

In-Plant Trainings

Virtual Platform Session 1 The Basics

11111111

What is an In-Plant Training?

- In-Plant Trainings (INPLTs) are system-specific workshops led by Better Plants experts that train participants on how to identify, implement, and replicate energysaving projects.
- The goal is to help manufacturing plants reduce energy consumption and become more efficient.
- During Pre-Covid days, Better Plant partners hosted an on-site, three-day training at one of their facilities, and invited others to attend.
- Due to the challenges from Covid, we started training virtually using eight (8) 2-hour online training sessions. Now we are back to in person but still maintain the virtual sessions such as this one.
- Through Better Plants:
 - Industrial organizations commit to efficiency goals
 - Receive technical assistance and national recognition for their achievements

The Facilitator

- Frank Moskowitz Draw Professional Services
 - Compressed Air Challenge Instructor for Fundamentals & Advanced Workshop as well as an Instructor for AIRMaster+ Qualified Specialist Workshop
 - DOE Compressed Air System Energy Expert
 - In-Plant Training & Save Energy Now Assessments
 - CAGI Certified Compressed Air System Specialist
 - Co-Vice Chair <u>ASME EA-4 Energy Assessment for</u> <u>Compressed Air Systems</u>
 - International Standards Organization (ISO) Technical Advisory Group Member
 - Air compressors and compressed air systems energy management
 - Contact Information:
 - fmoskowitz@drawproservices.com
 - 602-809-4195

INSTRUCTOR

Assessment Process

Prepare

Learn how to gather information

Participate

 Find out what to expect and how to make the most of the assessment through examples, quizzes, homework.

Implement

 Take action on the opportunities identified in this training and start saving energy.

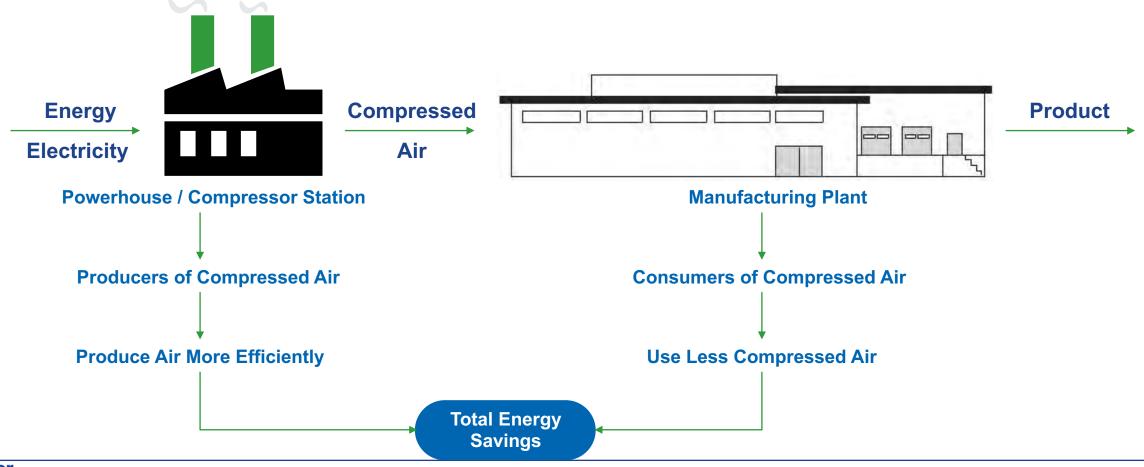
Communicate

 Share the success from your assessment with other plants and multiply benefits throughout your company

Agenda

- Week 1 Compressed Air Systems Basics
- Week 2 Compressor Types and Ventilation
- Week 3 Compressor Controls
- Week 4 Air Treatment
- Week 5 Distribution System
- Week 6 Demand Side and Inappropriate Uses
- Week 7 System Volume vs Storage
- Week 8 Wrap Up Presentations

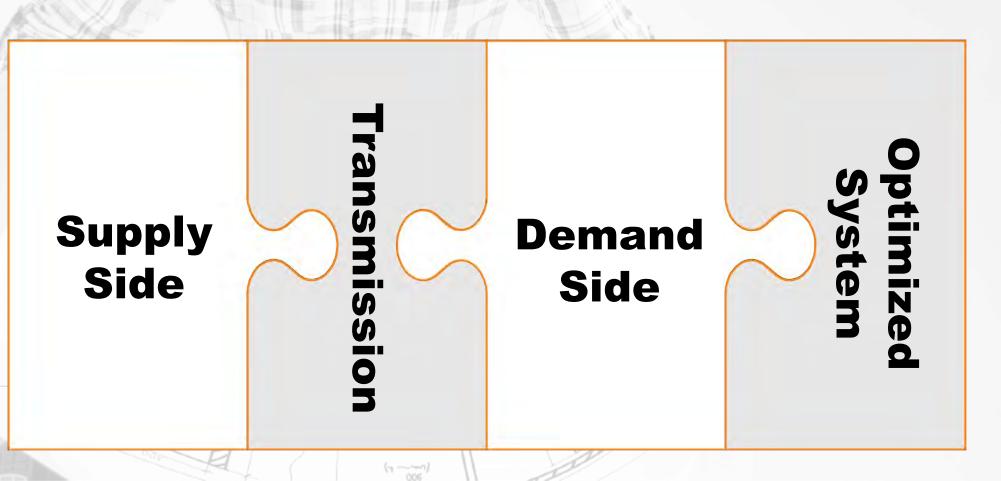
Compressed Air Systems Basics


Compressed Air System Energy Savings

Compressed Air Systems Approach plant efficiency: energy >> product

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

Treasure Hunt


What am I looking for?

Treasure Hunt

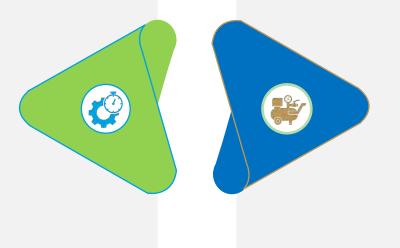
The prime consideration for any compressed air system is the ability to generate air with the least amount of energy.

Having done this, the next consideration is to transmit energy from the point of generation to the point of use with the least loss.

The final consideration is to eliminate waste and use the least amount of air for the production process.

Market research continues to make it clear that the majority of compressed air systems in use today are inefficient and because of this, often limit their own productivity.

The value trapped in poorly designed and operated air systems in the U.S. markets alone are estimated to range from a low of \$1 billion to as much \$3.2 billion in energy costs alone.



What Are My Goals?

Produce more efficiently

- Improve Compressor Control
- Discharge Pressure?

Use less compressed air

- Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
- What is the Pressure at End Uses
- How does compressed air support production?

Understanding how compressed air is used is the single most important step to effective management.

Look from the System Level Approach

- Improve Compressor Control
- Reduce System Pressure
- Reduce Air Demand

What Do I Look For?

Produce more efficiently

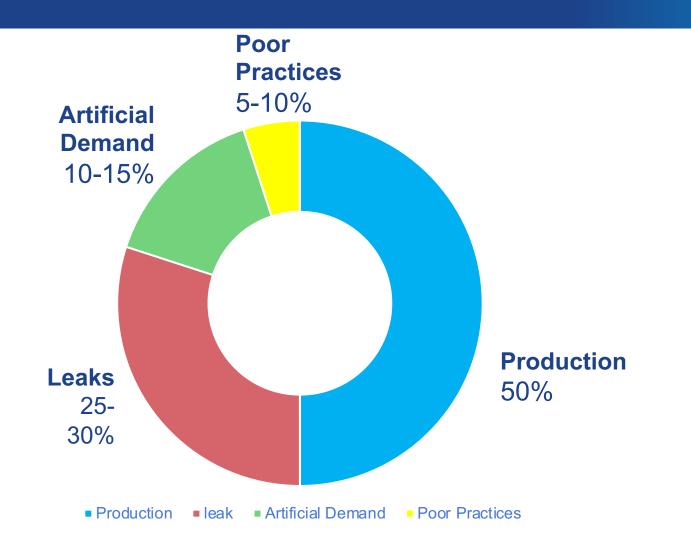
- Improve Compressor Control response.
- Discharge Pressure?
- Use less compressed air
 - Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
 - What is the Pressure at End Uses
 - How does compressed air support production?
 - Understanding how compressed air is used is the single most important step to effective management.

