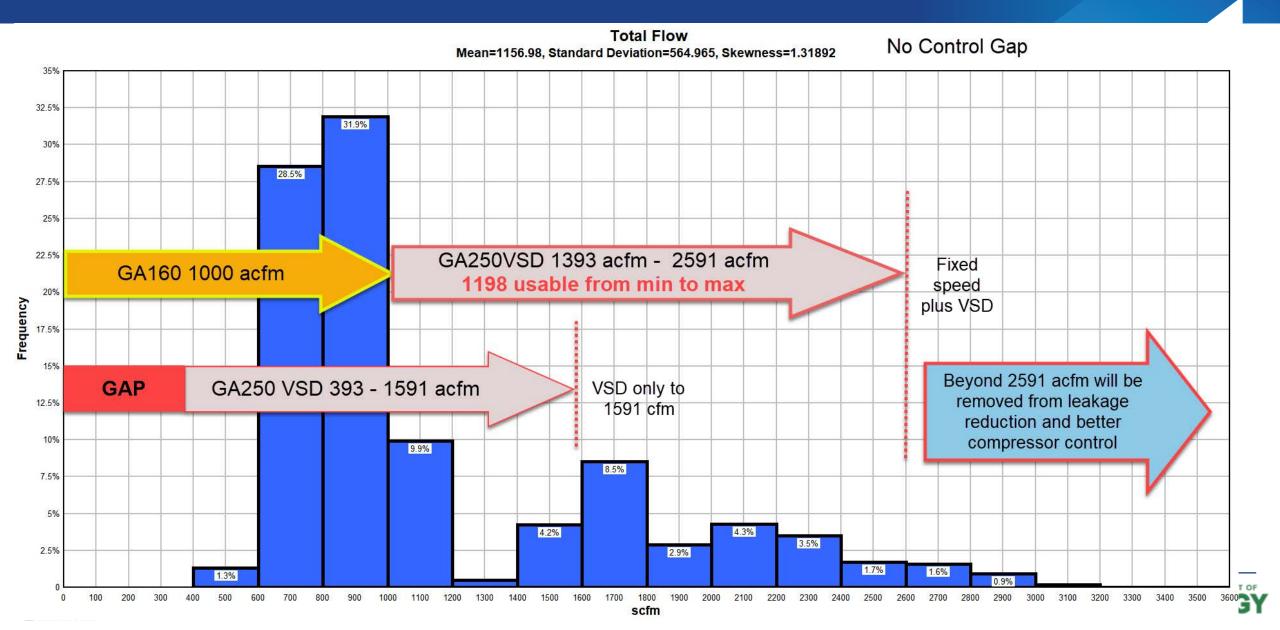
- VSD (variable speed drive) and VFD (variable frequency drive) are used interchangeably
- VFD is only one of the VSD technologies available.

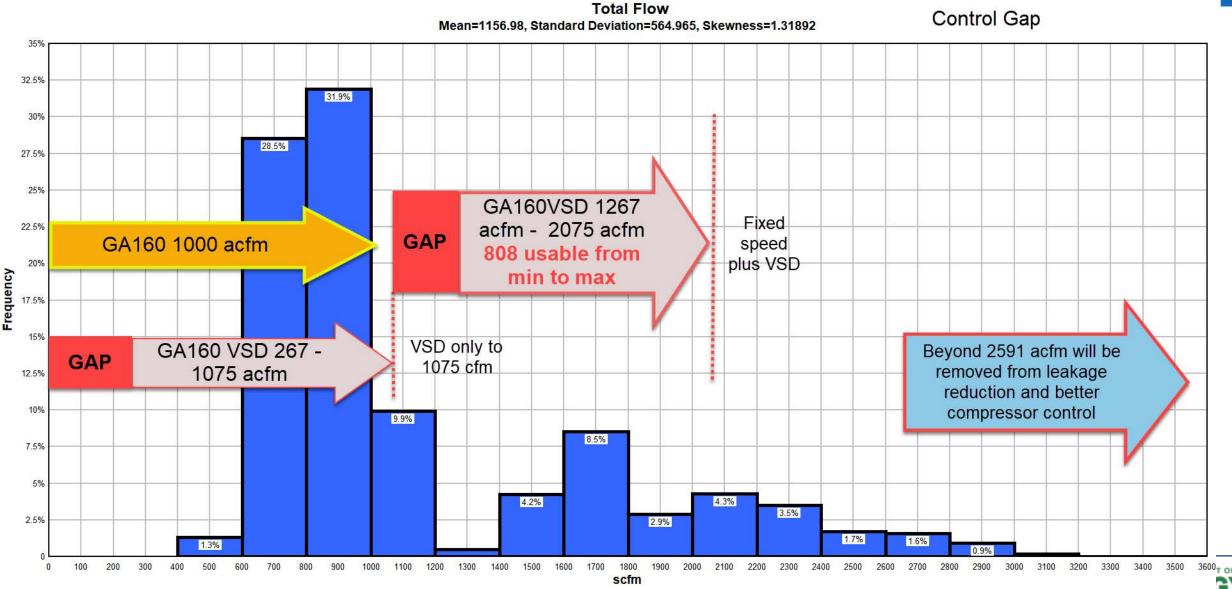
 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the range of the VSD from min to max needs to be sized greater than the load/no load machine

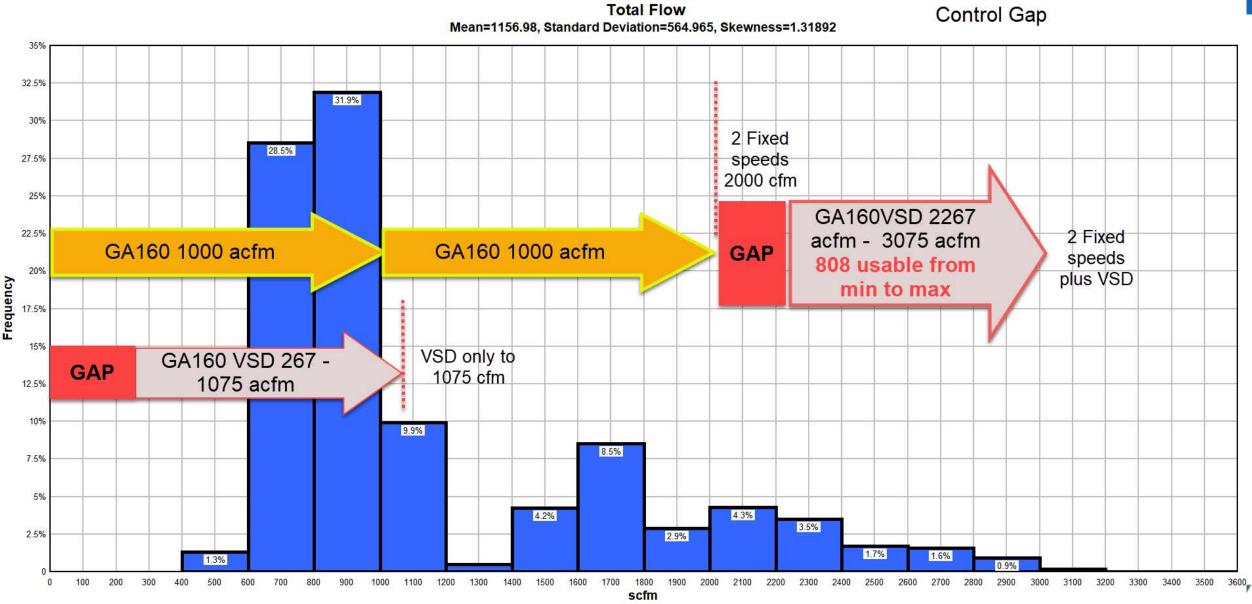



Variable Speed Compressors and Control Gap

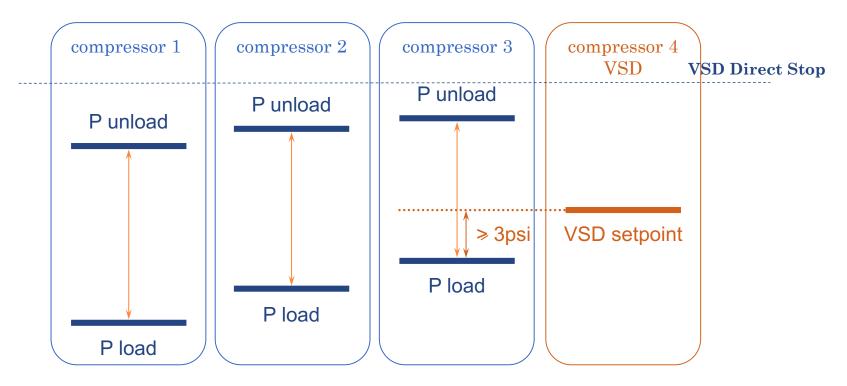
This system can provide a steady operating pressure throughout the flow range of the system as long as the system is properly controlled with a master controller.







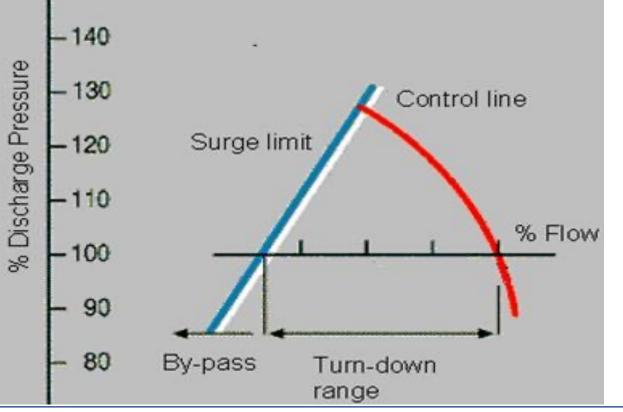
Flow Histogram Mean=658.2, Standard Deviation=124.469, Skewness=-0.238556


Plants

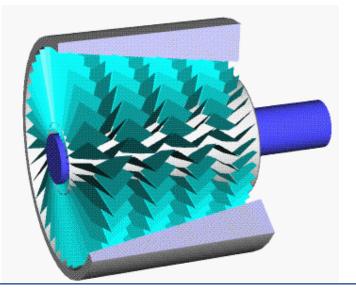
U.S. DERMITMENT OF ENERG

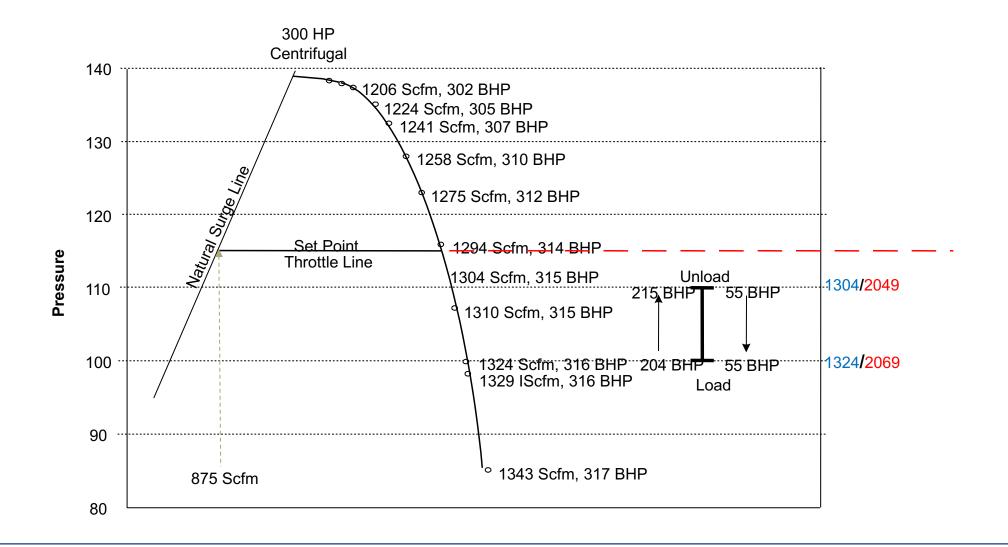
Control Gap and Position

 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the cfm of the VSD needs to be greater than the load/no load machine

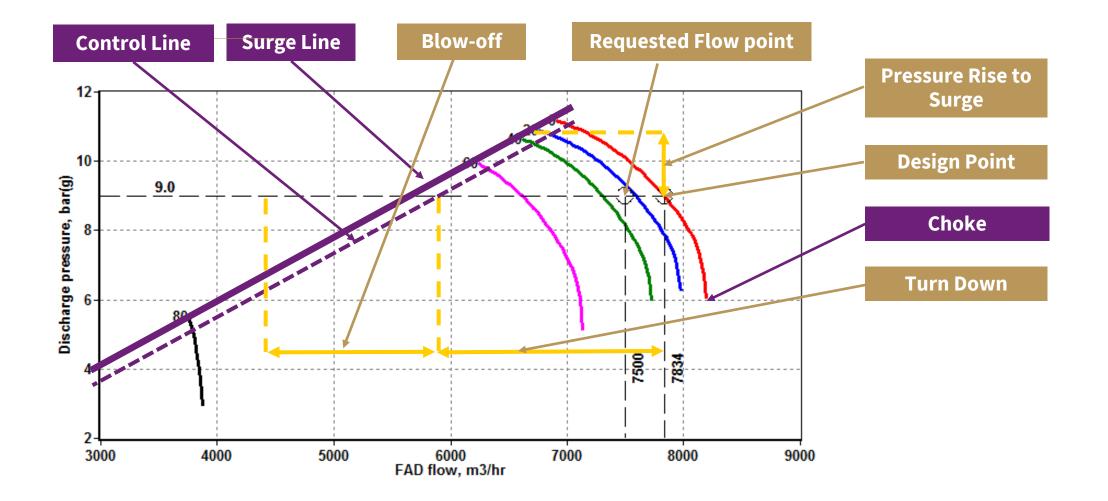

Centrifugal Compressor Control

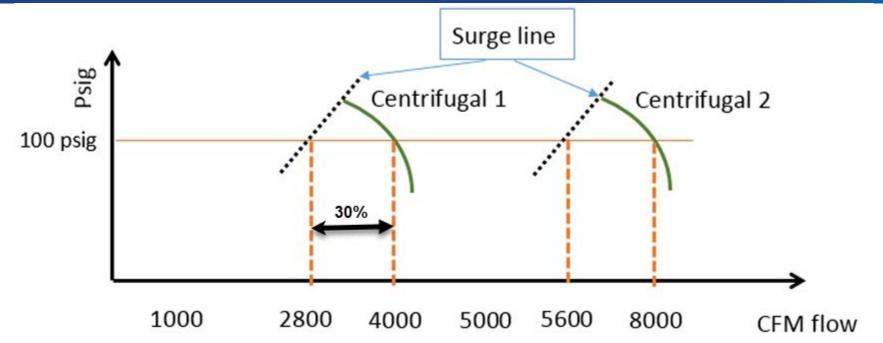
- Performance is affected by inlet conditions and cooling water temperature
- Characteristic curve is determined by impeller design
- Two conditions should be avoided:
 - Surge (flow reversal)
 - Choke (excessive flow vs. frame design)
- Inlet throttle valves modulate the compressor to reduced flow and power but are limited by surge condition
- Blow-off valves control capacity below throttling limit



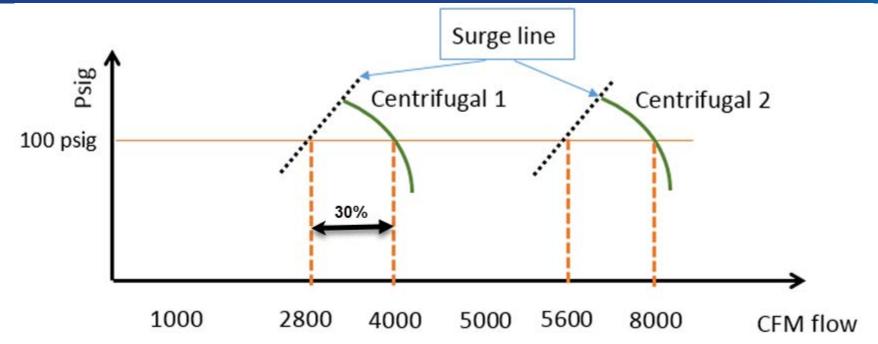


Building the Profile

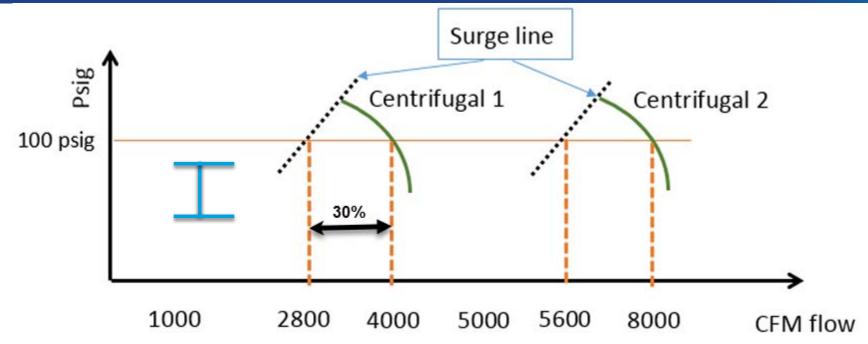



46

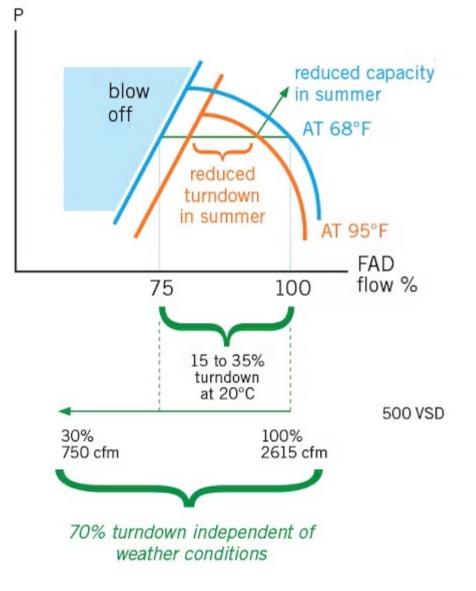
Centrifugal Compressor Control Common Terms



- Plant has 8000 cfm peak demand, 5800 cfm average demand, and 3000 cfm minimum demand during weekends at operating pressure of 100 psig.
- Two 4000 cfm centrifugals with a 30% turndown to 2800 cfm



- During peak demand of 8000 cfm, both compressors will run at full load.
- When the flow demand is reduced to the average demand of 5800 cfm, the two centrifugal compressors will close the inlet guide valve and run in its turndown range without exhausting any compressed air to atmosphere.

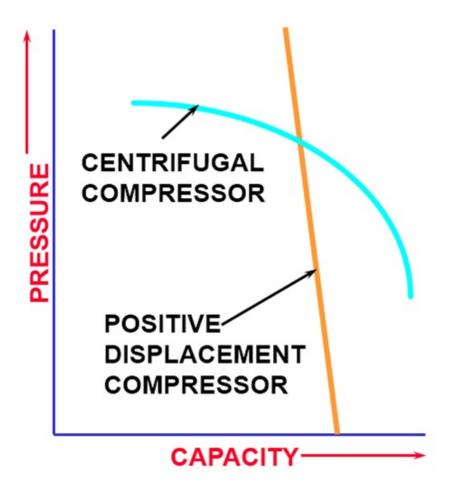


- During the weekend, when the demand reaches to minimum flow of 3000 cfm, one centrifugal compressor will stop and only one compressor will run in its turndown range.
- With this combination, the centrifugal compressors will work most efficiently and save a plant significant energy.
- If flow drops below min flow of the centrifugal, a rotary screw can be added to assist with keeping the plant operating and allowing the centrifugal to stay out of blow down.

Inlet Guide Vanes - Open

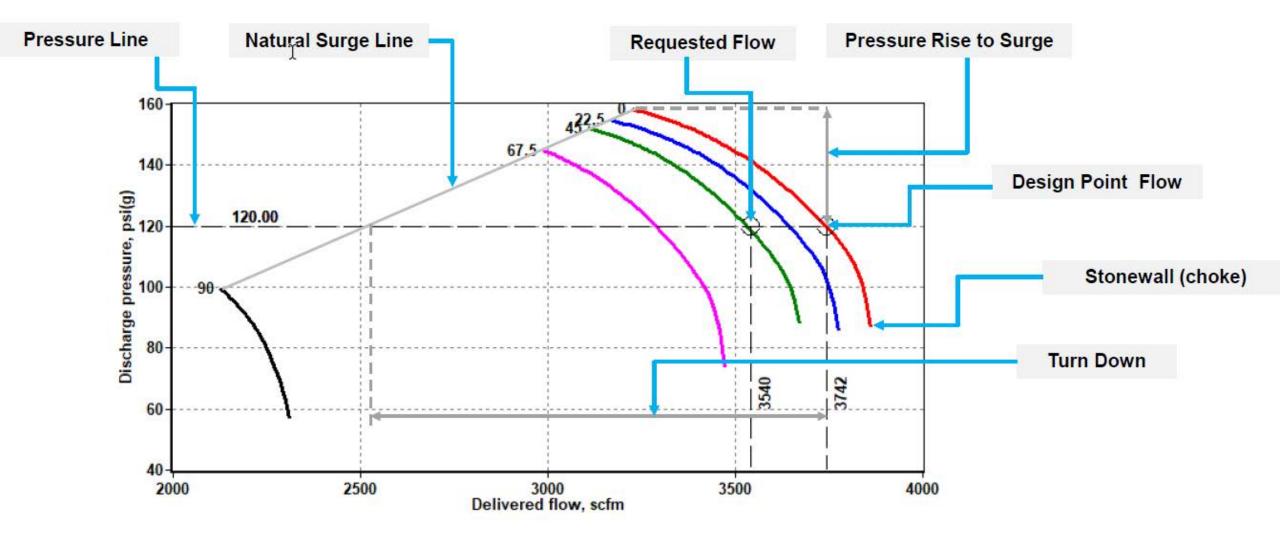
Inlet Guide Vanes - Closed

Inlet Guide Vanes

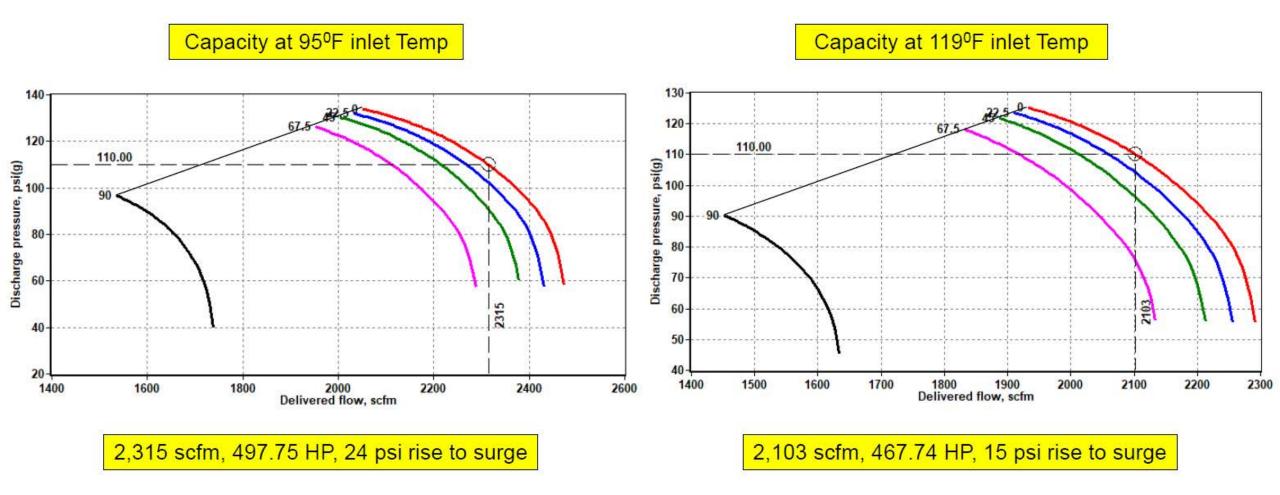

- This valve positioner consists of a common housing that contains a 4 – 20 mA current to pressure (I/P) transducer that controls the attached pilot valve operated air to actuator assembly.
- The positioner will output 0 to 65 psi (448 kPa) to the actuator from an air signal.
- The air signal provided by the positioner is proportional to the microcontroller 4 – 20 mA output.
- The actuator provides the power to drive the valve open or closed in proportion to the microprocessor output control signal.

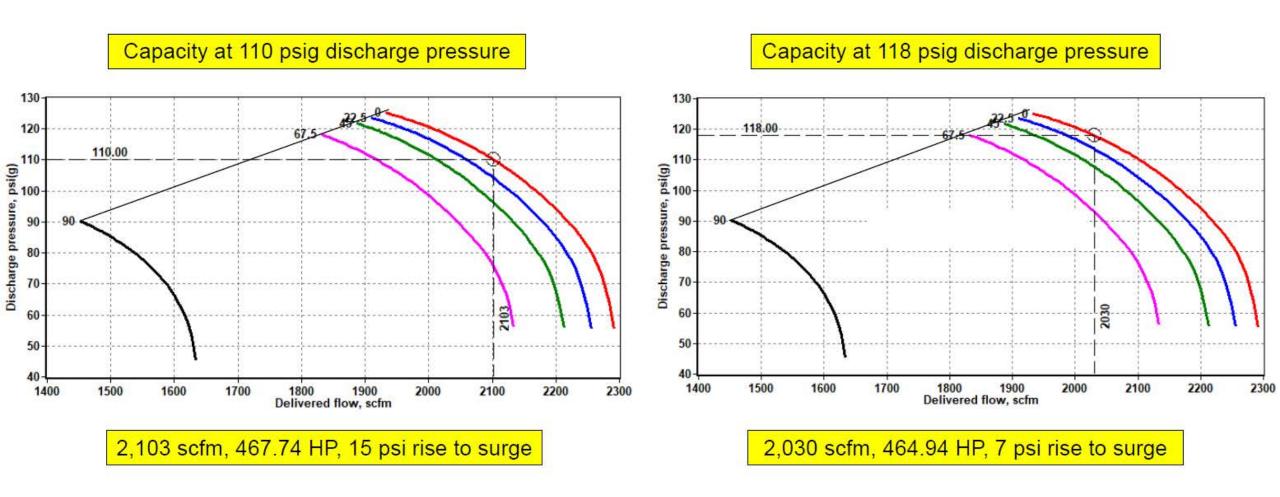
Centrifugal Compressor Control

The relationship of flow and pressure for dynamic compressors is different from that of positive displacement machines.

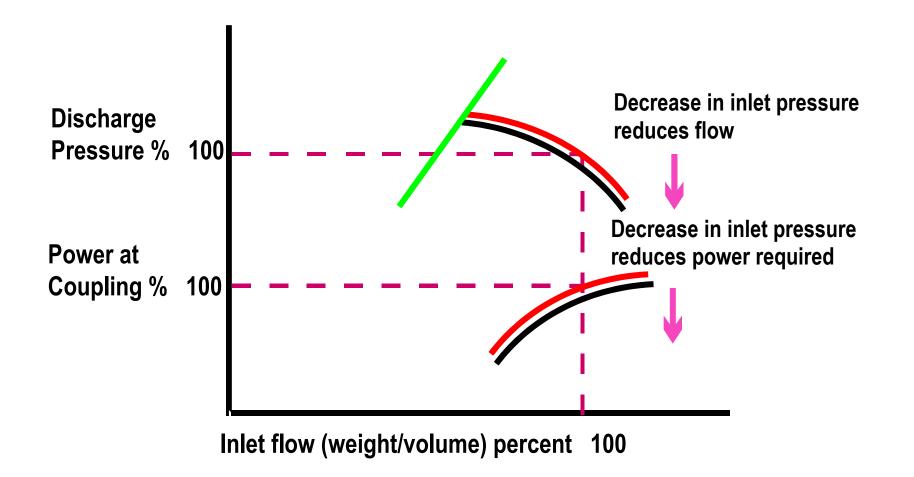

Effects on dynamic compressor performance

- Inlet pressure
- Inlet air temperature
- Cooling water temperature


Centrifugal Performance

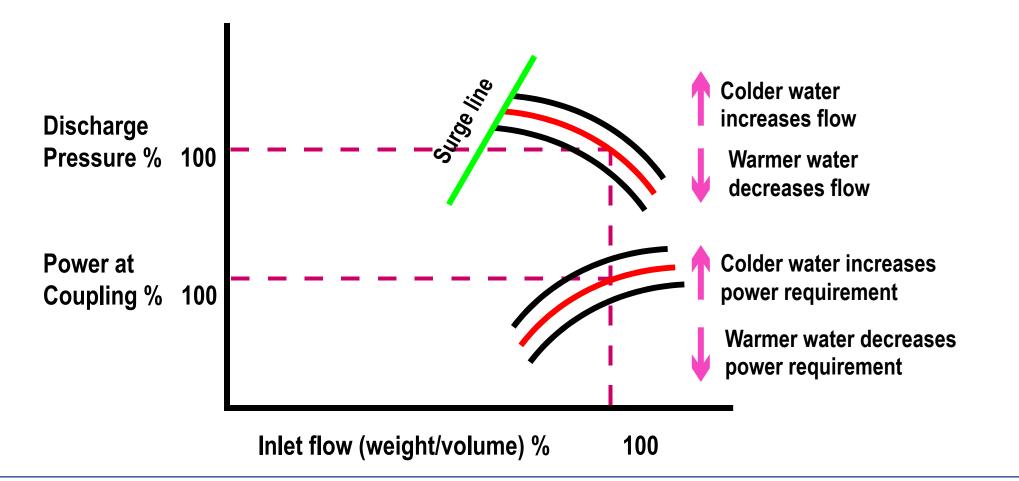

INLET TEMPERATURE CHANGE – EFFECT ON AIR OUTPUT

DISCHARGE PRESSURE CHANGE – EFFECT ON AIR OUTPUT



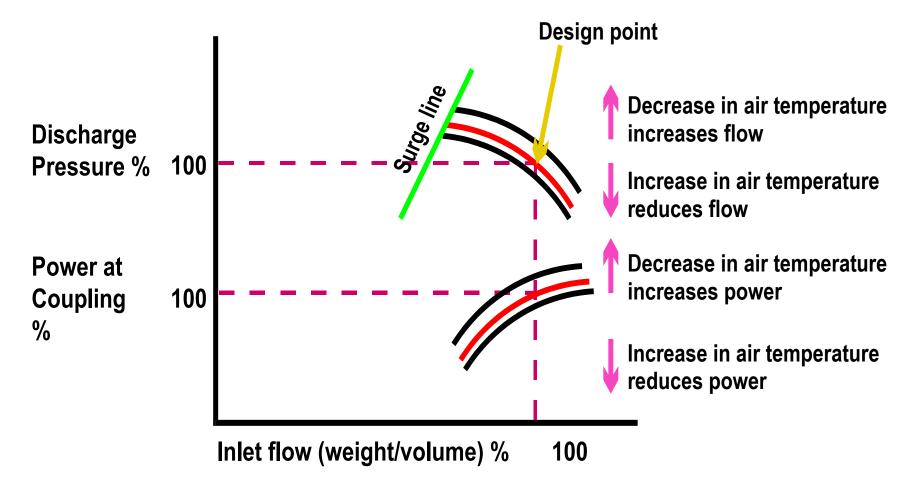
Inlet Pressure Effects On Dynamic Compressor Performance

Inlet pressure

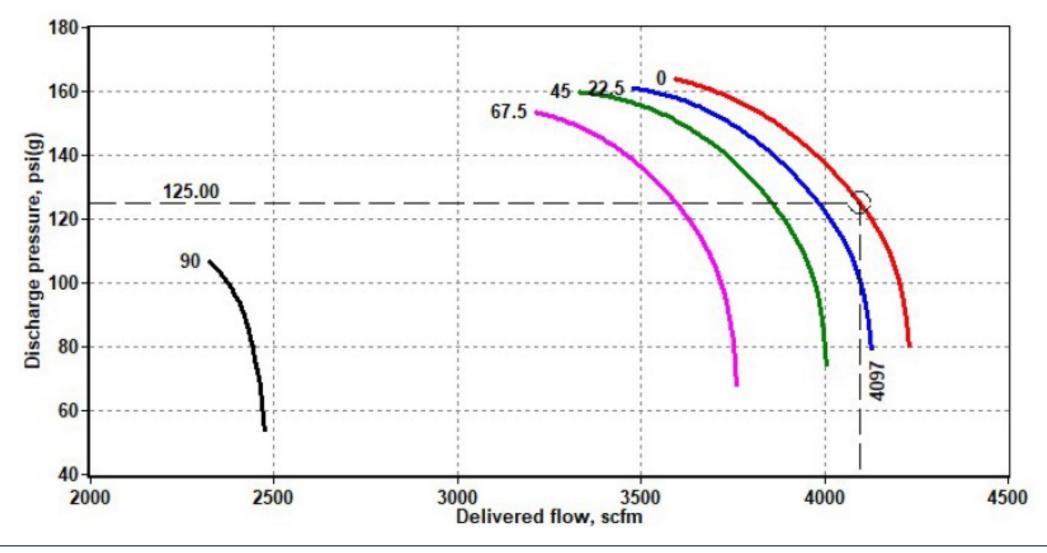


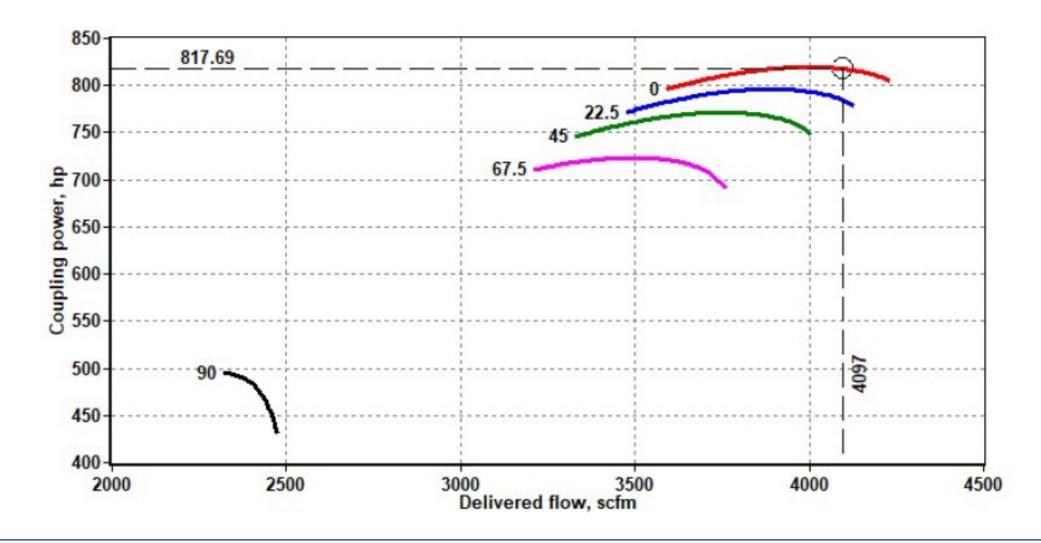
Cooling Water Effects On Dynamic Compressor Performance