Why Should You be Interested in Optimizing?

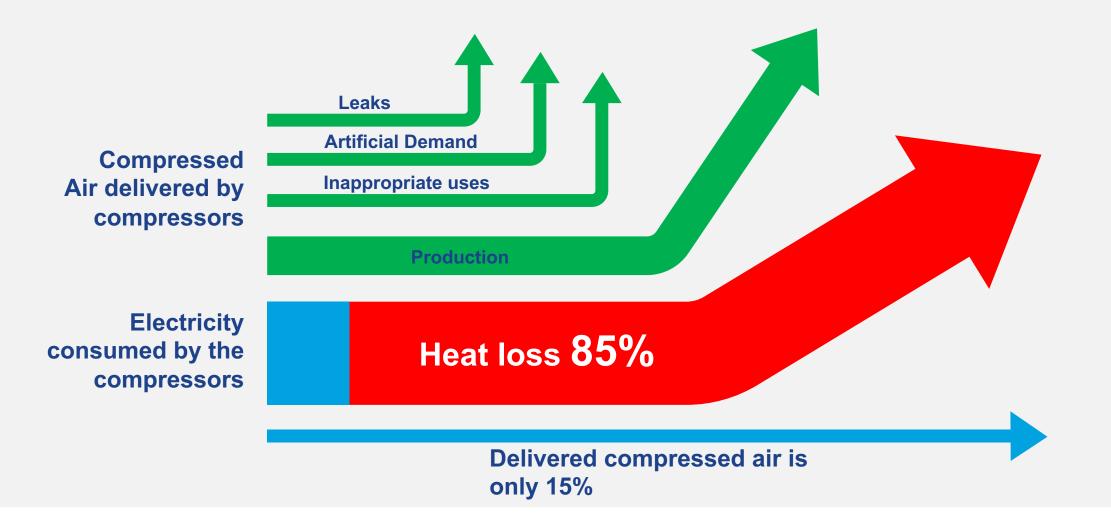
- Because compressed air optimization will have a huge impact on your bottom line.
- Compressed Air accounts for 10%-15% (at a minimum) of a company's electrical costs.

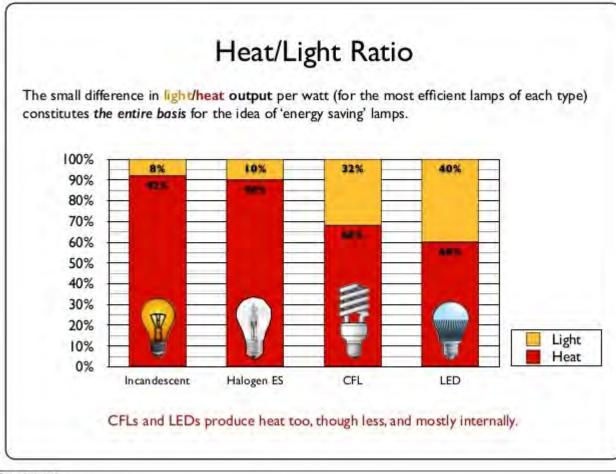
Compressed Air Versus Other Energy Sources

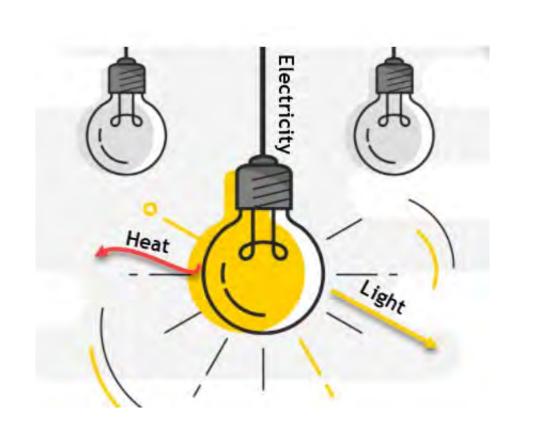
Where does the air go after it leaves the compressor room?


- You may be surprised, in most industrial plants, only 50% of the compressed air generated supplies productive air use.
- The other 50% is consumed by various losses.
- The losses are

Artificial Demand (10-15%)		Poor Applications (5-10%)	
-------------------------------	--	---------------------------	--

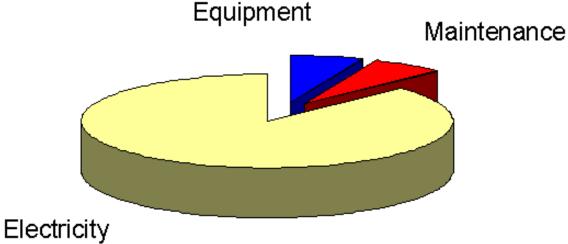

Where does the air go?


Not very efficient!



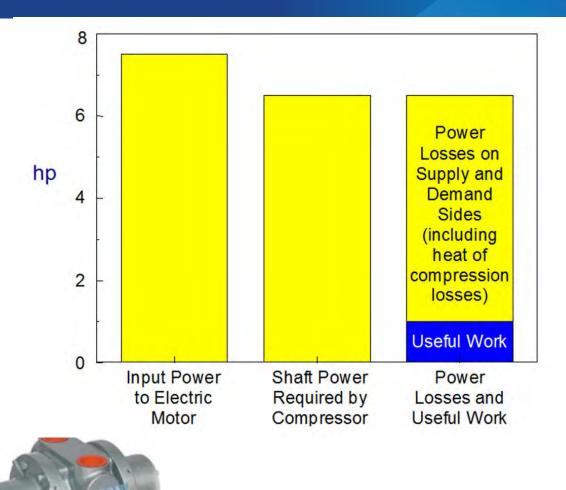
Not very efficient!

Friday 24 April 15


Compressed Air Systems Total Cost of Ownership

Equipment cost and maintenance cost represent only a small part of the total cost of operating a compressed air system.

Electrical cost usually exceeds 75% of the total operating expense.



Compressed Air Versus Other Energy Sources

- 1 hp air motor = 7-8 hp of electrical power
 - 30 scfm @ 90 psig is required by the air motor
 - 6 7 bhp at compressor shaft required for 30 scfm
 - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5-day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194

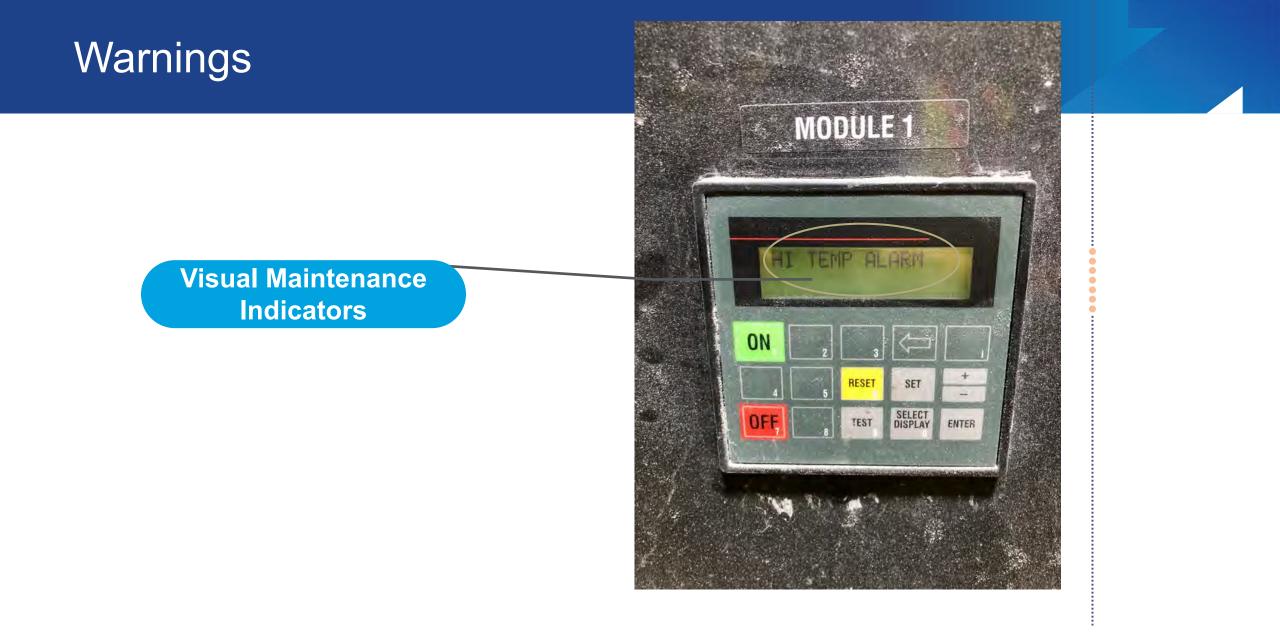
What Measurements Should I Record?