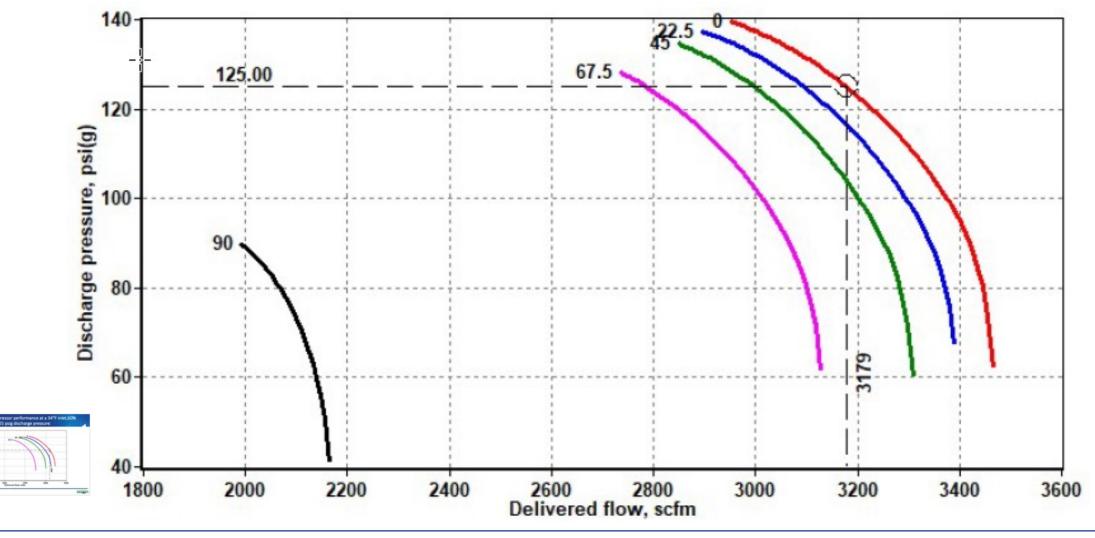
Cooling water temperature

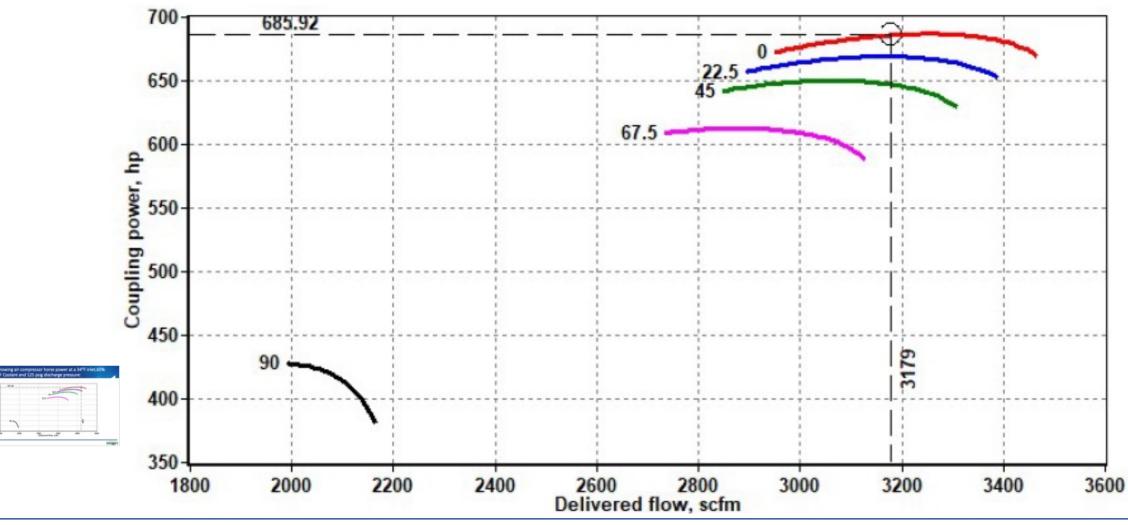


Inlet Air Temperature Effects On Dynamic Compressor Performance




Curve showing air compressor performance at a 34°F inlet,60% RH, 77°F Coolant and 125 psig discharge pressure:

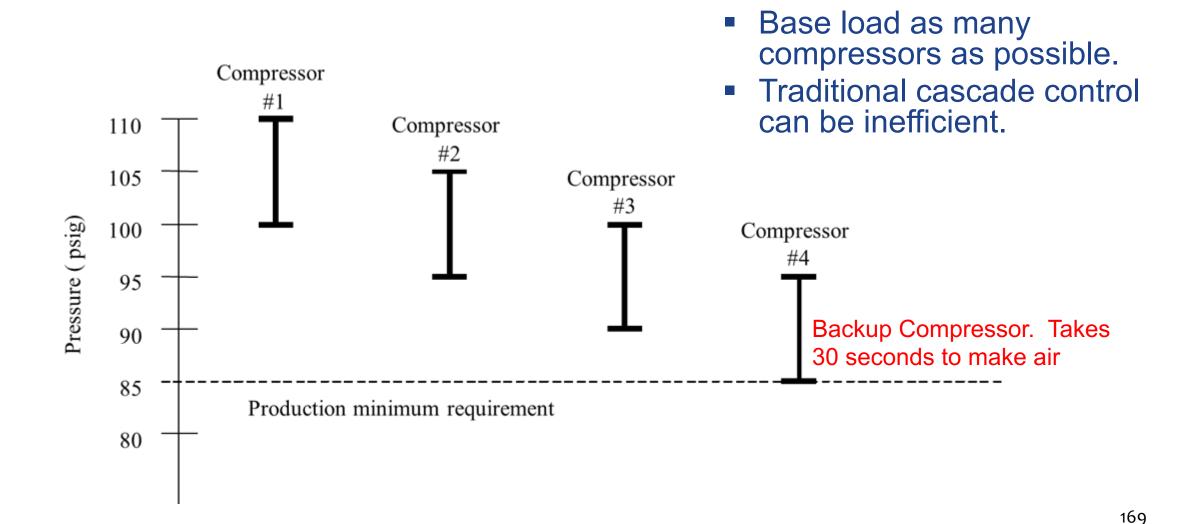

Curve showing air compressor horse power at a 34°F inlet,60% RH, 77°F Coolant and 125 psig discharge pressure:


Curve showing air compressor performance at a 104°F inlet,100% RH, 77°F Coolant and 125 psig discharge pressure:

Curve showing air compressor horsepower at a 104°F inlet, 100% RH, 77°F Coolant and 125 psig discharge pressure:

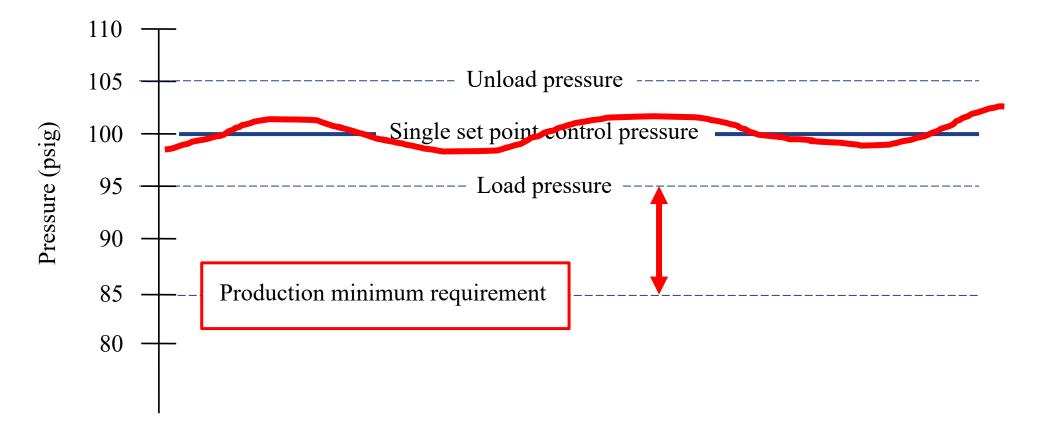
Multiple Compressor Control

- Holds a constant air pressure in the network within narrow limits.
- Easy to install.
- Connectable to all kinds of compressors.
- Optimisation of service intervals = lower service cost.
- Priority selection : old versus new machines.
- Delayed start : NEVER start two machines or more at the same time => high current peaks are avoided.
- Base load compressors can fill a net in advance to avoid load peaks.

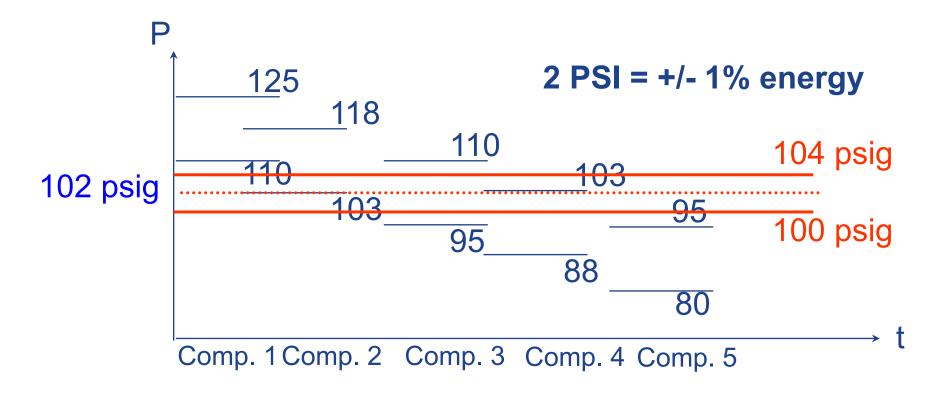

Multiple Compressor Control

- Very simple user interface = minimum user training.
- Machines are used more efficiently.
- Energy reduction = immediately saves money.
- Full compressor & network status feed- back.
- Programmable pressure schedule.
- PC monitoring & analysing possibilities.

Cascade Compressor Control

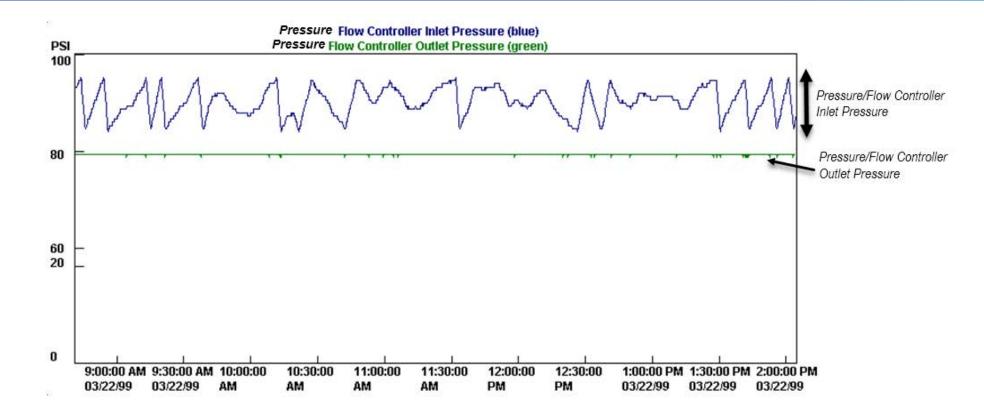


Master Controls

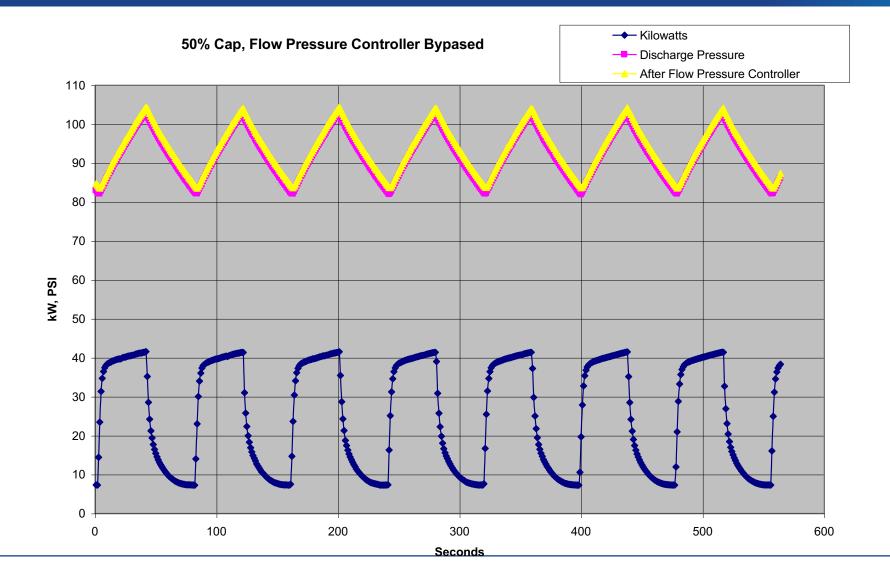

Basic single set point control scheme

Master Control Basics

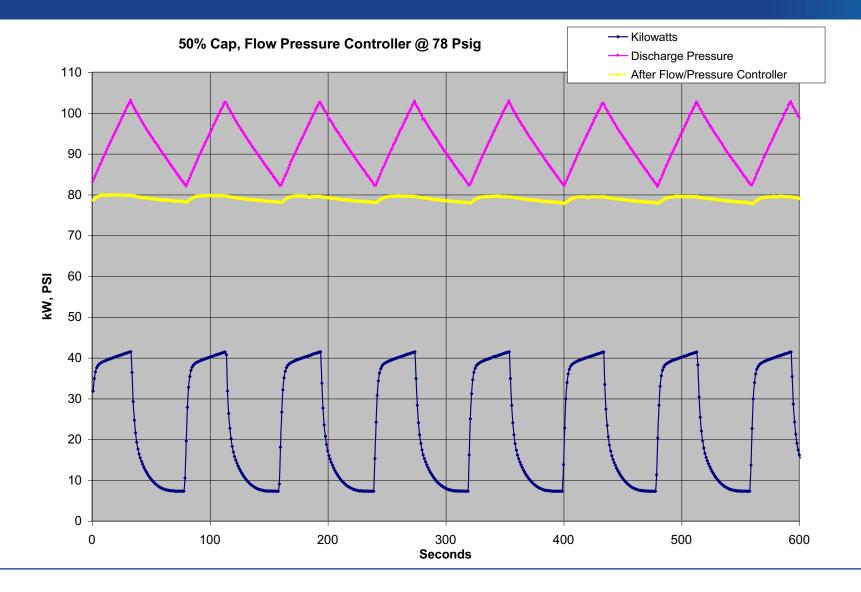
Cascaded Pressure Switches Vs Master

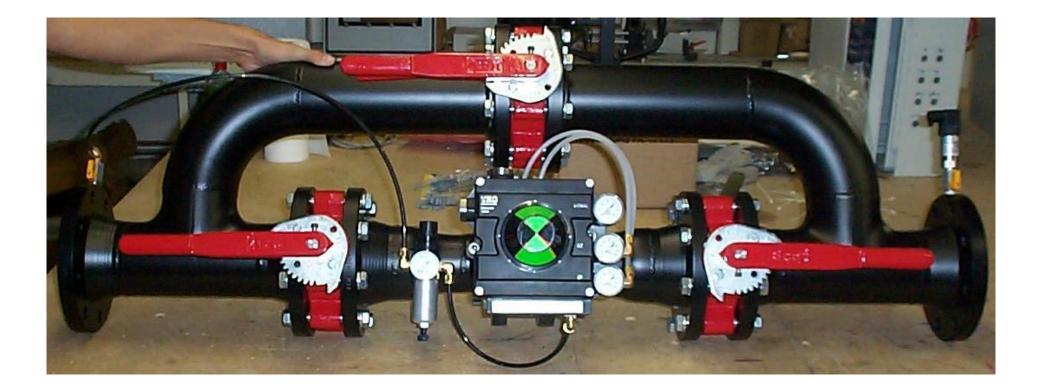


- Primary function: Stabilize pressure regardless of demand
- Most compressor controls cause 3-10 psi swings
- Multiple compressors can compound the system pressure swings
- Pressure/flow controllers typically hold pressure to production within ± 1% of set point
- The following graph is from a system with 9 compressors totaling over 6,000 hp – pressure is set at 79 psig

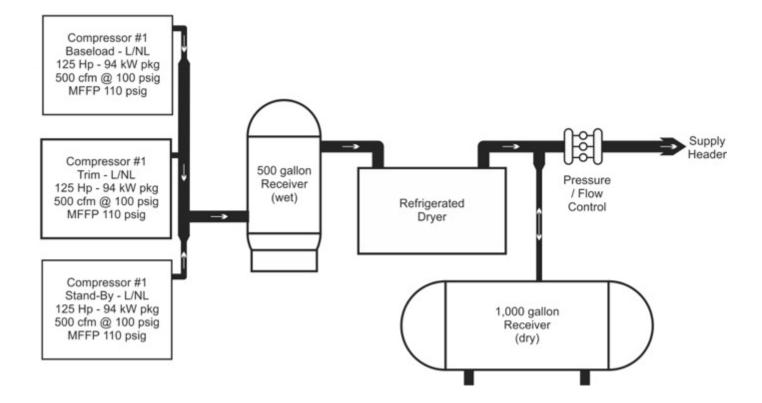


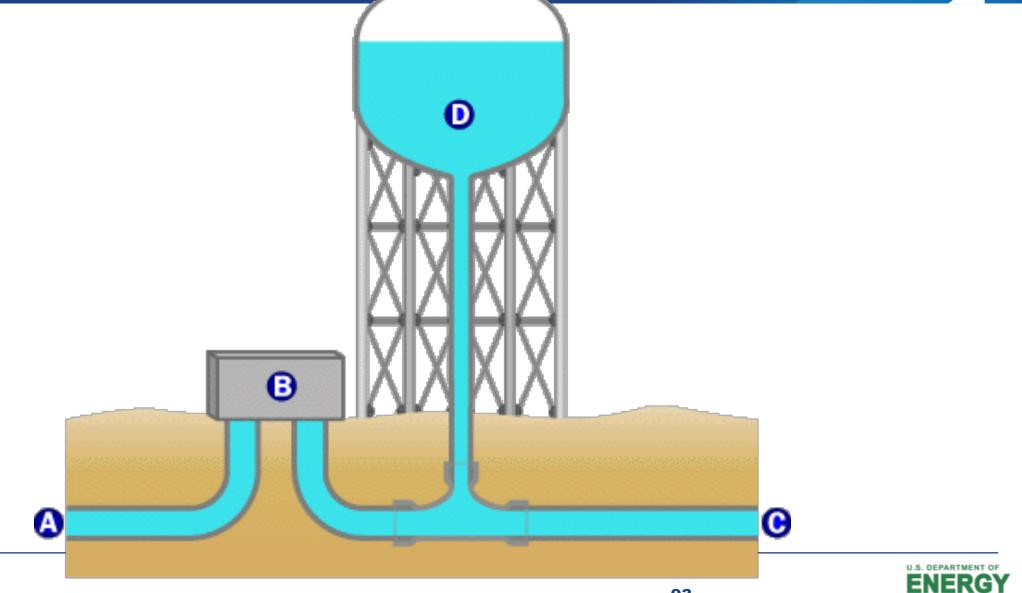
- The compressor discharge pressure varies about 10 psi as the trim compressor loads and unloads to meet plant demand.
- The pressure to the plant is kept at a constant 79 psig.




South Compressor Room psig comparisons

—— psig at Compressor —— psig into Flow Controller —— psig out of flow controller

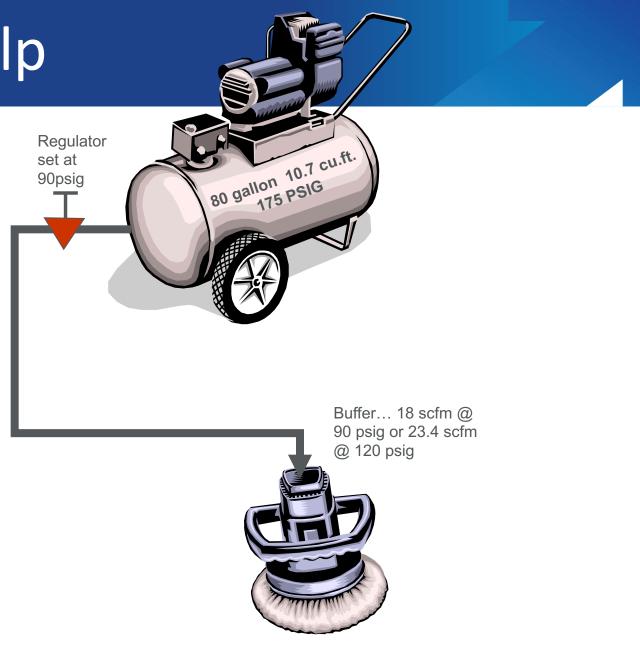


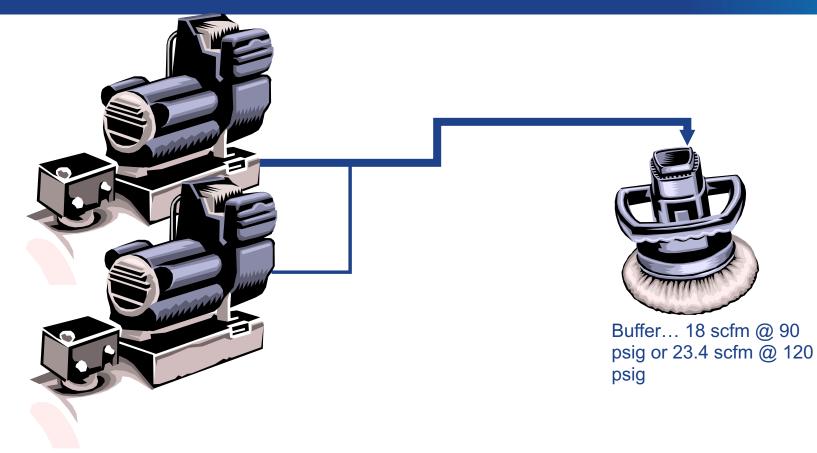


 A typical block diagram of a pressure/flow controller in a compressed air system with one point of entry (single compressor room)



Primary Storage




How does Volume Help

- A paint area in a body shop has a 5 HP compressor mounted on an 80-gallon air receiver. This receiver is pumped up to 175 psig. The air flow to the buffer which uses 18 SCFM at 90 PSIG, is regulated to 90 PSIG outflow from the regulator.
- The compressor delivers 12-13 SCFM at 90 psig but yet it runs the 18 SCFM sander just fine.
- How can this work???
- The buffer uses more volume(scfm) than the compressor can deliver !!
- If there were no regulation and receiver, you can be sure that the compressor would not be able to run the tool

How does Volume Help

With no receiver, the painter must install a second 5 hp compressor and therefore use twice the energy as before

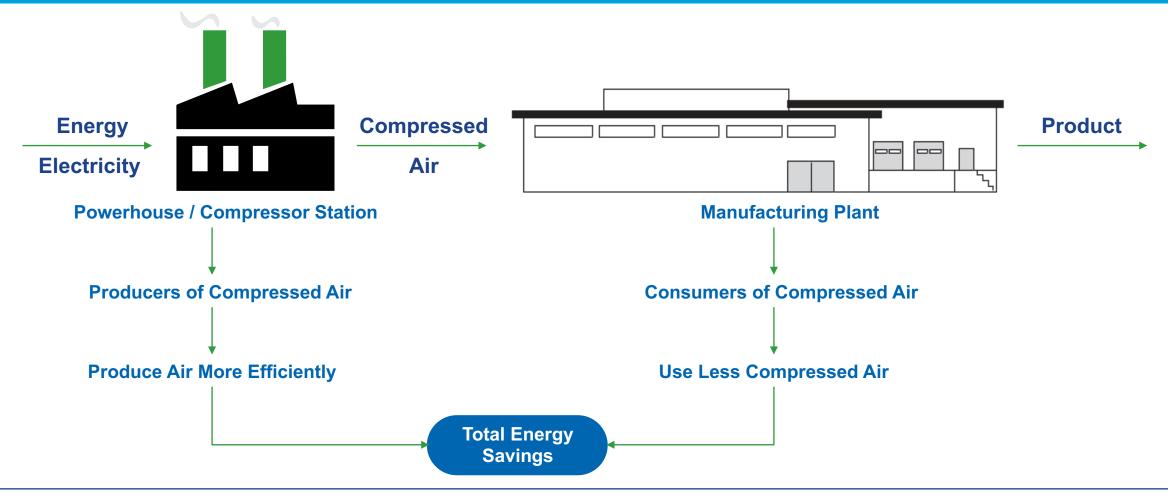
Controls Summary

Create a control strategy:

- ✓ Know how your controls work
- \checkmark Realize the pros and cons of different controls
- ✓ Recognize how controls affect part load efficiency
- ✓ Understand how storage affects the effectiveness of control strategies

Logtool, AirMaster+ and the **MEASUR Tool**

Why AIRMaster+?


- ~90% of energy input to compressor never reaches tools (waste heat, drying, etc.)
- Leaks +pressure drops remove air energy before reaching tools-sometimes >50%
- Poor or improperly adjusted controls leave several compressors operating a part load
- System assessments can be an arduous task using spreadsheets that must be modified for each job
- AIRMaster+ provides a systematic approach to assessing compressed air systems, analyzing collected data, and reporting results

What Can This Tool Help Me With?

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

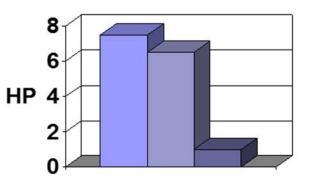
What Can This Tool Help Me With?

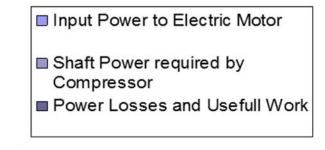
Produce more efficiently

- Improve Compressor Control
- Type of Compressor Control

Use less compressed air

- Reduce System Pressure
- Reduce Air Demand
- How does compressed air support production?





Compressed Air Versus Other Energy Sources

- 1 hp air motor = 7-8 hp of electrical power
 - 30 scfm @ 90 psig is required by the air motor
 - 6 7 bhp at compressor shaft required for 30 scfm
 - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194

AIRMaster+ Features

- AIRMaster+ is a Windows-based software tool used to analyze industrial compressed air systems:
- Simulates existing and modified compressed air system operation
- Models part load system operation
- Assigns electrical utility energy schedules
- Enters 24-hour metered airflow or power data
- Is not a substitute for an experienced auditor!

Energy Efficiency Measures

- 1. Reduce Air Leaks
- 2. Improve End Use Efficiency
- 3. Reduce System Air Pressure
- 4. Use Unloading Controls

- 5. Adjust Cascading Set Points
- 6. Use Automatic Sequencer
- 7. Reduce Run Time
- 8. Add Primary Receiver Volume

Why LogTool?

- LogTool is a public domain tool developed by SBW Consulting with support from the Compressed Air Challenge[™].
- It is designed to assist in the analysis of compressed air system performance measurements.
- It is a companion tool for Airmaster+ available from the US DOE and CAC.

LogTool is Designed To:

- Import data which is exported from different types of data loggers.
- Select logger data channels and modify their properties.
 - e.g., name, type, units, etc.
- View data values for one or more logger channels.
- Display trend plots on one or two Y axis.
- Display scatter plots.
- Display daytype plots in the format that is needed for AIRMaster+


Enter LogTool Data Into AIRMaster

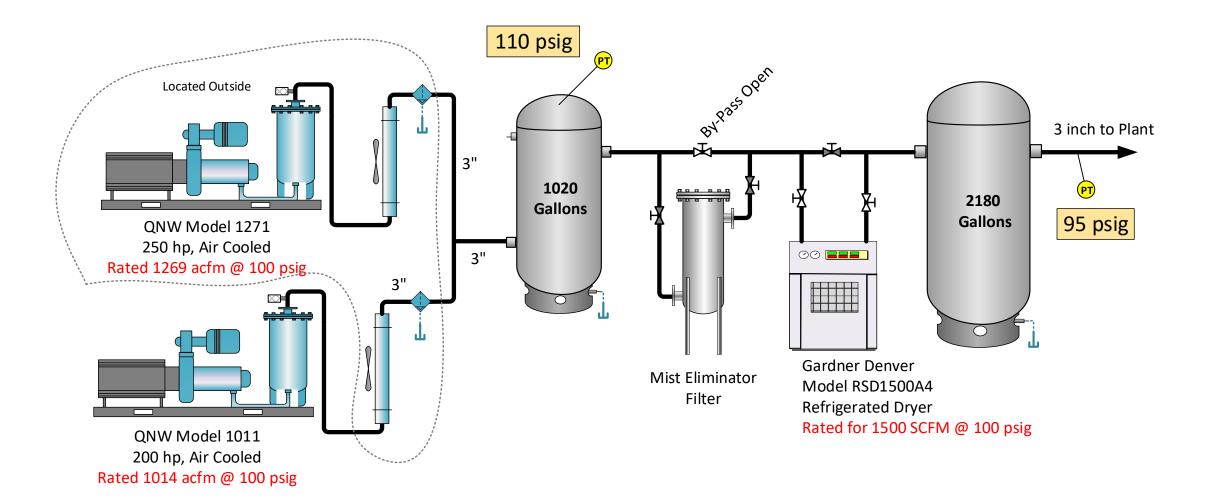
- Enter Utility and rate information
- Enter System information including Day Types
- Enter compressor Information
- Enter recorded data to establish the baseline
 - This data comes from LogTool
- Experiment with different EEM's

AIRMaster+ Main Menu

MEASUR Main Menu

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators. Get started with one of the following options.


If you need help at any point along the way, click on a B User Manual icon.

Box Plant Company Example

Baseline Info

- 200 hp baseloaded compressor rated 1014 acfm using modulated inlet control
- 250 hp trim compressor rated 1269 acfm using modulated inlet control operating at 40% output
- Production is 24/6 with Sundays off
- Average flow during Monday to Saturday is 1500 cfm
- Baseline energy is 2,587,516 kWh or \$174,657 using \$.0675/kWh
- Leakage is estimated to be about 600 cfm based on leak down test

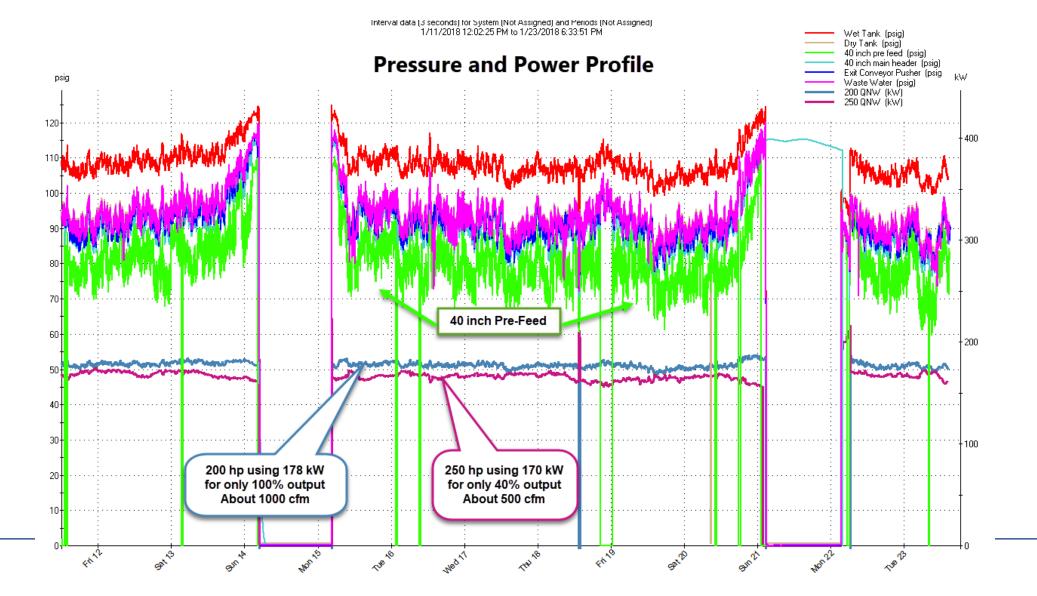
Baseline Info

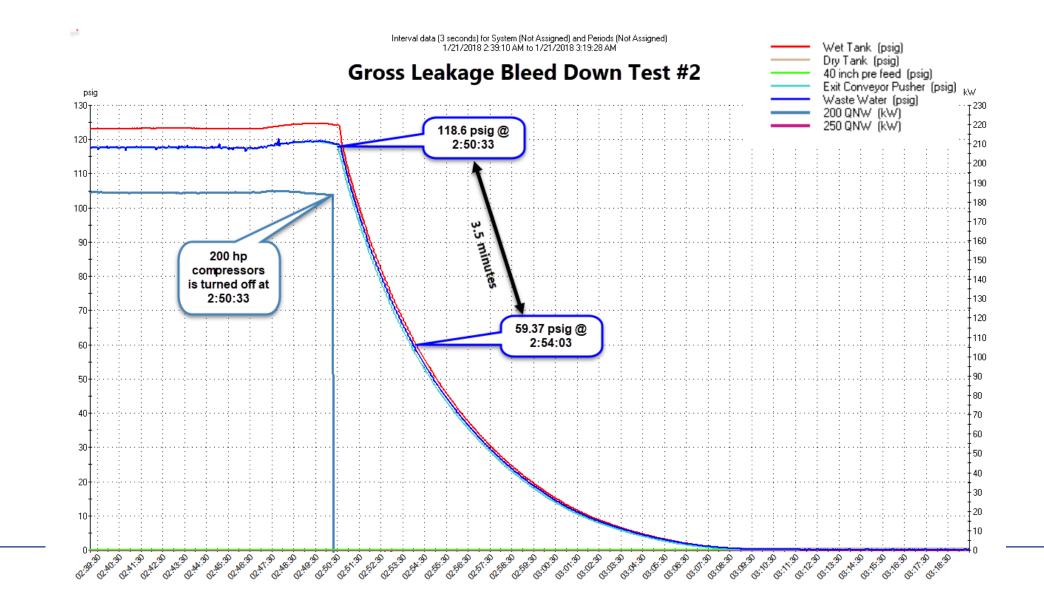
- Air Operated Diaphragm Pumps (AOD) are in use and can be replaced with electric driven pumps made to pump heavy viscous fluids such as glue
- 3-inch pipe is used in the compressor room to handle almost 1500 scfm of flow. This is borderline undersized and is creating additional pressure drop.
- Both compressors must run to support production. Neither one by itself can run production. There is no redundancy at this plant for compressed air.