Produce more efficiently

- Improve Compressor Control
- Discharge Pressure?
- Use less compressed air
 - Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
 - What is the Pressure at End Uses
 - How does compressed air support production?
 - Understanding how compressed air is used is the single most important step to effective management.

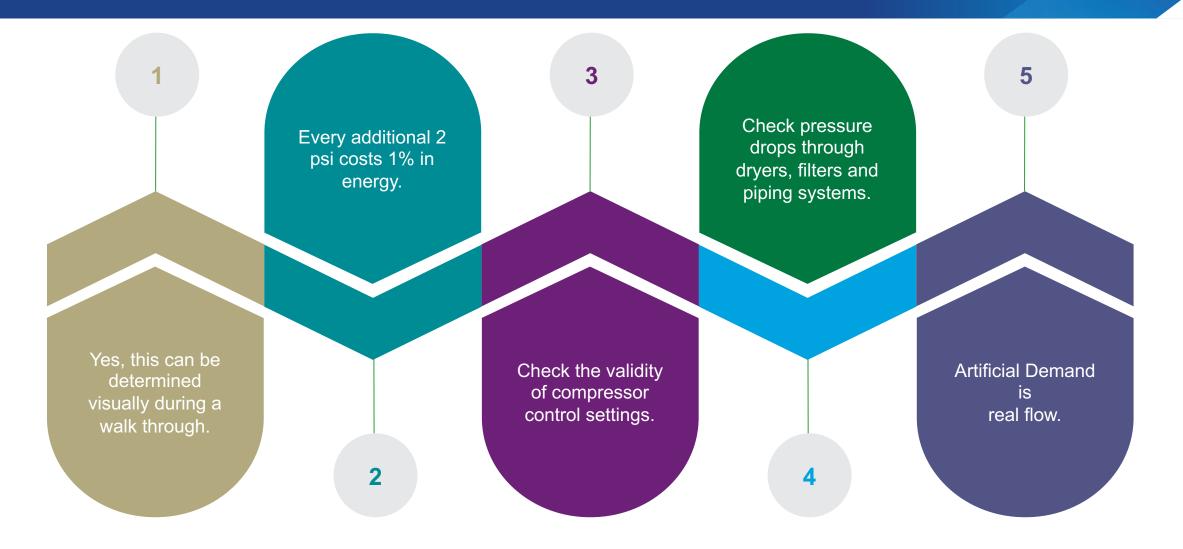
Where Do I Start?

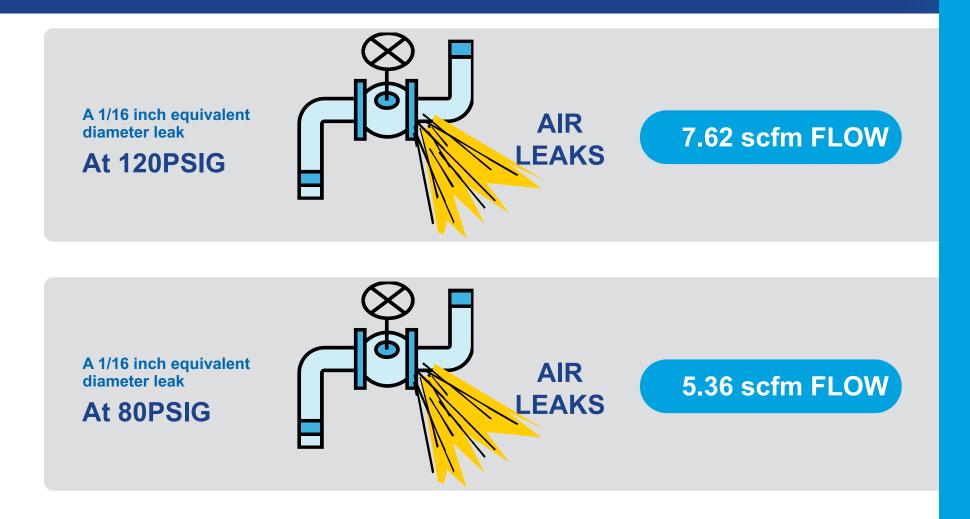
First, lets have a look at opportunities in the compressor room.....


Centrifugal Controls

Blow off open

Proper Ducting


Poor Ducting Design


Reduce Pressure at Source

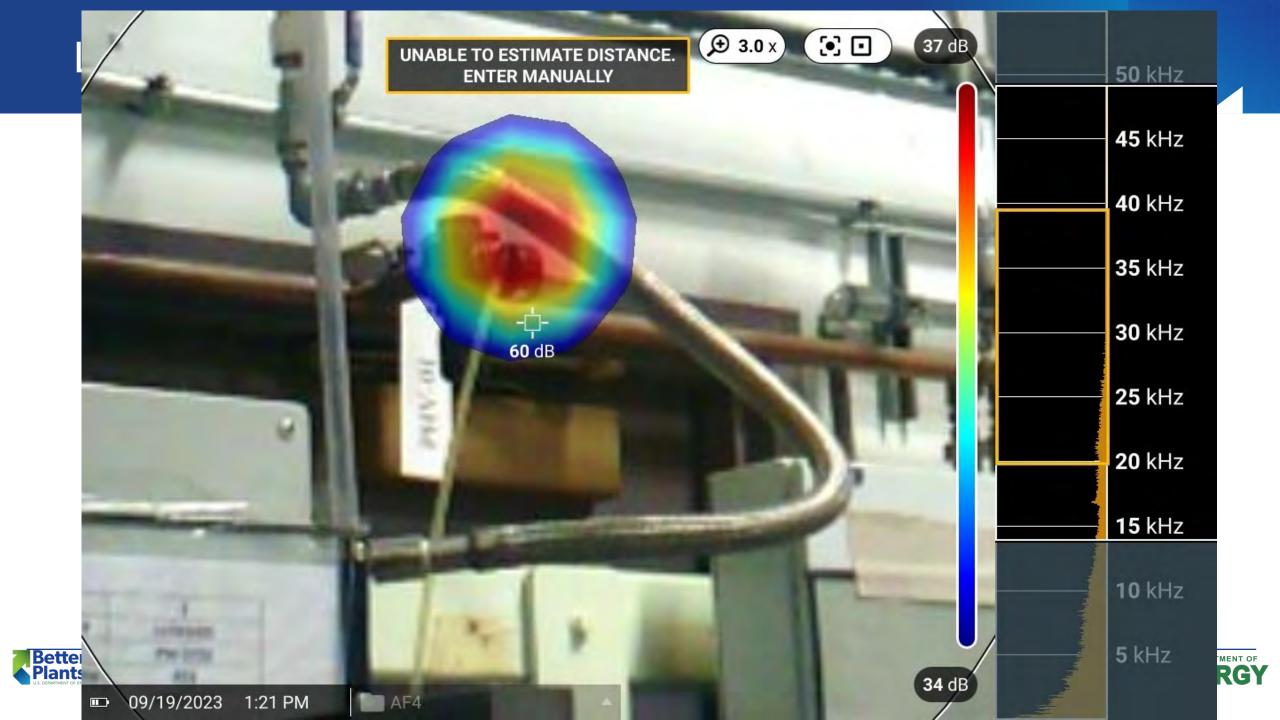
Artificial Demand

A leak consumes 42% more air at 120 psig than at 80 psig adding to the artificial demand on the system..