CHAPTER 4

Compressed Air Distribution (Systems)

Table 4.7 Loss of Air Pressure Due to Friction

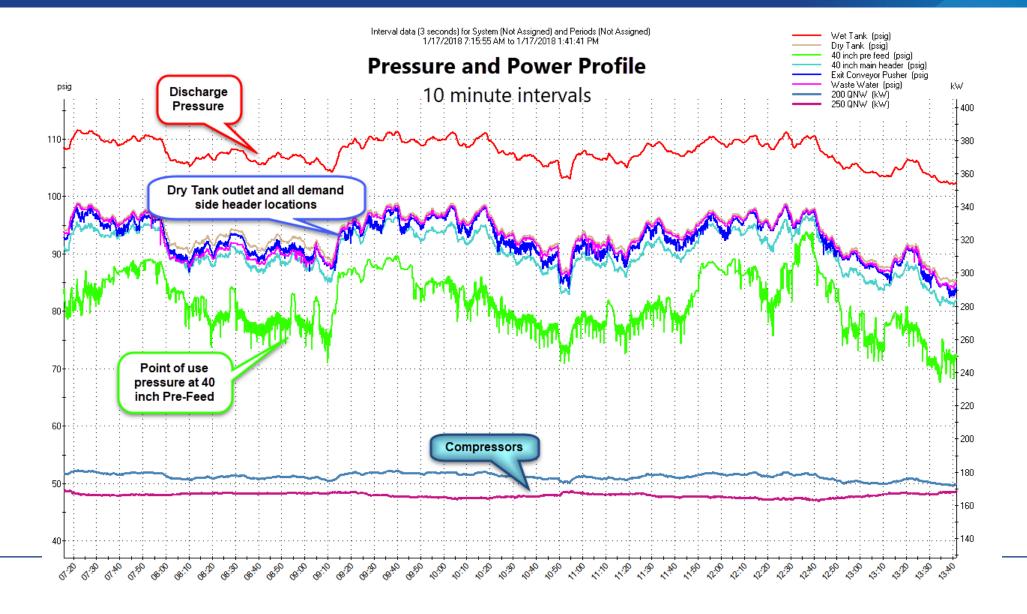

Cu ft	Equivalent Cu ft Nominal Diamatar In												
Free Air	Nominal Diameter in												
Per Min	Âir Per Min	1/2	3/4	1	1 1/4	1 1/2	2	3	4	6	8	10	12
10	1.28	6.50	0.99	0.28									
20	2.56	25.9	3.90	1.11	0.25	0.11							
30	3.84	58.5	9.01	2.51	0.57	0.26							
40	5.12		16.0	4.45	1.03	0.46							
50	6.41		25.1	9.96	1.61	0.71	0.19						
60	7.68		36.2	10.0	2.32	1.02	0.28						
70	8.96		49.3	13.7	3.16	1.40	0.37						
80	10.24		64.5.	17.8	4.14	1.83	0.49						
90	11.52		82.8	22.6	5.23	2.32	0.62						
100	12.81			27.9	6.47	2.86	0.77						
125	15.82			48.6	10.2	4.49	1.19						
150	19.23			62.8	14.6	6.43	1.72	0.21					
175	22.40				19.8	8.72	2.36	0.28					
200	25.62				25.9	11.4	3.06	0.37					
250	31.64				40.4	17.9	4.78	0.58					
300	38.44				58.2	25.8	6.85	0.84	0.20				
350	44.80					35.1	9.36	1.14	0.27				
400	51.24					45.8	12.1	1.50	0.35				
450	57.65					58.0	15.4	1.89	0.46				
500	63.28					71.6	19.2	2.34	0.55				
600	76.88						27.6	3.36	0.79				
700	89.60						37.7	4.55	1.09				
800	102.5						49.0	5.89	1.42				
900	115.3						62.3	7.6	1.80				
1 000	128.1						76.9	93	2.21				
1,500	192.3							21.0	4.9	0.57			
2,000	256.2							37.4	8.8	0.99	0.24		


LogTool Trend Plot

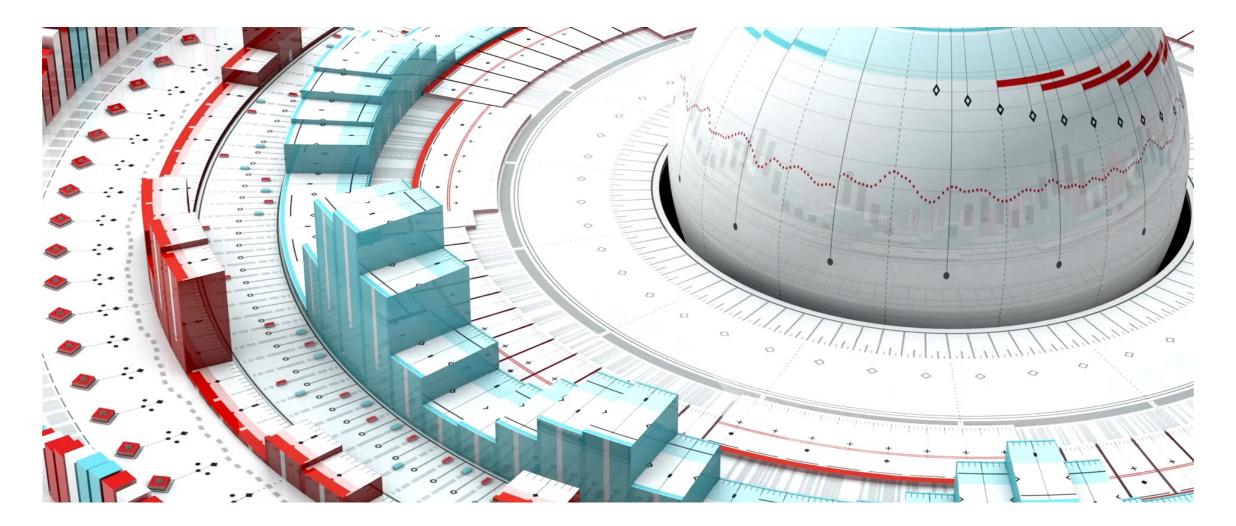
Better Plants

LogTool Trend Plot

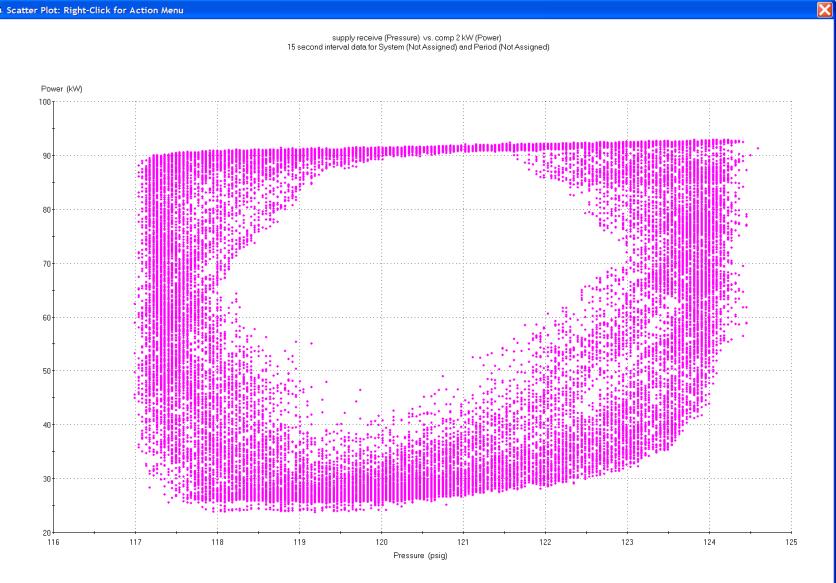
U.S. DEPARTMENT OF



Cfm Leakage =	[V x (P1 - P2) x 1.25]/(T x	(14.7)						
Where	V=	453.9	Cu ft						
	P1=	118.66	Psig						
	P2 =	59.33	Psig						
	T =	3.50	Minute						
Cfm Leakage =	654.34								
% Leakage =	Measured c	fm leakage/t	otal cfm	output c	of plant c	ompress	ors		
% Leakage =	32.3%	32.3% Assuming 4cfm/hp and total HP of 450							


LogTool Trend Plot

LogTool Scatter Plot

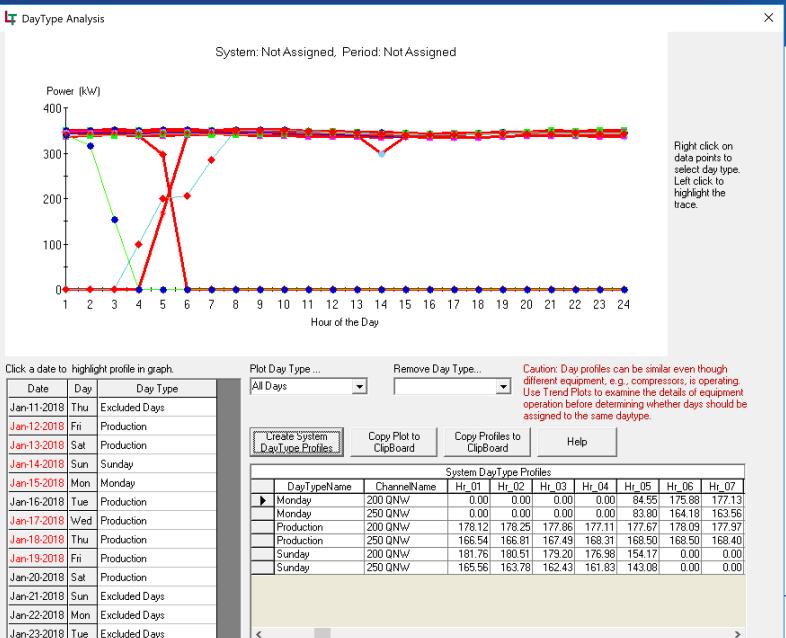


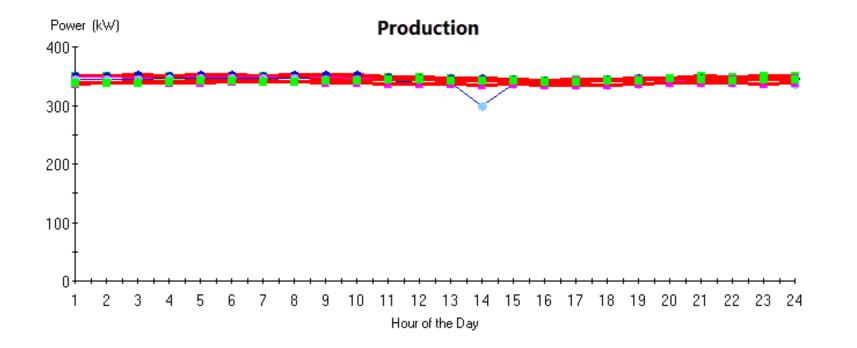
LogTool Scatter Plot

Scatter Plot: Right-Click for Action Menu

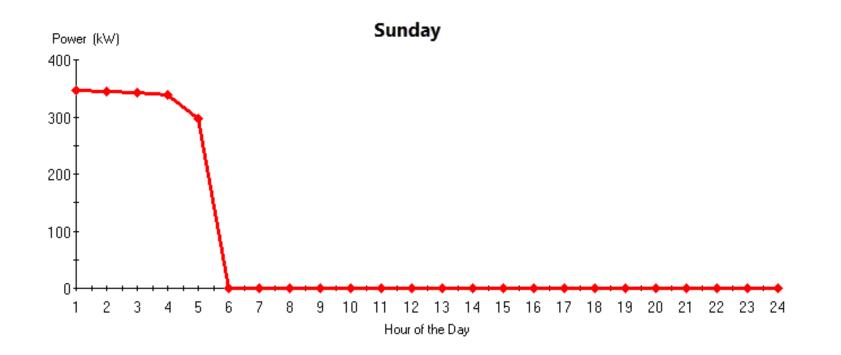
🔁 Import/Manage Logger Data in: IP LogTool.mdb 🛛 🕹	
Logger File Type Import File Name Fo Pace Pocket Logger Software HOBDware for Windows FLUKE Hydra Logger Data Files Import File Name Import Software Ranger Pronto For Windows Wonderware ActiveFactory Logger Data Files File Status Import File Name Unknown Logger Software Import Software File Status	
Channels in Files Checked for Import	f l
Import File Name Logger ID Logger Name Ch # Name Type Units Period System	
Import Checked Channels Uncheck All Channels Logger Channels Imported to this MDB File	
Delete Name Type Units Period System Start End Interval (sec.)	
Wet Tank Pressure psig Not Assigned Not Assigned 1/11/2018 1/23/2018 1/23/2018 1/23/2018 1/23/2018 3 Dry Tank Pressure psig Not Assigned Not Assigned 1/11/2018 1/11/2018 1/23/2018 1/23/2018 3	
40 inch pre feed Pressure - psig - Not Assigned - Not Assigned - 1/11/2018 12:12:03 1/23/2018 15:05:12 3	
40 inch main headel Pressure psig Not Assigned Not Assigned 1/11/2018 12:15:25 1/23/2018 15:08:34 3	
🔲 🔲 Exit Conveyor Pusht Pressure 👻 psig 📼 Not Assigned 📼 Not Assigned 📼 1/11/2018 12:22:10 1/23/2018 15:15:19 3	
🗌 🔲 Waste Water Pressure 🖵 psig 🖵 Not Assigned 🖵 Not Assigned 🖵 1/11/2018 12:05:48 1/23/2018 14:58:57 3	
□ 200 QNW Power ▼ KW ▼ Not Assigned ▼ 1/11/2018 11:35:38 1/23/2018 14:29:59 3	
250 QNW Power KW Not Assigned 1/11/2018 11:31:38 1/23/2018 14:24:47 3 Delete Checked Channels	
	u

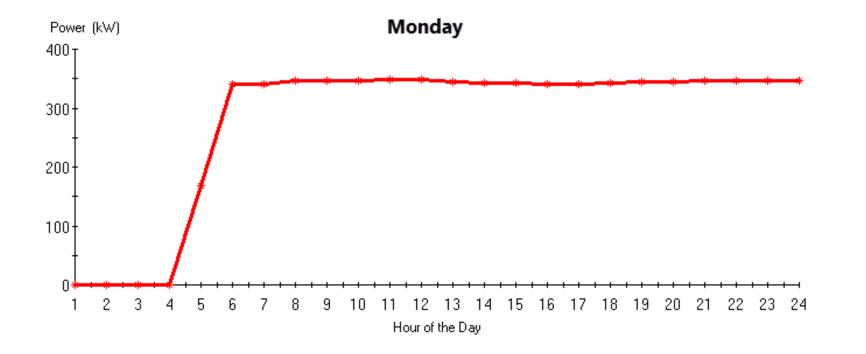
LogTool Main Menu


🖵 Log	JLOO	l v2													-	
File T	ools	; H	elp													
_					<i>.</i>											
Upen	/Cre	ate D	atab	asel	file to store l	ogger data										
				WC	oen an Existi	ng Database I MDB	File()	Cre	eate a l	Nev	v Database (.ME)B Fil	e)		Hel	p
Fil	e F	^o Log	Tool	.mdb)			_								
Folde	er D	:\WE	EC	2018	3 Internation	al Paper Company		_								
		mpor	t Log	iger l	Data											
Tre	end	1	Scal	tter	 DayTyp	pe										
									Loc	100	Data in: IP Log	Tool	mdb			
	Tre	end	Sca	atter	DayType					jyci	Data III. II LOg	1001.	mab			
View	Y1	Y2	Х	Y	Include	Name	Туре		Unil	_	Period		System	Start	End	Interval (sec.)
Data	Σ		N			Wet Tank	Pressure	•	psig	•	Not Assigned		Not Assigned 💌	1/11/2018 11:46:51	1/23/2018 14:40:00	3
Data	Σ					Dry Tank	Pressure	-	psig		Not Assigned	-	Not Assigned 💌	1/11/2018 11:43:14	1/23/2018 14:36:23	3
Data	Σ					40 inch pre feed	Pressure	-	psig	•	Not Assigned	•	Not Assigned 💌	1/11/2018 12:12:03	1/23/2018 15:05:12	3
Data						40 inch main head	Pressure	•	psig	•	Not Assigned	•	Not Assigned 💌	1/11/2018 12:15:25	1/23/2018 15:08:34	3
Data						Exit Conveyor Pusl	Pressure	•	psig	-	Not Assigned	-	Not Assigned 💌	1/11/2018 12:22:10	1/23/2018 15:15:19	3
Data						Waste Water	Pressure	▼	psig	Ŧ	Not Assigned	-	Not Assigned 💌	1/11/2018 12:05:48	1/23/2018 14:58:57	3
Data						200 QNW	Power	•	kW	•	Not Assigned	-	Not Assigned 💌	1/11/2018 11:35:38	1/23/2018 14:29:59	3
Data						250 QNW	Power	•	kW	•	Not Assigned	-	Not Assigned 💌	1/11/2018 11:31:38	1/23/2018 14:24:47	3
-11	ı nche	ck —														
	Trer		So	atter	r DayTyp	e										

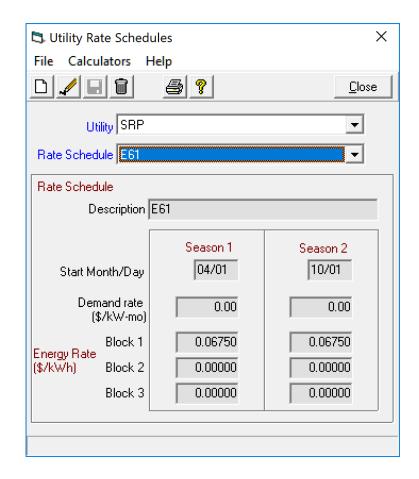

Better

Plants


DayType Profiles


DayType Profiles

DayType Profiles


- Enter Utility and rate information
- Enter System information including Day Types
- Enter compressor Information
- Enter recorded data to establish the baseline
 - This data comes from LogTool
- Experiment with different EEM's

Utility and Rate Information

🕄 Utility			×
File Calculators	; Help		
0 🖌 🛛 🖻	a ?		<u>C</u> lose
Utility SRP		•	Rate Schedules
Utility Data			
Utility name	SRP		
Utility code			
Address 1			
Address 2			
City			
State/Zip			
Contact			
Phone	() ·	_	

System Information

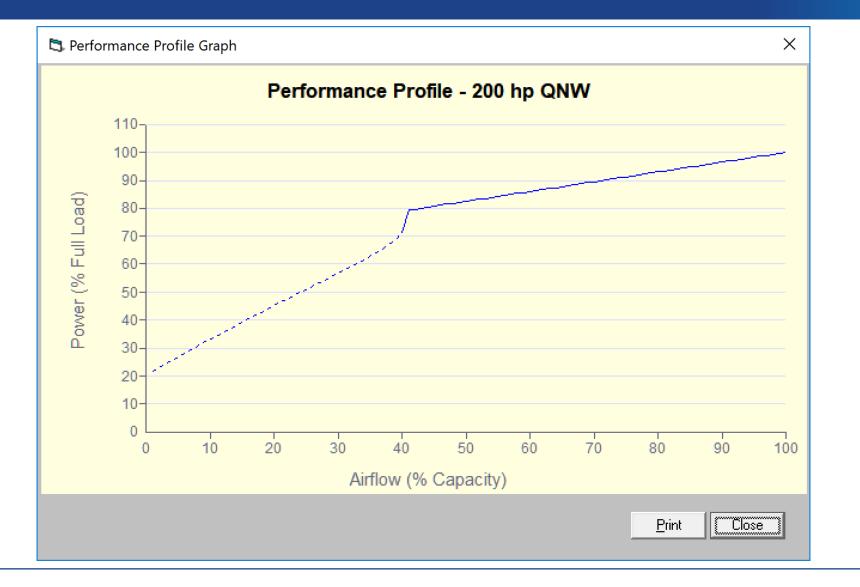
e Calculators Help		<u>C</u> lose
Facility	System Production	•
System Data Sequencer Data	Daytypes	End Uses
System name Production	Calculated airflow capacity (sum of compressors), acfm Nominal system pressure, psig	3800 115.0
Phone ()	System elevation, feet	1000
Sequencer used 🥅	Air storage capacity (receivers + distribution pipe) , ft3 *	448.0
Sequencer type C Cascade pressures C Target pressure	Capacity	Storage Calculator
	torage capacity refers to unregulated (prim is required to run Add Receiver Volume eff	

System Information Day Types

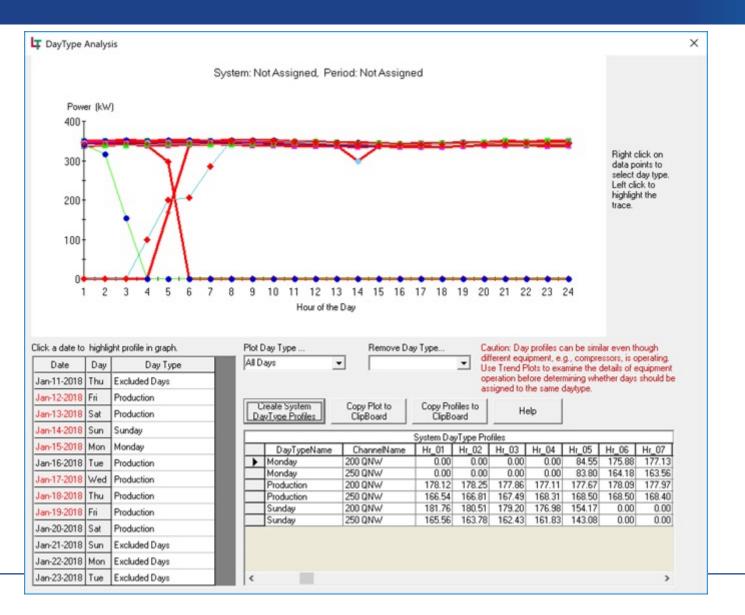
3 System				×
ile Calculators Help				
	?			<u>C</u> lose
Facility	•	Syster	n Production	-
System Data	Sequencer	Data	Daytypes	End Uses
Daytype Description	Operating Days - Season 1	Operating Days - Season 2	Season demand montl Season	hs 6
Monday	52	0	demand mont	hs l
Week Day	261	0		
Sunday	52	0	Total annual da	ays 365
•		• •	Total down da	ays 0
				Enter Log Tool Data Into AIRMaster

Compressor Information

🖏 Compressor Catalog				×
<u>S</u> earch Select Clear <u>A</u> dd	Сору			🗿 🢡 🛛 Cancel
- Search Criteria				
Compressor type Single stage lubricant-injec	ted rotaru screw	, Motor po	wer Al	User-
		┘ rating, hp ┓ Desired capa	• KW I	r created only
Control type Inlet modulation without ur	nloading		acfm	+/- %
-All-		Desired full I	oad 🗔	v
Manufacturer Inlet modulation without un	loading	pressure,	psig I	+/- %
Inlet modulation with unloa <u>Search results</u> - 12 Variable displacement with				
Scroll right for me	aniodanig			Compressor <u>D</u> etails
Start/Stop				
Proprietary	Maria Carlos and		Motor	
Compressor Type	Manufacturer	Model	Hating, hp	Control Type
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw		200 hp/150 kW	200	Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	250 hp/185 kW	250	Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	250 hp/185 kW	250	Inlet modulation without un 👻
•				


Compressor Information

🔁 Compressor Inventory						×
File Calculators Help						
	Сору Сотргеззо	r Query Inv	entory (Сору То Са	italog	<u>C</u> lose
Facility International Paper	•	Compressor 2	00 hp QNW			•
System Production	-	200 hp, 9	Single Stag	e Rotary S	Screw, 10	05 acfm
User- assigned ID Description 200 hp QNW		Compressor disc control Sequencer		<mark>- 120.0 psi</mark>	ig M	anufacturer Compressor <u>D</u> etails
Nameplate	Controls	Per	formance	Τα	otals (from P	rofile module)
Inlet Conditions	Performance		Discharge Pressure	Airflo	w	Power
Avg. temperature, *F 85	(actual, no	t rated)	psig	Dflt? acfr	m Dflt?	kW
Atmos. pressure, psia 14.2		Full load (cut-in)	110.0	☑ 10	005	175.0
	Max full flo	ow (mod begins)	110.0	10	005 🛛 🗹 🗍	175.0
Unloading Blowdown Time	Unloa	d point (cut-out)	120.0		406 🔽	138.5
For lubricant-injected 40	No	load (unloaded)	15.0			35.8
rotary screws, sec.	Pressures are refe	enced from the o	compressor di	scharge.	<u>P</u> erforman	ce Profile


Compressor Information

Create the baseline from the Data

System Type	Period	DayTypeN	laChannelName	Hr_01	Hr_02	Hr_03	Hr_04	Hr_05	Hr_06	Hr_07	Hr_08	Hr_09	Hr_10	Hr_11	Hr_12	Hr_13	Hr_14	Hr_15	Hr_16	Hr_17	Hr_18	Hr_19	Hr_20	Hr_21	Hr_22	Hr_23	Hr_24
Not Assign(Pow	er Not Assi	gneMonday	200 QNW	0.0	0.0	0.0	0.0	84.6	175.9	177.1	181.6	182.2	180.8	177.2	177.7	177.0	178.6	178.7	178.7	176.9	177.0	178.2	177.2	178.7	179.6	180.1	179.3
Not Assign(Pow	er Not Assi	gn∈Monday	250 QNW	0.0	0.0	0.0	0.0	83.8	164.2	163.6	164.5	165.0	166.7	171.6	169.9	168.1	164.9	163.3	162.5	163.6	164.8	165.6	167.1	167.1	167.0	166.2	166.9
Not Assign(Pow	er Not Assi	gne Productio	n 200 QNW	178.1	178.3	177.9	177.1	177.7	178.1	178.0	177.9	177.7	178.1	177.3	177.2	177.2	168.0	174.9	175.7	175.7	175.8	177.5	177.4	178.4	179.0	179.1	179.8
Not Assign(Pow	er Not Assi	gne Productio	n 250 QNW	166.5	166.8	167.5	168.3	168.5	168.5	168.4	168.0	168.1	167.1	166.4	166.1	165.0	167.1	165.9	164.7	164.5	165.2	165.0	165.8	165.3	164.5	164.2	164.4
Not Assign(Pow	er Not Assi	gn∈Sunday	200 QNW	181.8	180.5	179.2	177.0	154.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Not Assign(Pow	er Not Assi	gneSunday	250 QNW	165.6	163.8	162.4	161.8	143.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Date Day	Day Type	9																									
Jan-11-201 Thu	Excluded	Days																									
Jan-12-201 Fri	Producti	on																									
Jan-13-201 Sat	Producti	on																									
Jan-14-201 Sun	Sunday																										
Jan-15-201 Mon	Monday																										
Jan-16-201 Tue	Producti	on																									
Jan-17-201 Wed	Producti	on																									
Jan-18-201 Thu	Producti	on																									
Jan-19-201 Fri	Producti																										
Jan-20-201 Sat	Producti	on																									
Jan-21-201 Sun	Excluded	l Days																									
Jan-22-201 Mon		,																									
Jan-23-201 Tue	Excluded	l Days																									

🕽 System Profiles										>
File Calculators Help										
/ 🖬 🛛 🚳 📍										<u>C</u> lose
Select Facility		vtype W	'eek Day		<u> </u>	- Syst	em pres: :ontrol ra	sure <mark>100</mark> nge).0 - 120).0 psig
Data Entry			Profile S	iummary		γ		To	otals	
Cascade Order - click cell to tog	gle stage	≢∕″off'					Co	ipy Prev		<u>G</u> raph
	1	2	3	4	5	6	7	8	9	10 -
200 hp QNW		1	1	1	1 ว	1	1 ว	1	1	1
		2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off
		011	011	011	011	011	011	011		
										•
Profile data type: Power, kW		-		<u>P</u> a	ste From	Clipboar	d Co	ipy Prev	Col	G <u>r</u> aph
Compressor Units	1	2	3	4	5	6	7	8	9	10 🔺
200 hp QNW kW	178.1	178.3			177.7		178.0			
250 hp QNW kW	166.5	166.8								
New 250 hp VSD kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•										
L										

🕄 Syst	tem Profiles											>
File	Calculators Help											
	3 3 ?											<u>C</u> lose
-Selec	8		_									
Fac	ility		∐ I Dar	ytype Si	undau			- Syst	tem pres	sure 10	0.0 - 120) O peig
Syst	em Production	•	-	10 PO O			_		control ra	nge I <mark>non</mark>	0.0 120	xo paig
	Data Entry	,			Profile S	Summary		\neg		To	otals	
	Cascade Order - clic	k cell to tog	igle stage	#/"off"					Co	py Prev	Col	<u>G</u> raph
	Compressor		1	2	3	4	5	6	7	8	9	10 -
	200 hp QNW		1	1	1	1	1	1	1	1	1	1
▲	250 hp QNW		2	2	2	2	2	2	2	2	2	2
	New 250 hp VSD		Off	Off	Off	Off	Off	Off	Off	Off	Off	Off
.												<u>├</u>
	•											
	Profile data type: P	ower, kW		•		<u></u> Pa	iste From	ı Clipboar	d Co	py Prev	Col	G <u>r</u> aph
	Compressor	Units	1	2	3	4	5	6	7	8	9	10 🔺
	200 hp QNW	kW	181.8				-					
	250 hp QNW	kW	165.6								-	
	New 250 hp VSD	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<u>'</u>
												<u></u> <u> </u>
	•											
	L											

🖏 System Profiles
File Calculators Help
Select Facility System Production Daytype Monday System pressure control range
Data Entry Profile Summary Totals
Cascade Order - click cell to toggle stage#/'off'
Compressor 1 2 3 4 5 6 7 8 9 10
250 hp QNW 2 <th2< th=""> <th2< th=""> <th2< <="" td=""></th2<></th2<></th2<>
Profile data type: Power, kW Paste From Clipboard Copy Prev Col Graph
Compressor Units 1 2 3 4 5 6 7 8 9 10 🔶
200 hp QNW kW 0.0 0.0 0.0 0.0 84.6 175.9 177.1 181.6 182.2 18
250 hp QNW KW 0.0 0.0 0.0 0.0 83.8 164.2 163.6 164.5 165.0 16 New 250 hp VSD KW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
New 250 hp VSD KW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

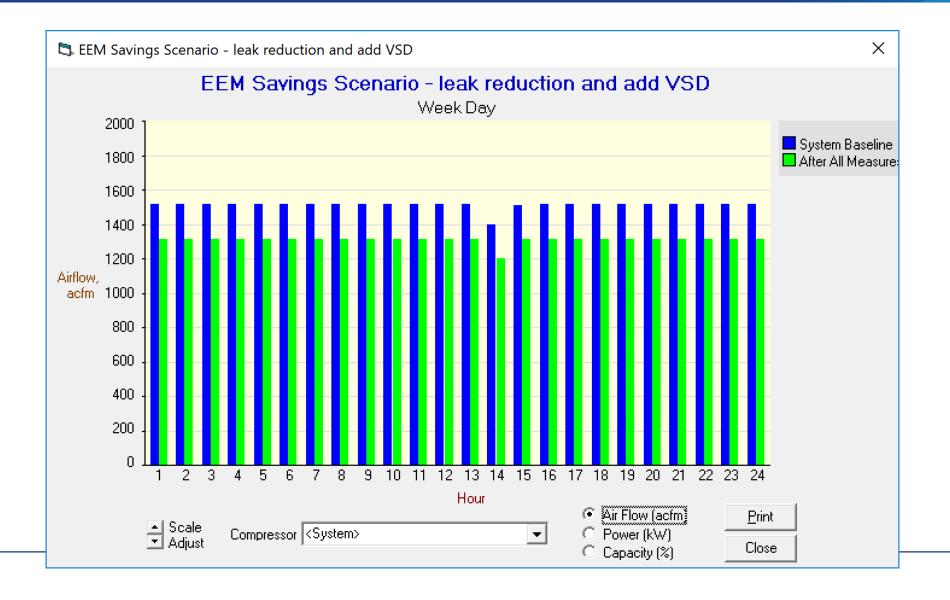
The Baseline

3 System Profiles X										
File	ile Calculators Help									
	- 4	?								<u>C</u> lose
	ct cility Productio	on		▼ Dayty	/pe		▼ ^S	ystem pressure control range	<mark>100.0 - 120.0</mark>	psig
	Data	a Entry			Prof	ile Summary			Totals	
S	ystem Summary	,								
	Daytype		Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Energy Cost, \$	-
	Monday		1,040	1,459	38.4	348.8		349,102	23,564	
	Week Day		6,264	1,509	39.7	346.6	52.5	2,151,606	145,233	
	Sunday		260	1,434	37.7	347.4	51.0	86,809	5,860	
										-
	System Totals ▲		7,564	1,500	39.5	348.8	52.3	2,587,516	174,657 •	
								Сору	7 To Clipboard	
							Tota	al demand cost,	\$ \$0	
	Total operating costs, \$ \$174,657									

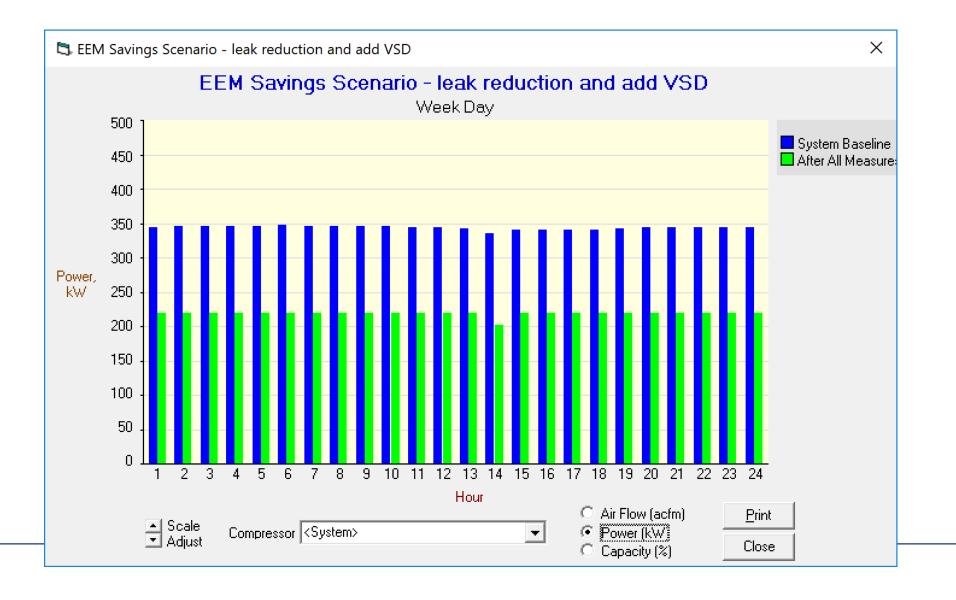
Ē3, E	🗅 Energy Efficiency Measures X									
File	File Calculators Help									
D		a ?	Copy <u>E</u> EM	l Scenario		Life Cyc	le R	es <u>u</u> lts <u>C</u> lose	e	
	Facility System Production	e ^r un	EEM Scenario leak reduction and add VSD							
		Data Entry				Savings St	ummary			
	Description leak	reduction and add	VSD		Indude	Order	Edit/ Review	Data Needs Review		
	D	EMAND SIDE	Be	educe Air Leaks		1 🔻				
			Improve End	Use Efficiency		•				
			Reduce Syst	em Air Pressure		•		Γ		
	S	UPPLY SIDE	Use Un	loading Controls		•				
			Adjust Casca	ading Set Points		-				
			Use Auton	natic Sequencer		-		Γ		
			Re	educe Run Time		2 💌				
		1	Add Primary Ro	eceiver Volume*		•				
	* Available only if air storage capacity was entered in the system module. Visit the system module to edit this value. Only lubricant-injected rotary screw compressors with unloading controls will benefit from adding receiver volume.									