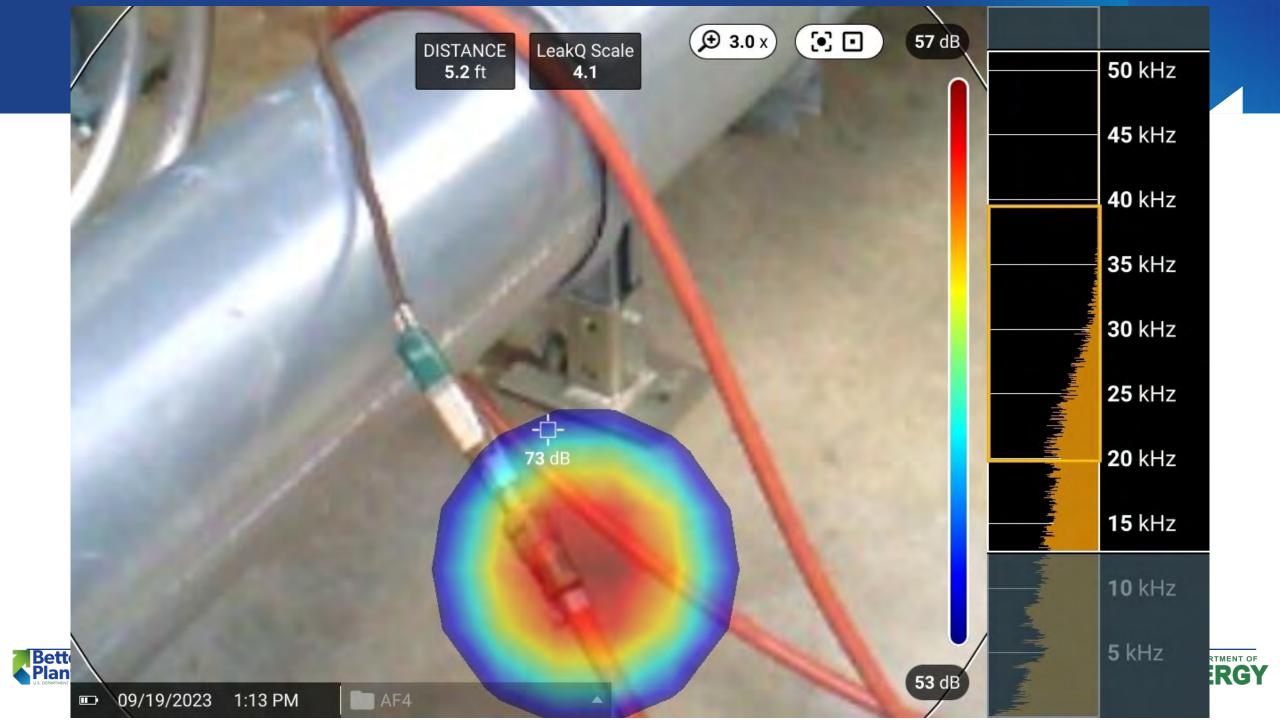
How Acoustic Camera Leak Detection Works

- The acoustic camera uses microphones and sophisticated signal processing and software to identify the loudest source of noise when many sources are present.
- It allows the user to pinpoint sound leaks in walls, doors, and floors and target the leak

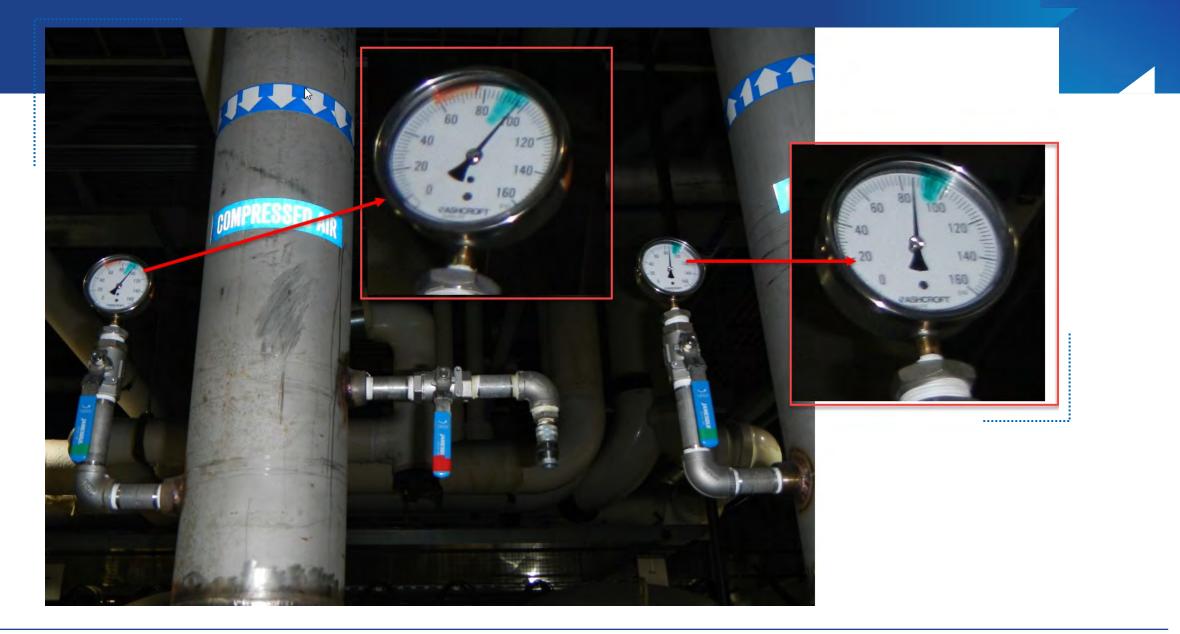
Imager Vs. Conventional Ultrasonic Leak Detector



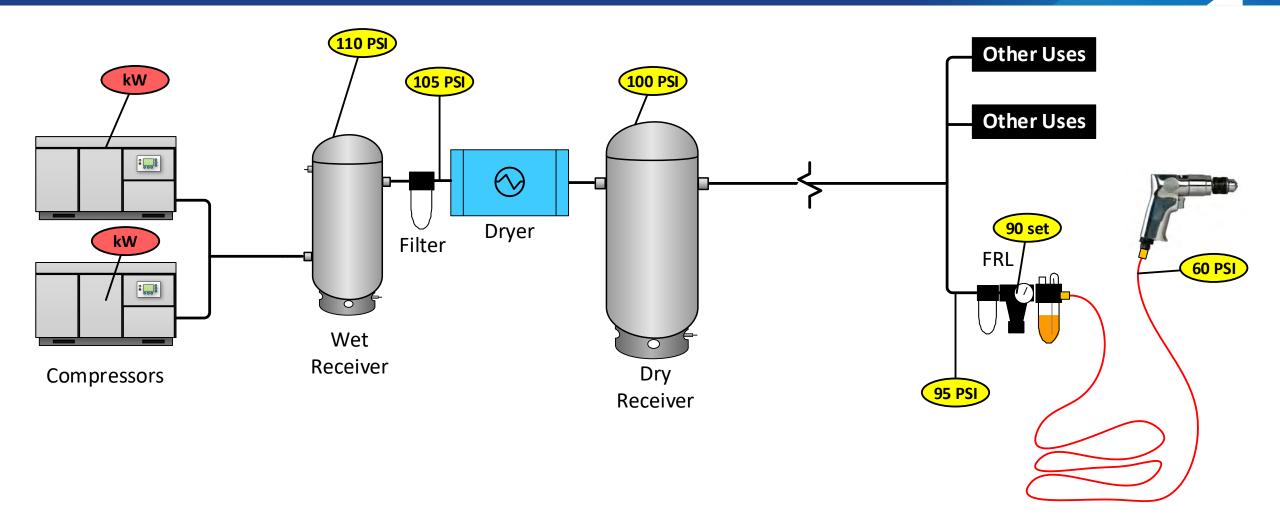
- With acoustic imager type, multiple microphones enable the inspection of an expansive area from a distance.
- A conventional Ultrasonic Leak Detector inspects plants point by point looking for leaks in each hose, coupling, trap, drain, valve and gasket.
 - What if I don't have an ultrasonic leak detector?