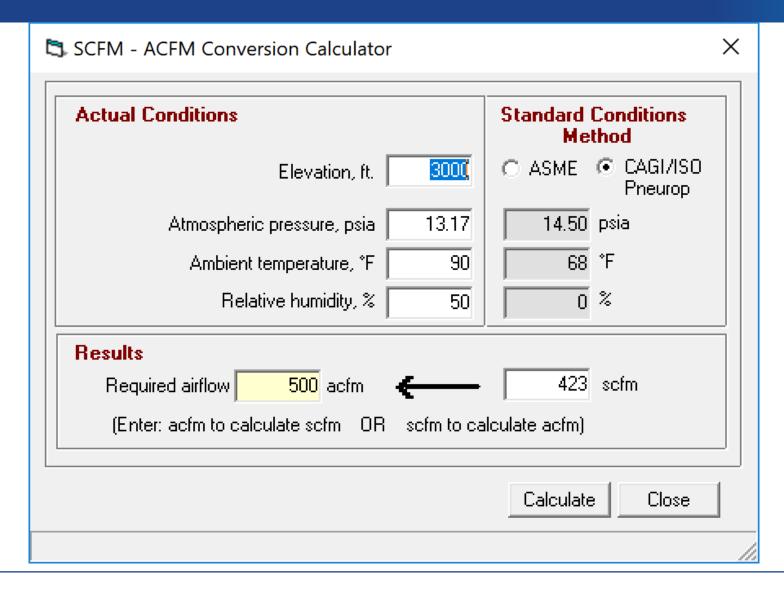
🖏 EEM - Reduce Air Leaks			×
File Calculators Help			
<u>/ I 5 ?</u>		Resu	ılts <u>C</u> lose
Facility		System Production	
Description Reduce Air Measured data Airflow, act		Measure cost, \$ 5000	
Compressor Operations To F Compressor 200 hp QNW 250 hp QNW New 250 hp VSD Maximum hourly system at (according to entered pr	Units Airflow, acfm 0 acfm 200 acfm 0 acfm 0 ↓ ↓	Leak Airflow Values Airflow, acfm Peak system requirement + leaks Leaks 200 Peak system requirement 1314 Reduce leaks by 200 act	% Cs. 39.8 5.3 34.6 fm 100.0 %

🗅 EEM - Reduce Run Time X										
File Calculators Help										
Image: Second se										
Facility O Existing System Production										
Measure Description										
Description Reduce Run Time			Mea	sure cost	,\$ 10	06700				
Proposed Run Time Data										
Daytype Monday		vicheck indica Inline, Uncher								
Compressor Airflow Cap.,acfm	1	2 3	4	5	6	7	8	9 🔺		
200 hp QNW 1,006										
250 hp QNW 1,266										
New 250 hp VSD 1,527			M		Z	2	2	<u> </u>		
Available Airflow, acfm	1527 1	1527 1527	1527	1527	1527	1527	1527	152		
Required Airflow, acfm	0	0 0	0	220	1314	VSD Perfor	mance Graph	4.04		
						ØCC				



3 Energy Efficiency Measures X									
File Calculators Help									
Image: Copy EEM Scenario Life Cycle Results Close									
Facility International Paper System Production									
Data Entry			Savings Summary				nmary		
Description	Energy Savings, kWh	Energy Savings, \$	Energy Savings, %	Demand Savings, kW	Demand Savings, \$	Installed Cost, \$	Total Savings, \$	Simple Payback, years	•
Reduce Air Leaks	457,487	30,880	17.7	64.1	0	5,000	30,880	0.2	
Reduce Run Time	484,848	32,727	18.7	64.9	0	106,700	32,727	3.3	
TOTALS	942,335	63,608	36.4	129.0	0	111,700	63,608	1.8	Ţ
Double-click row to view corresponding measure input data									


Bar Graphs


Bar Graphs

Calculators

Calculators

Cycle Time Calculator
Actual Conditions
Elevation, ft. 3000 Atmospheric pressure, psia 13.17 Compressor capacity, acfm 500 System airflow requirement, acfm 400 System volume, cubic feet 109.0 Full load or cut-in pressure, psig 100.0 Unload or cut-out pressure, psig 110.0
Results Pump-up time, sec. 50.0 Drain-down time, sec. 12.0 Total cycle time, sec. 62.0 Close

Х

Performance Profile Graph

VSD Performance Graph

Another Airmaster+ Example Profile Data

System Profiles File Calculators Help		X <u>C</u> lose	
Select Facility System Production	Daytype Production 💌	System pressure 107.0 - 118.9 psig control range	
Data Entry	Profile Summary	Totals	
Cascade Order - click cell to toggle Compressor AC7400 1 AC7401 2 AC7402 3 ZR 132 VSD Off Profile data type: Power, kW	1 2 3 4 5 6 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3	Copy Prev Col Graph 7 8 9 10 1 1 1 1 2 2 2 2 3 3 3 3 Off Off Off Off 0 - - - 0 - - - 0 - - - 0 - - -	Where did this data come from?
Compressor Units AC7400 kW AC7401 kW	1 2 3 4 5 6 31.3 31.1 31.2 31.1 31.1 31 33.8 33.3 34.9 34.7 34.7 34 105.9 106.0 104.6 104.1 104.6 104	7 8 9 10 ▲ 11.3 31.2 31.3 31.5 3 14.9 34.2 34.3 34.8 3 16.4 107.0 107.0 104.9 10 0.0 0.0 0.0 ✓	

Another Airmaster+ Example Day Type From Log Tool

🔽 LogTool v2										o ×
File Tools Help										
- Onen (Create Database (In to story	le sans data									
Open/Create Database file to store	logger data	4					4			
Open an Exi	ting Database (.MDB	File)	reate a	a Nev	v Database (.MD)	B Fil	e)		Hel	p
File Boehringer Full Data Log	ool.mdb									
Folder D:\Audit Related\Boehrin	ger Ingelheim					-				
,										
Import Logger Data										
Trend Scatter DayT	ype									
		Logo	jer Da	ta in:	Boehringer Full D	ata	LogTool.mdb			
Trend Scatter DayType					-					
View Y1 Y2 X Y Include	Name	Туре	_	nits	Period	_	System	Start	End	Interval (sec.)
Data 🔽 🗖 🗖	100 psi regulator	Pressure 💌		_	Baseline		Not Assigned 💌	6/28/2021 11:45:07	7/14/2021 15:35:59	4
Data 🗆 🔽 🗖 🔽	AC7400		r kW	_	Baseline	•	Not Assigned 💌	6/28/2021 12:04:21	7/14/2021 15:55:13	4
Data 🗆 🗹 🗖 🔽	AC7401	Power -	-	_	Baseline	•	Not Assigned 💌	6/28/2021 12:37:45	7/14/2021 16:28:37	4
Data 🗆 🔽 🗖 🔽	AC7402		r kW	_	Baseline	•	Not Assigned 💌	6/28/2021 13:04:29	7/14/2021 16:55:21	4
	Bio Reactor 1330	Pressu	psig	•	Baseline	•	Not Assigned 💌	6/29/2021 09:31:22	7/15/2021 13:22:14	4
Data	Bio Reactor 1730	Pressure			Baseline	•	Not Assigned 💌	6/29/2021 09:27:22	7/15/2021 13:18:14	4
Data 🔽 🗖 🗖	Dry Tank		r psig		-line	•	Not Assigned 💌	6/28/2021 11:35:29	7/14/2021 15:26:21	4
Data 🔽 🗖 🗖	PI 1390 Top Floor	Pressure 💽	psig	-		•	Not Assigned 💌	6/29/2021 09:35:19	7/15/2021 13:26:11	4
Data 🔽 🗖 🔽 🗖	Wet Tank	Pressure 💽	p sig	-	Basem		Not Assigned 💌	6/28/2021 12:00:32	7/14/2021 15:51:24	4
							0	Select mpressor nline and Day Type	s that are click the	

Another Airmaster+ Example

System	Туре	Period	DayTypeName	ChannelName	Hr_01	Hr_02	Hr_03	Hr_04	Hr_05	Hr_06	Hr_07	Hr_08	Hr_09	Hr_10	Hr_11	Hr_12	Hr_13	Hr_14	Hr_15	Hr_16	Hr_17	Hr_18	Hr_19	Hr_20	Hr_21	Hr_22	Hr_23	Hr_24
Not Assigr	Power	Baseline	Production	AC7400	31.3	31.1	31.2	31.1	31.1	31.3	31.2	31.3	31.5	31.7	31.4	31.1	30.6	31.3	30.9	30.8	31.6	32.4	31.6	31.2	30.9	31.1	31.3	31.7
Not Assigr	Power	Baseline	Production	AC7401	33.8	33.3	34.9	34.7	34.7	34.9	34.2	34.3	34.8	34.1	33.9	34.5	33.4	34.0	34.0	34.5	34.0	33.5	32.7	34.1	33.7	34.0	35.0	34.6
Not Assign	Power	Baseline	Production	AC7402	105.9	106.0	104.6	104.1	104.6	106.4	107.0	107.0	104.9	107.7	107.7	107.1	107.1	106.4	106.2	105.1	107.1	108.6	107.5	105.9	105.0	104.9	104.3	106.8
Date	Day	Day Type																										
Jun-28-20:	Mon	Production	ı								Sveto m	NotAs	cianod	Dorio	I-Baco	lino												
lun-29-20:	Tue	Production	ı								system.	NOLAS	signed	, Fello	I. Dase	inne												
Jun-30-20:	Wed	Production	ı																									
Jul-01-202	Thu	Production	ו			Power (kW)																					
Jul-02-202	Fri	Production	ı			²¹⁰																						
Jul-03-202	Sat	Production	ו			†																						
Jul-04-202	Sun	Production	ı		1	200+						\sim					Λ											
Jul-05-202	Mon	Production	า			t						1 1	1															
Jul-06-202	Tue	Production	า			190+						1	۱.			1	1											
Jul-07-202	Wed	Production	ı			ŧ.	_						46	* /			11				1							
Jul-08-202	Thu	Production	ı			180				0	<u> </u>	1	A	<u>.</u> X			4				/							
Jul-09-202	Fri	Production	ı			-					S	4-1	44	63		JA		X	\sim	4	-							
Jul-10-202	Sat	Production	ı			170									4	1 A												
Jul-11-202	Sun	Production	ı			- <u>-</u>	_	-			-			-	-		2											
Jul-12-202	Mon	Production	ı			160++	+ + + +	+ + + +				40 1					+ + +	+ + + +										
Jul-13-202	Tue	Production	ı			1	2 3	4	56	1	89	10 1	1 12	13 14	15	16 17	18	19 20	21 2	2 23	24							
Jul-14-202	Wed	Production	ı										Houroft	he Day														

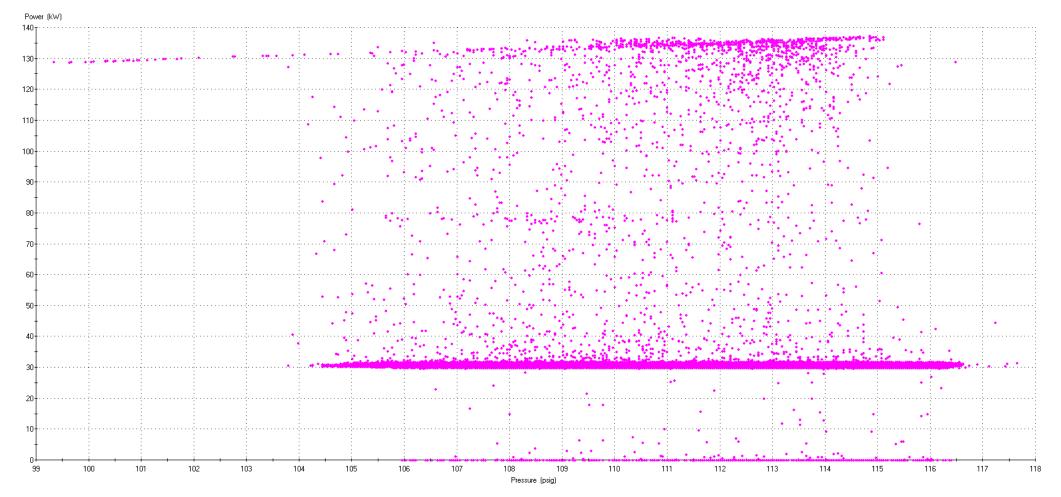
Another Airmaster+ Example

, System Profiles							
ile Calculators Hel	р						
/日 母?							<u>C</u> lo
Select Facility System Production		 ■ ■ Dayty 	ype Produc	tion	▼ S	ystem pressure control range	107.0 - 118.9 psig
Data Entr	у		Prof	ile Summary			Totals
System Summary							
Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual 📥 Energy Cost, \$
Production	8,760	490	19.1	174.5	33.2	1,503,143	150,314
System Totals ∢	8,760	490	19.1	174.5	33.2	1,503,143	150,314 ►
						Сору	y To Clipboard
						al demand cost, operating costs,	

			Compres	sed Air Baseline	e Energy usi	ng \$0.10/kWh	
Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Energy Cost, \$
Production	8,760	490	19.1	174.5	33.2	1,503,143	\$150,314
System Totals	8,760	490	19.1	174.50	33.2	1,503,143	\$150,314

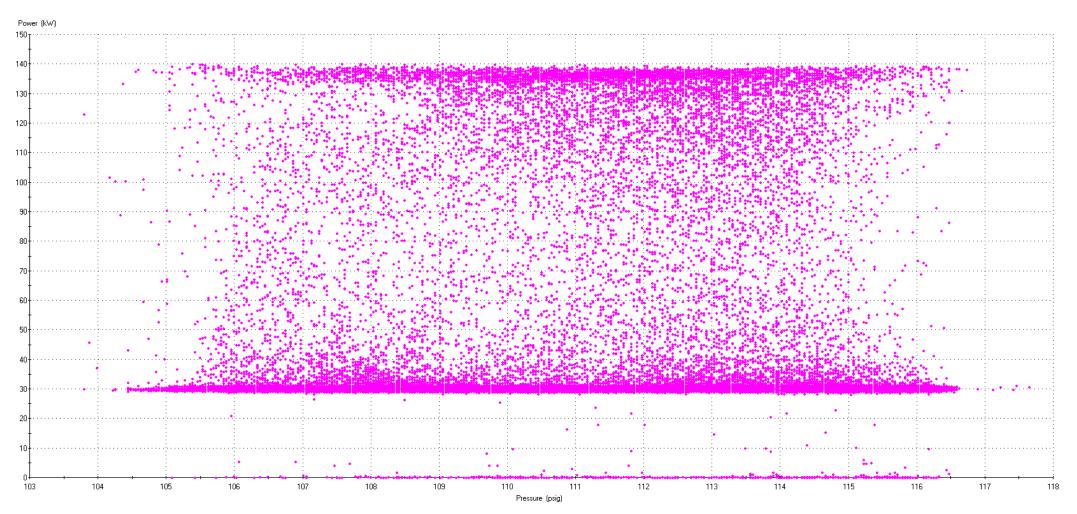
Another Airmaster+ Example

Energy Efficiency Measures								
e Calculators Help		Copy <u>E</u> EN	1 Scenario]	L	₌ife Cycle	Resu	lts <u>C</u> lose
Facility System Production		•	EEM S	cenario EE	M 2			•
Data E	ntry				Sav	ings Sur	nmary	
Description	Energy Savings, kWh	Energy Savings, \$	Energy Savings, %	Demand Savings, kW	Demand Savings, \$	Installed Cost, \$	Total Savings, \$	Simple Payback, years
Use Automatic Sequencer Add AD 400 dryer	570,410 104,541	57,041 10,454			0	32,600 26,351	57,041 10,454	0.6 2.5
TOTALS	674,950	67,495	44.9	77.2	0	58,951	67,495	0.9
Double-click row to view corresp				11.2		00,001		o Clipboard


	EEM Sequence Compressors purchase AD400 dryer												
Description	Energy Savings, kWh	Energy Savings, \$	Energy Savings, %	Demand Savings, kW	Installed Cost, \$	Total Savings, \$	Simple Payback, years						
Use Automatic Sequencer	570,410	\$57,041.00	37.9	65.3	\$32,600.00	\$57,041.00	0.6						
Add AD 400 dryer	104,541	\$10,454.00	7	11.9	\$26,351.00	\$10,454.00	2.5						
TOTALS	674,950	\$67,495.00	44.9	77.2	\$58,951.00	\$67,495.00	0.9						

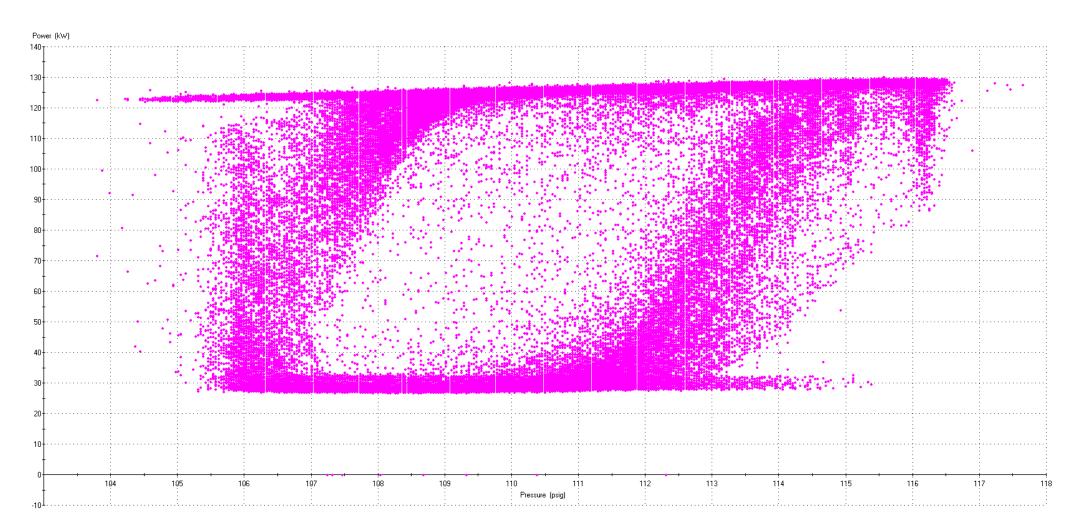
LogTool Scatter Plot

Wet Tank (Pressure) vs. AC7400 (Power) 4 second interval data for System (Not Assigned) and Period (Baseline) Y-Axis time shifted by 1 seconds.