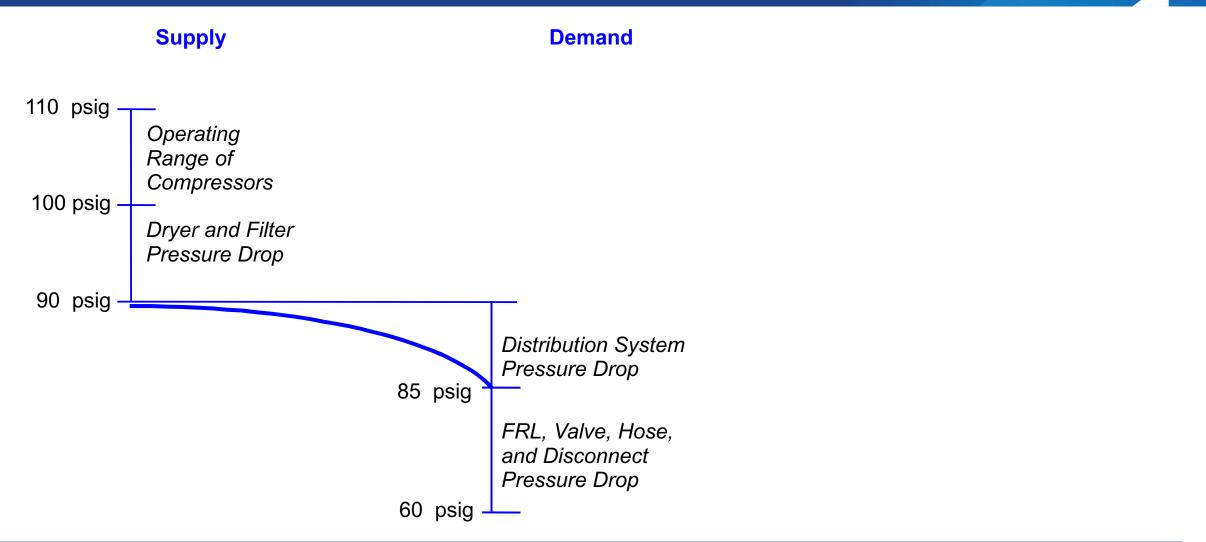


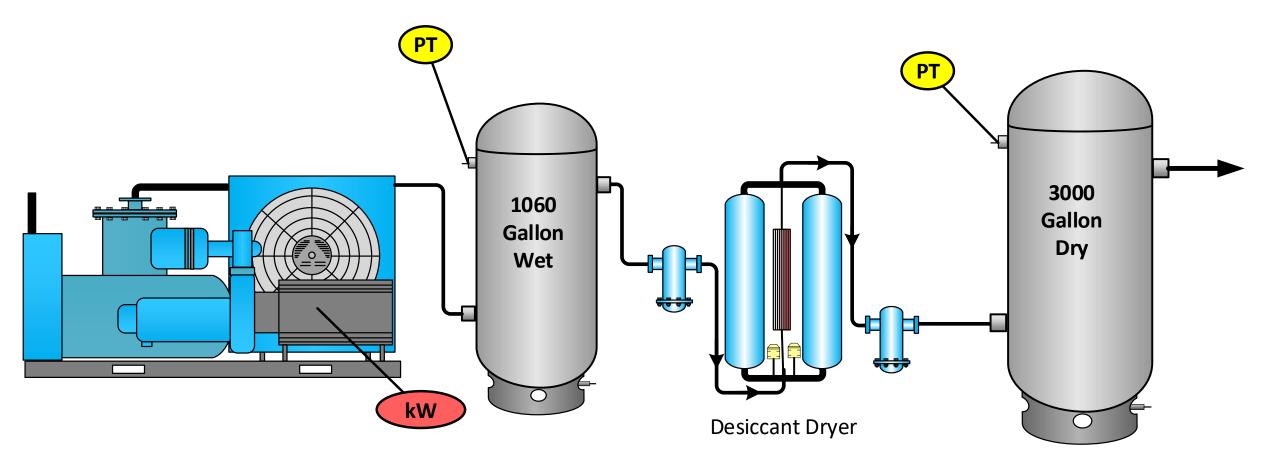


Reduce Pressure at Source (Cont'd)

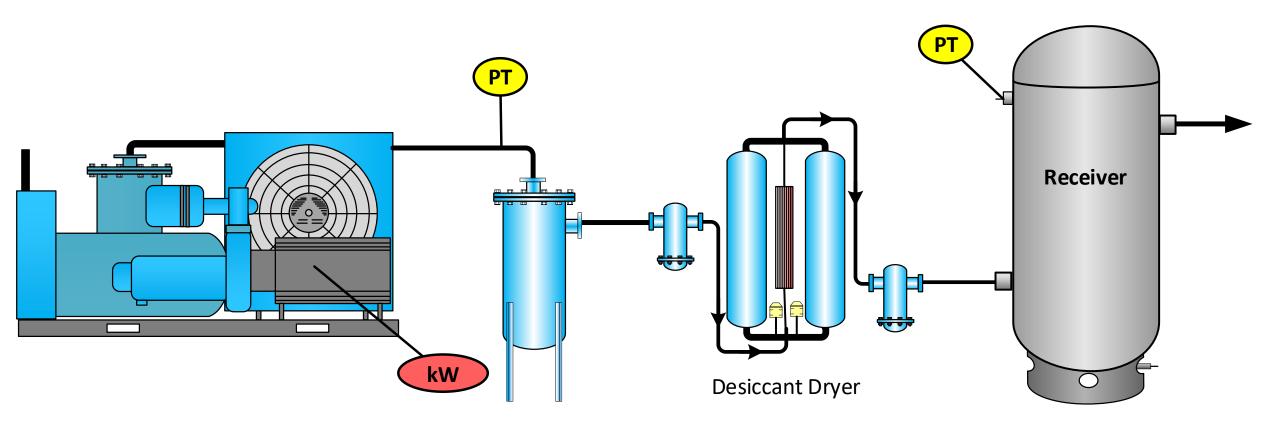

Reduce Pressure at Source (Cont'd)

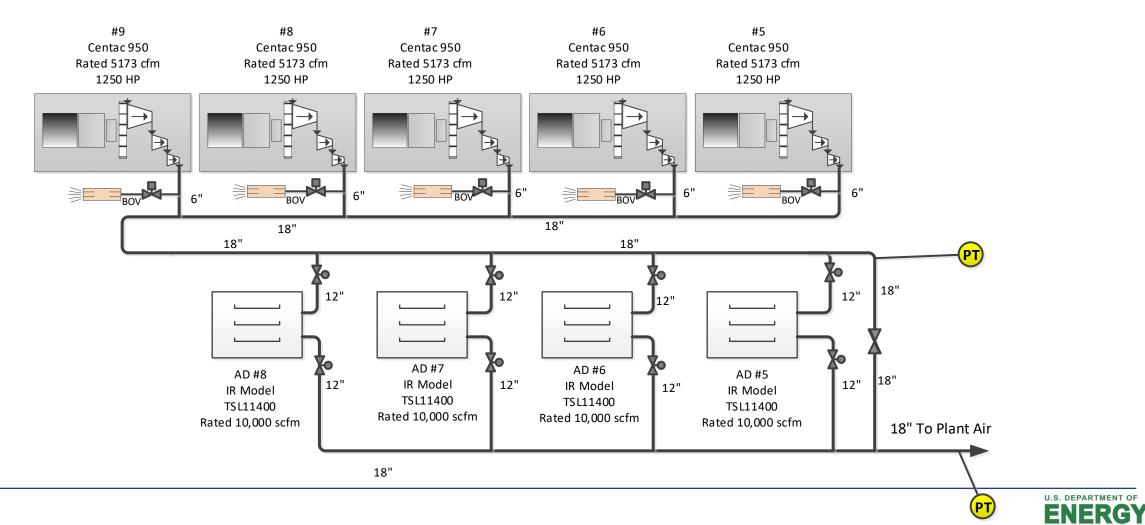
A.....

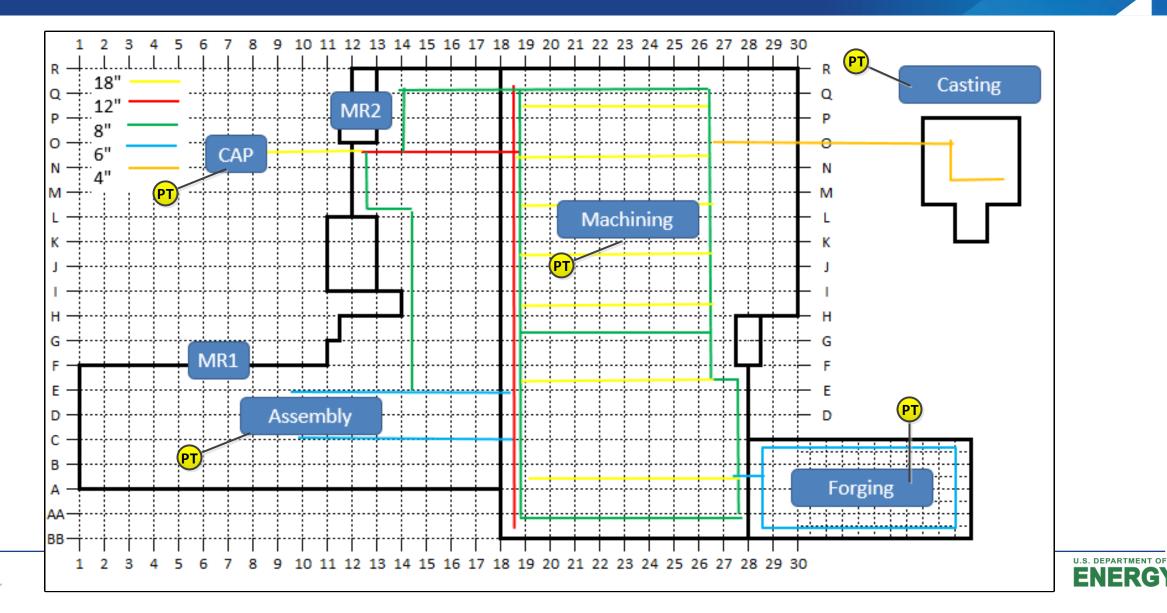




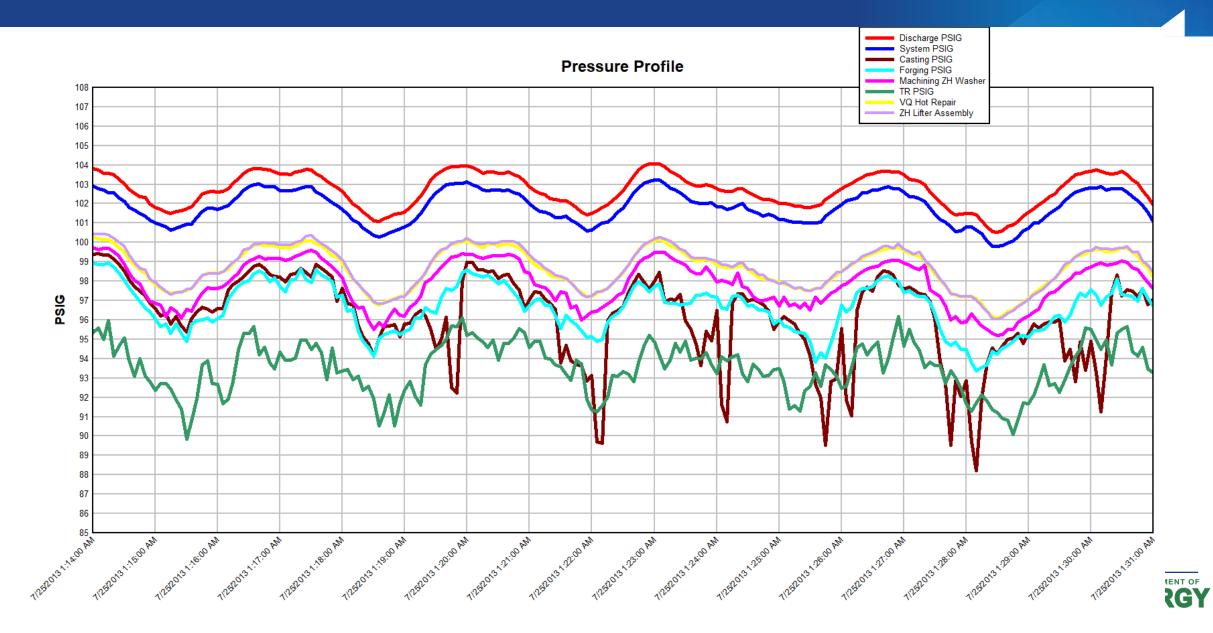
System Pressure Profile



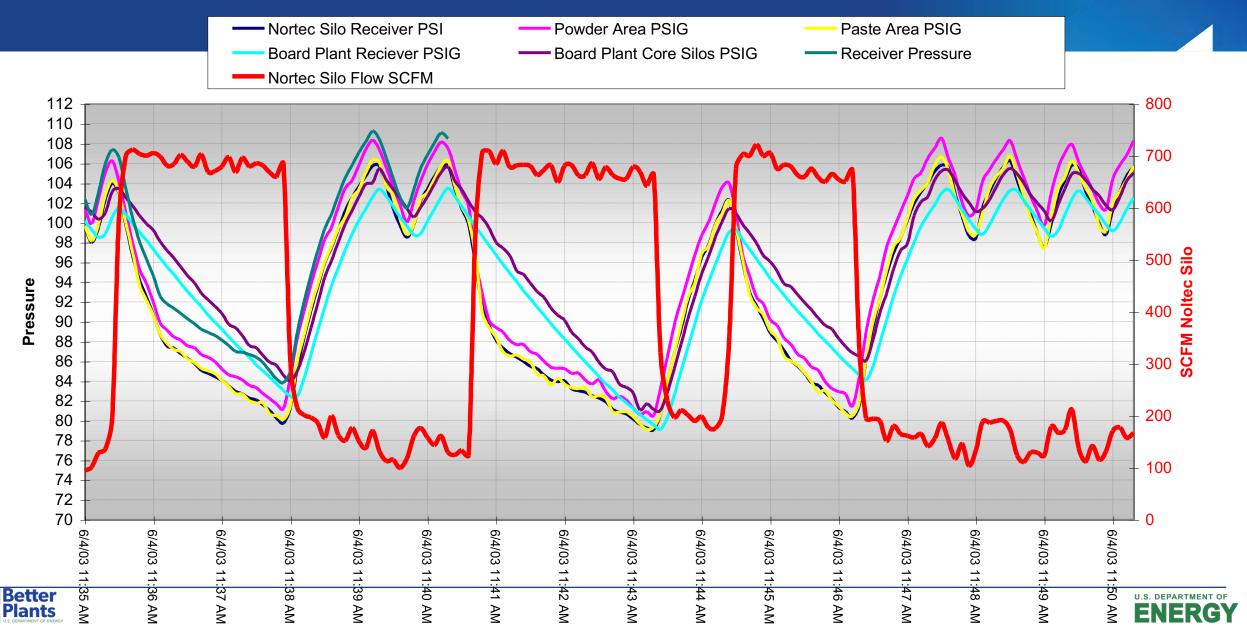




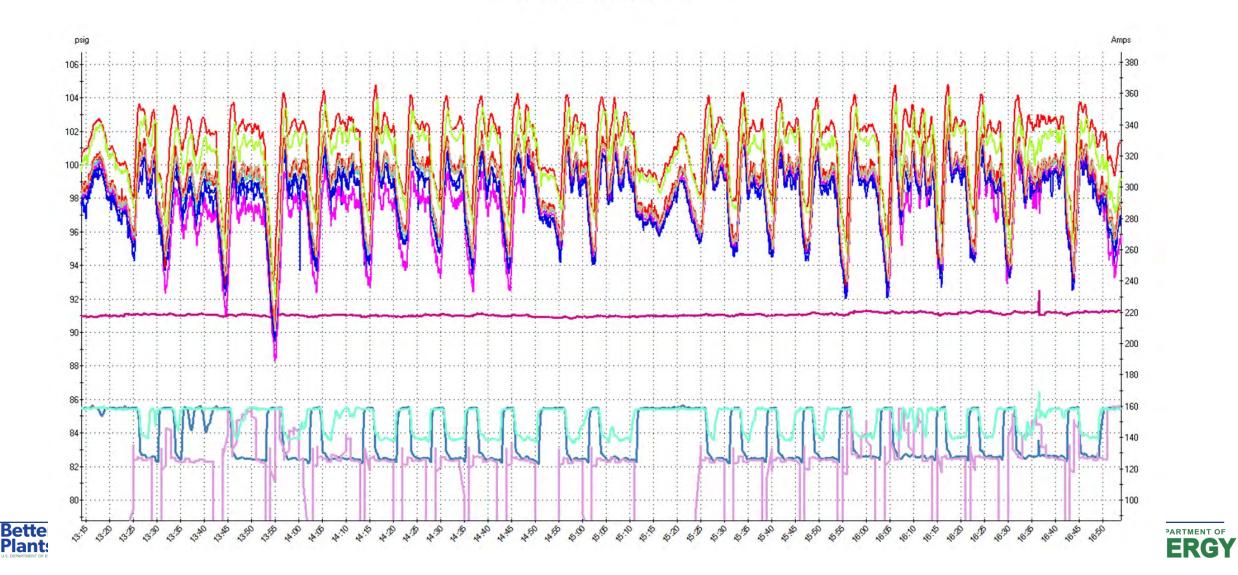
Compressed Air Plant



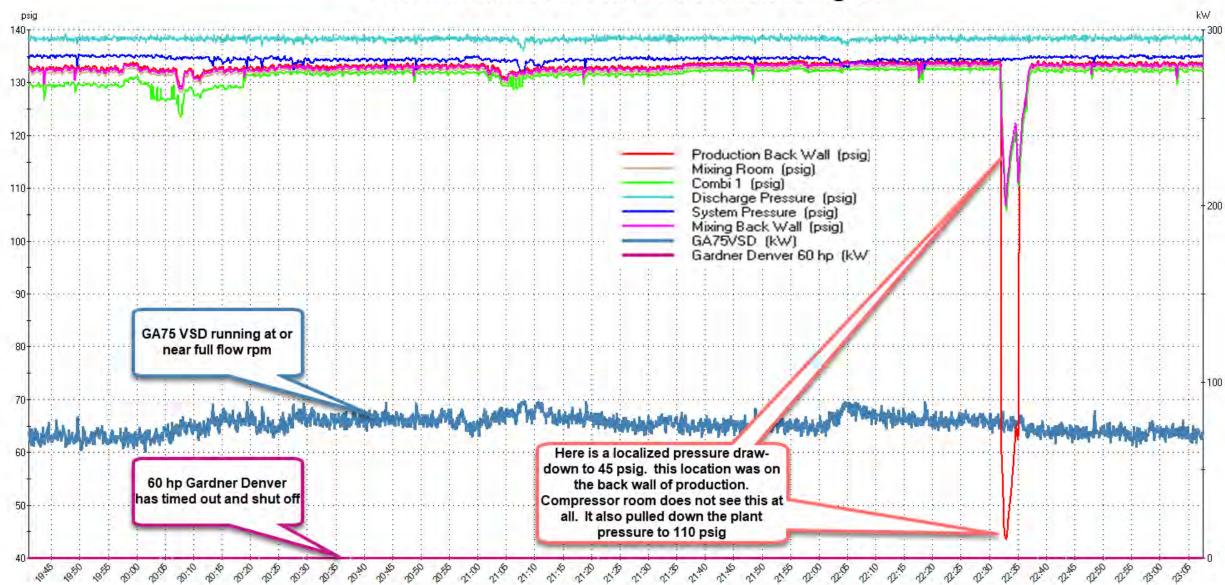
G)



Data Collection Can Be Interpreted



Data Collection Can Be Interpreted


Comparing Pressure and Power

Interval data (5, 0 seconds) for System (Not Assigned) and Periods (Not Assigned) 12/2/2019 1:14:08 PM to 12/2/2019 4:53:57 PM

Interval data (4 seconds) for System (Not Assigned) and Periods (Baseline) 1/23/2022 7:41:01 PM to 1/23/2022 11:07:34 PM

Localized Pressure Drawdown During CIP

AIRMaster+ and LogTool

A IRMaster*

AIRMaster+ is but one tool in a large portfolio of Compressed Air Challenge offerings designed to assist the end user in improving the performance of compressed air systems. AIRMaster+ allows for objective and repeatable compressed air system assessment results and can be used to improve the performance and efficiency of operation. However, AIRMaster+ is not meant to replace an experienced auditor in the evaluation of a compressed air system. AIRMaster+ is intended to model airflow and