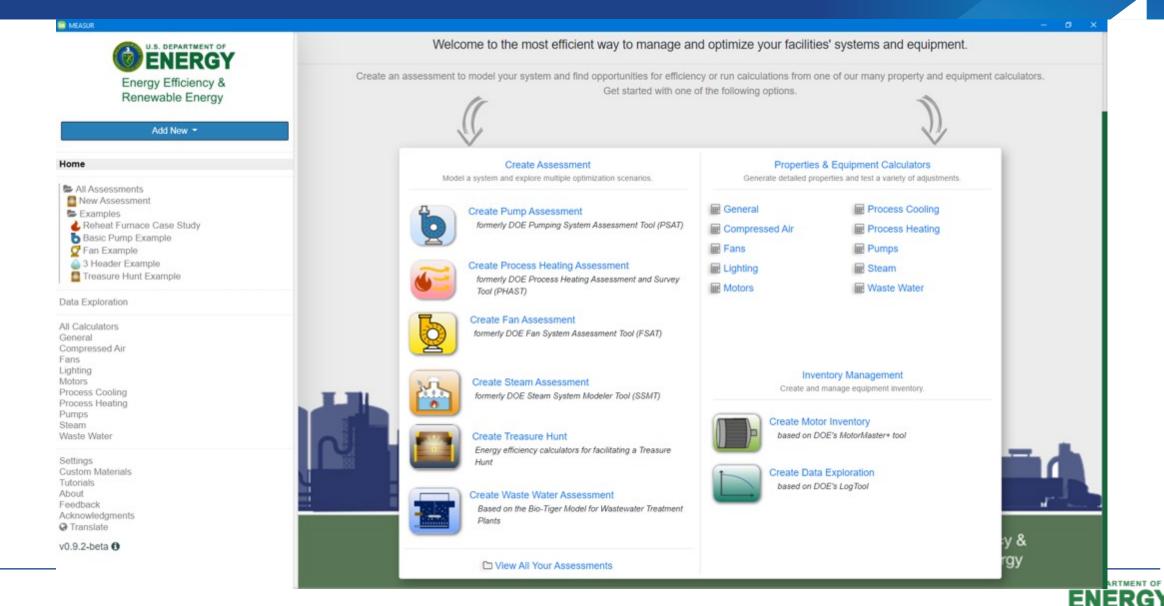


LogTool Scatter Plot

Wet Tank (Pressure) vs. AC7401 (Power) 4 second interval data for System (Not Assigned) and Period (Baseline) Y-Axis time shifted by 1 seconds.



LogTool Scatter Plot


Wet Tank (Pressure) vs. AC7402 (Power) 4 second interval data for System (Not Assigned) and Period (Baseline) Y-Axis time shifted by 1 seconds.

MEASUR Tool

MEASUR Tool

Compressed Air Calculators

Compressed Air Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air usage.

Compressed Air Pressure Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air system pressure.

Actual to Standard Airflow

The calculator converts ACFM (Actual cubic feet per minute) to SCFM (Standard cubic feet per minute) and vice versa for the given conditions using either ASME standard conditions or CAGI/ISO standard conditions.

Leak Loss Estimator - Bag Method

Estimates the leakage losses in a compressed air system using the bag method

Pneumatic Air Requirement

Estimate the quantity of air required by a specific single acting or a double acting piston cylinder compressor

Compressed Air - Leak Survey

Used to quantify the energy savings associated with reducing compressed air leaks.

MEASUR Tool

Receiver Tank Sizing

Calculate the required size of the receiver tank

Usable Air Capacity

Estimate the quantity of compressed air that is available for use

Pipe Sizing

Determine pipe diameter when the volumetric flow velocity, pressure, and design velocity are known

Velocity in the Piping

Estimate the velocity of compressed air throughout system piping

System Capacity

Determine total capacity of compressed air system or specific pipes and receiver tanks

Operation Costs

Estimate the cost of operation of the compressor in both fully and partially loaded instances

Data Explo	ration	Setup Day Type Analysis Visualizatio	à:		a 🕹 🗐 🕷
nport Data	2 Select Header Row	Refine Data 4 Map Date and Time			
Select a header r	ow and advance to the next file				
Apply my	selections for all datasets				
International_	Paper_Co_inside_200hp_QSI1.csv	International_Paper_Co_outside_QSI_n250h.csv			
Select Header	Row				
0	Plot Title: International Paper Co insi	ide 200hp QSI1			
۲	*		Date Time, GMT-07:00	200hp QSI1000, kW	
0	t :		01/11/18 11:35:38 AM	179.256	
0	2		01/11/18 11:35:41 AM	179.159	
0	3		01/11/18 11:35:44 AM	179.061	
0	4		01/11/18 11:35:47 AM	178.964	
0	5		01/11/18 11:35:50 AM	179.159	
0	6		01/11/18 11:35:53 AM	179.256	
0	7		01/11/18 11:35:56 AM	179.451	
0	ð		01/11/18 11:35 59 AM	179.354	
0	9		01/11/18 11:36:02 AM	179.451	

Back

Data Explo	ration		Setup Day Type Analys	s Visualization		ê ± 8 #
import Data	2 Select Header Row	3 Refine Data	Map Date and Time			
Mark the column	s to be used for analysis and advance	e to the next file				
Apply my	selections for all datasets					
International_	Paper_Co_inside_200hp_QSI1.csv	International_Paper_Co_outsid	de_QSI_n250h.csv			
Column Name		Use Cole	umn	Alias	Displa	r Unit
*				8	+Add	
Date Time, GM	T-07:00			Date Time, GMT-07:00	+Add	
200hp QSI1000	, KW			200hp QS11000, KW	+Add	

Original Data		
#	Date Time, GMT-07:00	200hp QS11000, kW
1	01/11/18 11:35:38 AM	179 256
2	01/11/18 11:35:41 AM	179.159

Data Exploration	*	Setup Day Type Analysis Visualization		A 🕹 🗐 1
mport Data 2 Select He	eader Row 🛐 Refine Data	Map Date and Time		
 Mark "Includes Date" if the c 	ay Type Analysis and time series data to column contains a date and time or a do f the column contains a time only	visualizations. Advance ahead if you won't be working with time ate only	data	
> Timestamp Help				
Apply my selections for all data	asets			
International Danas Co. Inside 200	hp_QSI1.csv International_Pap	per_Co_outside_QSI_n250h.csv		
International_Paper_Co_Inside_200				
Column Name		Includes Date	Includes Time Only	
		Includes Date	Includes Time Only	
Column Name			12/14/35/00/00/00/00/00/00/	

Back

Better

lants

Data Exp	loration	Setup Day Type Analysis Visualization		ê 🕹 🗐 🌴
raph Data Table	Data: Total Aggregated Equipment Data *			Day Types Days Apply To Assessment
350 300 250		Total Aggregated Equipment Data (H	iourly Data Average)	Jan 11, 2018 Jan 12, 2018 Jan 13, 2018 Jan 14, 2018
2250 200 150 150 50 -50		• • • • •	• • • • •	
Januar	Weekday × Weekend Excluded +Add New Reset ry 2018 We Th Fr Sa	Hourly Day Type Average Interval Hourly • Select Columns for Total Aggregated Equipment C Apply my selections for all datasets	Data:	Update Analysis
0000	3 4 5 6 10 11 12 13 17 18 19 20	International_Paper_Co_Inside_200hp_QSI1.csv Column Name	International_Paper_Co_outside_QSI_n250h.csv	Enter LogTool Data Into AIRMaster
14 15 16 1 21 22 23 2 28 29 30 3	9999	200hp QSI1000, kW		

raph Da	ta Table	Data: Total	Aggrega	ted Equipn	nent Data	-												Display	Selected	Display All	Day Type	es Days	Apply To A	Assessm
Оау Туре	e Summar	ies (Total A	ggregate	ed Equipr	nent Data)																		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
eekday	228.377	228.905	228.787	242.79	286.037	316.346	332.26	346.52	346.149	345.545	344.301	343.832	342.328	332.301	340.319	340.034	339.788	340.325	342.196	342.645	343.561	343.737	343.301	343.89
eekend	344.453	337.26	294.106	242.105	230.29	142.398	141.889	141.907	142.721	142.478	142.019	141.54	140.985	140.712	140.507	139.788	139.802	140.537	141.008	141.615	141.356	140.843	141.28	141.52
cluded	343.151	344.6	343.84	343.205	343.652	343.678	345.983	345.427	344.92	343.188	342.499	343.677	341.853	340.265	338.766	343.887	344.11	343.776	347.291	347.341	349.506	349.346	349.406	350.71
																							Cop	oy Table
ay Sum	maries (Te	otal Aggreg	ated Eq	uipment [Data)																			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
eekday																								
an 12, 2018	350.50	3 350.457	349.767	7 350.922	2 349.444	350.735	350.126	349.697	348.726	347.911	348.143	348.613	346.908	343.422	343.798	343.359	343.994	344.688	346.835	347.03	350.133	349.088	350.24	350.6
n 15, 2018	-62.48	-62.481	-62.479	-62.48	135.607	340.068	340.692	346.157	347.243	347.519	348.732	347.609	345.048	343.513	341.95	341.139	340.554	341.815	343.719	344.359	345.83	346.652	346.369	346.1
n 16, 2018	347.61	347.97	347.122	346.248	8 347.541	347.869	347.655	346.948	347.811	345.907	343.795	343.826	342.966	340.637	341.396	342.32	341.424	341.937	343.92	343.374	343.997	345.062	343.421	344.8
in 17, 2018	344.12	8 344.633	344.586	344.258	8 346.296	347.187	345.95	346.432	344.017	345.032	342.959	343.33	341.718	340.763	341.098	341.488	341.749	342.284	344.047	344.131	344.641	344.578	344.717	345.6
an 18, 2018	344.12	9 344.662	345.205	345.692	2 346.339	346.123	346.506	345.632	345.089	344.363	341.707	339.446	338.237	279.357	336.221	335.939	335.253	335.215	337.038	338.875	338.816	338.304	338.122	337.4
an 19, 2018	337.22	9 339.573	339.789	338.727	7 339.595	339.627	341.793	339.637	339.3	338.219	336.391	336.754	336.199	334.947	336.405	335.468	334.589	335.592	337.082	337.984	338.112	338.727	336.751	339.25
an 22, 2018	-62.479	-62.48	-62.48	36.16	137.439	142.81	253.096	351.139	350.856	349.867	348.384	347.243	345.219	343.466	341.363	340.524	340.952	340.747	342.73	342.761	343.397	343.746	343.488	343.18
leekend																								
an 13, 2018			351.782				351.297	351.961	352.383	352.372	349.311	346.937	345.905	345.548	344.381	343.145	343.407	344.375	346.107	344.937	346.216	345.54	345.22	346.34
an 14, 2018			341.634			-62.48	-62.481	-62.479	-62.48	-62.48	-62.482	-62.481	-62.48	-62.48	-62.48	-62.488	-62.483	-62.48	-62.48	-62.479	-62.479	-62.48	-62.48	-62.48
an 20, 2018			339.17	341.079				340.627	343.462	342.497	343.729	344.185	342.992	342.259	342.607	340.974	340.766	342.729	342.885	346.484	344.162	342.792	344.86	344.71
an 21, 2018	341.5	316.585	143.837	-62.476	-62.479	-62.478	-62.478	-62.48	-62.48	-62.478	-62.48	-62.48	-62.477	-62.479	-62.481	-62.48	-62.481	-62.478	-62.479	-62.48	-62.476	-62.48	-62.479	-62.48
xcluded												246.240	245.07	242.405	242.270	242.007	244.44	242 770	247.204	247.244	240 500	240.240	240,400	250.74
an 11, 2018 an 23, 2018	343.15	1 344.6	343.84	343.205	5 343.652	343.678	345.983	345.427	344.92	343.188	342.499	346.218 341.135	345.07 338.636	343.465 337.064	342.276 335.257	343.887	344.11	343.776	347.291	347.341	349.506	349.346	349.406	350.71
11 23, 2010	545.15	1 344.0	343.04	343.20	5 545.052	343.070	345.505	343.427	344.32	545.100	342.433	341.135	330.030	557.004	335.257									
																							Cop	oy Tabl
								_																
Devit					dod A		Deset	Dav	Type Avera	age Interval	Hourly	~								Update An	alvsis			
Day T	ypes:	Weekday	< weeker	nd Exclu	ded +A	dd New	Reset	,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-g	ribury									oputora	iury515			

NT OF

Setup Profile F	Profile Sur	nmary Tal	ole P	Profile	Sum	mary	Graph	is 🖓										VSD Selected Scenario
SELECT PO	OTENTI	AL AD	JUS	Т <mark>МЕ</mark>	NT	PRC	JEC	TS								MODIFICATION RESUL	TS PERFORMANCE PR	OFILE HELP NOTES
Select potential adjustment projects to explore opportunities to increase efficiency and the effectiveness of your system.														All Day Types ~				
				A	dd Ne	w Sc	enario										Baseline	VSD
Modification Name VSD																		
Reduce Run Time supply														1 ~	Percent Savings (%)		39.6%	
Implementation Cost 106700 \$														\$				
Day Туре						W	Weekday									Flow Reallocation Energy Savings Reduce Air Leaks Energy Savings		391,627 kWh 585,745 kWh
	Capacity acfm	Shutdown Timer	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	Reduce Run Time Energy Savings Peak Demand	 346.6 kW	-233,967 kWh 273.86 kW
200 hp QNW	933 acfm					0			0	D				D		Annual Energy	2,620,045 kWh	1,876,639 kWh
250 hp QNW	1261 acfm								D				0			Annual Emission Output Rate	1,050,821 tonne CO ₂	752,664 tonne CO ₂
New Compressor	r 1141 acfm															Peak Demand Savings Annual Energy Savings		72.74 kW 743.405 kWh
Available Airflow			933	933	933	933	933	2,074	2,074	2,074	2,074	2,074	2,074	2,074	2,074	Annual Emission Savings		298,158 tonne CO ₂
Required Airflow			705	708	709	775	907	1,085	1,347	1,526	1,527	1,524	1,524	1,521	1,513			
Power, kW			159.5	159.7	159.8	164.1	172.7	244.1	300.9	357.7	357.8	357.6	357.6	357.4	344.2	Flow Reallocation Savings Reduce Air Leaks Savings		\$25,847.38 \$55,352.94
Deduce Air Le															Reduce Run Time Savings		-\$22,109.88	
Reduce Air Le	Reduce Air Leaks Demand 2 V														Peak Demand Cost	\$0.00	\$0.00	
Implementation Cost 5000 \$														\$	Annual Energy Cost	\$247,594.21	\$177,342.40	
Leak Flow							600 acfm									Annual Cost Peak Demand Cost Savings	\$247,594.21	\$177,342.40 \$0.00
Leak Reduction 50														%	Annual Energy Cost Savings		\$70,251.80	
Improve End Use Efficiency Demand Off ~														Annual Cost Savings		\$70,251.80		
Reduce Syste	m Air Pre	essure	Supply												Off 🗸			
Add Primary F	Add Primary Receiver Volume supply Off ~													Off ~				
Add Primary F	Receiver	Volume	Supply	<i>(</i>											Off ~			

Next Week Session 4 – Air Treatment

- Compressed air must be dried. This is an undeniable statement of fact.
 - Today's modern industry can no longer tolerate the problems of wet, dirty compressed air.
 - Wet air causes rust, pitting, blockages, and freeze-ups, with resultant component failure and product rejection.
 - Wet air is a major contributor of downtime, causing millions of dollars of lost production.

Homework for Week 3 – Compressor Controls

- Explain each of the following control methods:
 - Start/Stop
 - Load/Unload
 - Modulating
 - Variable Displacement
 - Variable Speed
 - Sequencer
 - Master Compressor Controller?
 - Pressure Flow Control?

Questions?