associated electrical demands as seen by the supply side of the system. AIRMaster+ does not model the dynamic effects of the distribution and end uses. Such issues should be addressed through consultation with an experienced auditor before implementing efficiency recommendations.

> Developed for the U.S. Department of Energy by the Washington State University Energy Program copyright 2000 WSU

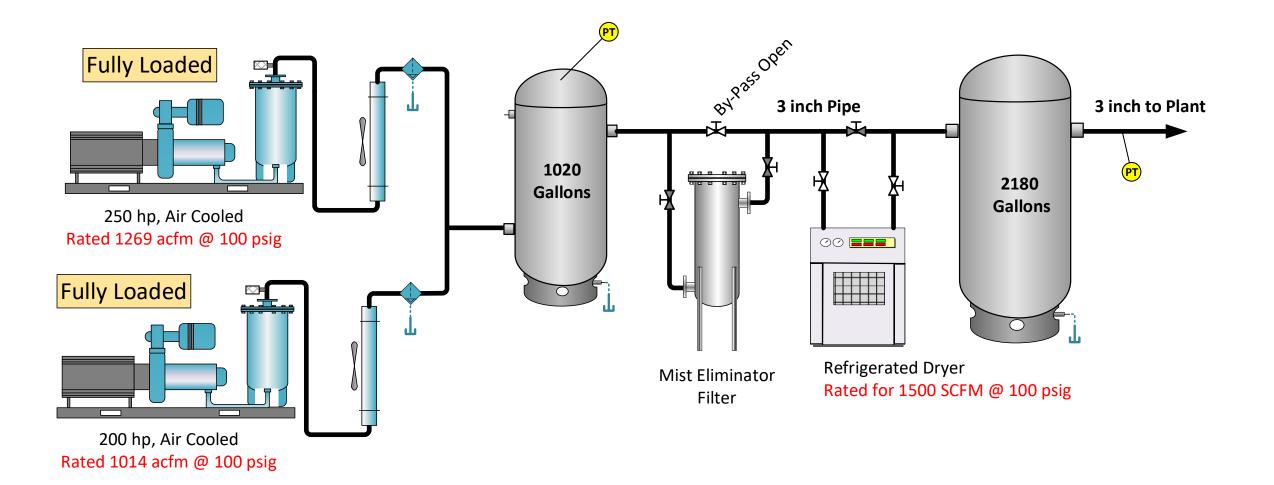
> > Continue

LogTool is a public domain tool available from SBW Consulting, Inc. and the Compressed Air Challenge (CAC). LogTool was developed in part with funding from CAC. It is designed to assist in the analysis of compressed air system performance measurements. It is a companion tool for AIRMaster+, also available from the CAC.

Continue

AIRMaster+ Features

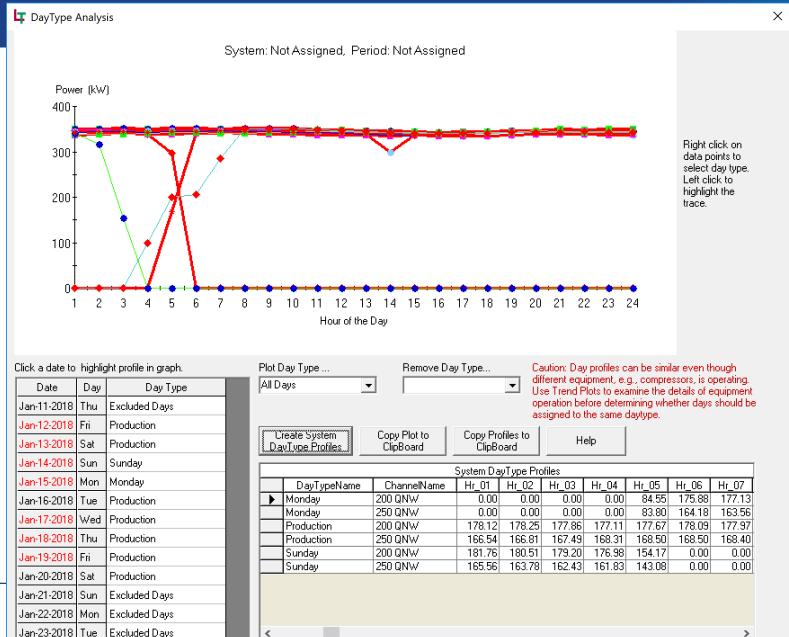
- AIRMaster+ is a Windows-based software tool used to analyze industrial compressed air systems:
- Simulates existing and modified compressed air system operation
- Models part load system operation
- Assigns electrical utility energy schedules
- Enters 24-hour metered airflow or power data
- Is not a substitute for an experienced auditor!


LogTool is Designed To:

- Import data which is exported from different types of data loggers.
- Select logger data channels and modify their properties.
 - e.g., name, type, units, etc.
- View data values for one or more logger channels.
- Display trend plots on one or two Y axis.
- Display scatter plots.
- Display daytype plots in the format that is needed for AIRMaster+
- The previous charts were all created from LogTool

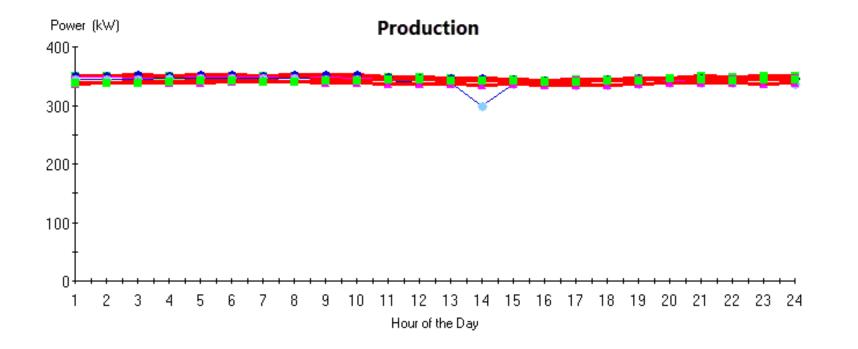
Box Plant Example:

🖏 Import/Manage Logger Data in: IP LogTool.mdb 🛛 🕹	
Logger File Type Import File Name Fo Pace Pocket Logger Software HOBOware for Windows FLUKE Hydra Logger Data Files Import File Name Import Software Ranger Pronto Software Ranger Pronto For Windows Wonderware ActiveFactory Wonderware ActiveFactory Import Software Ranger Pronto For Windows Wonderware ActiveFactory Import Software Ranger Pronto For Windows Wonderware ActiveFactory	
Channels in Files Checked for Import	
Import File Name Logger ID Logger Name Ch # Name Type Units Period System	
Import Checked Channels Check All Channels Uncheck All Channels	
Logger Channels Imported to this MDB File	
DeleteNameTypeUnitsPeriodSystemStatEndInterval (sec.)Wet TankPressurepsigNot AssignedNot Assigned1/11/2018 11:46:511/23/2018 14:40:003Dry TankPressurepsigNot AssignedNot Assigned1/11/2018 11:43:141/23/2018 14:36:23340 inch pre feedPressurepsigNot AssignedNot Assigned1/11/2018 11:43:141/23/2018 15:05:12340 inch main headePressurepsigNot AssignedNot Assigned1/11/2018 12:12:031/23/2018 15:05:12340 inch main headePressurepsigNot AssignedNot Assigned1/11/2018 12:12:031/23/2018 15:05:123Kait Conveyor PushtPressurepsigNot AssignedNot Assigned1/11/2018 12:12:031/23/2018 15:05:133Kait Conveyor PushtPressurepsigNot AssignedNot Assigned1/11/2018 12:22:101/23/2018 14:58:573Waste WaterPressurepsigNot AssignedNot Assigned1/11/2018 11:35:381/23/2018 14:29:593200 QNWPowerKWNot AssignedNot Assigned1/11/2018 11:31:381/23/2018 14:29:593250 QNWPowerKWNot AssignedNot Assigned1/11/2018 11:31:381/23/2018 14:24:473	
Delete Checked Channels	U.S. DEPARTMENT OF


LogTool Main Menu

🔓 Log	gToc	ol v2													_	
File	Tool	s H	elp													
_		_														
Uper	n/Ure	ate D	atab	asel	file to store l	ogger data										
					en an Exist	ng Database I.MDB	Field	Cre	eate a l	Nev	v Database (.MD	B Fil	e)		Hel	P
Fi	ile 🛛	P Log	Tool	.mdb)											
Fold	er [):\WB	EC	2018	NInternation	al Paper Company				_						
		Impor	t Log	jger l	Data											
Tr	end		Scal	tter	DayTy	pe										
		_							Loc	jger	r Data in: IP Log1	Fool.	mdb			
		end		atter	DayType											
View	<u>Y1</u>		×	_	Include	Name	Туре	_	Unit	_	Period	_	System	Start	End	Interval (sec.)
Data	☑		☑			Wet Tank	Pressure	-		_	Not Assigned		Not Assigned 💌	1/11/2018 11:46:51	1/23/2018 14:40:00	
Data						Dry Tank	Pressure	-			Not Assigned		Not Assigned 💌	1/11/2018 11:43:14	1/23/2018 14:36:23	
Data						40 inch pre feed	Pressure	•	psig				Not Assigned 💌	1/11/2018 12:12:03	1/23/2018 15:05:12	
Data	☑					40 inch main head		•	psig	_	Not Assigned	_	Not Assigned 💌	1/11/2018 12:15:25	1/23/2018 15:08:34	3
Data						Exit Conveyor Pusl	Pressure	•	psig	_	Not Assigned		Not Assigned 💌	1/11/2018 12:22:10	1/23/2018 15:15:19	I
Data	_					Waste Water	Pressure	•	psig		·····	_	Not Assigned 💌	1/11/2018 12:05:48	1/23/2018 14:58:57	3
Data					N	200 QNW	Power	•	kW	•	Not Assigned	•	Not Assigned 💌	1/11/2018 11:35:38	1/23/2018 14:29:59	3
Data				J	N	250 QNW	Power	•	kW	•	Not Assigned	•	Not Assigned 💌	1/11/2018 11:31:38	1/23/2018 14:24:47	3
U	- nche	ck—														
	Tre		Sc	atter	r DayTyp	e										

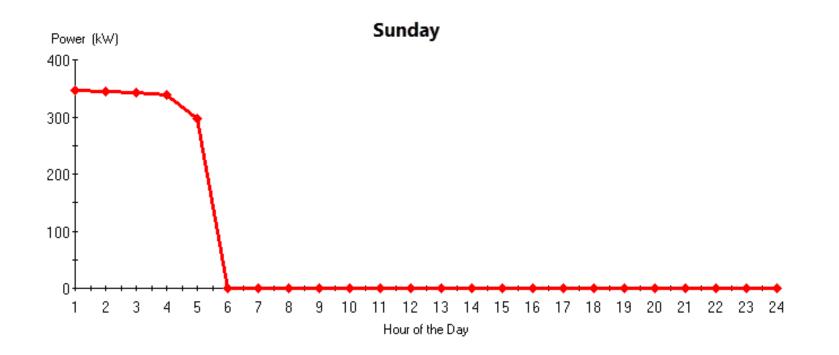
Better lants

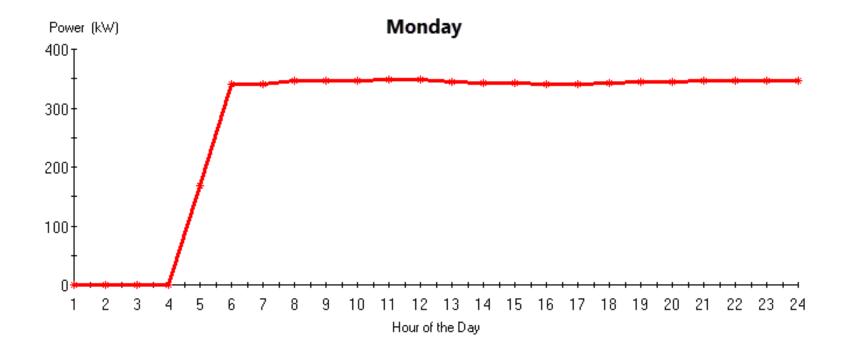

>

U.S. DEPARTMENT OF

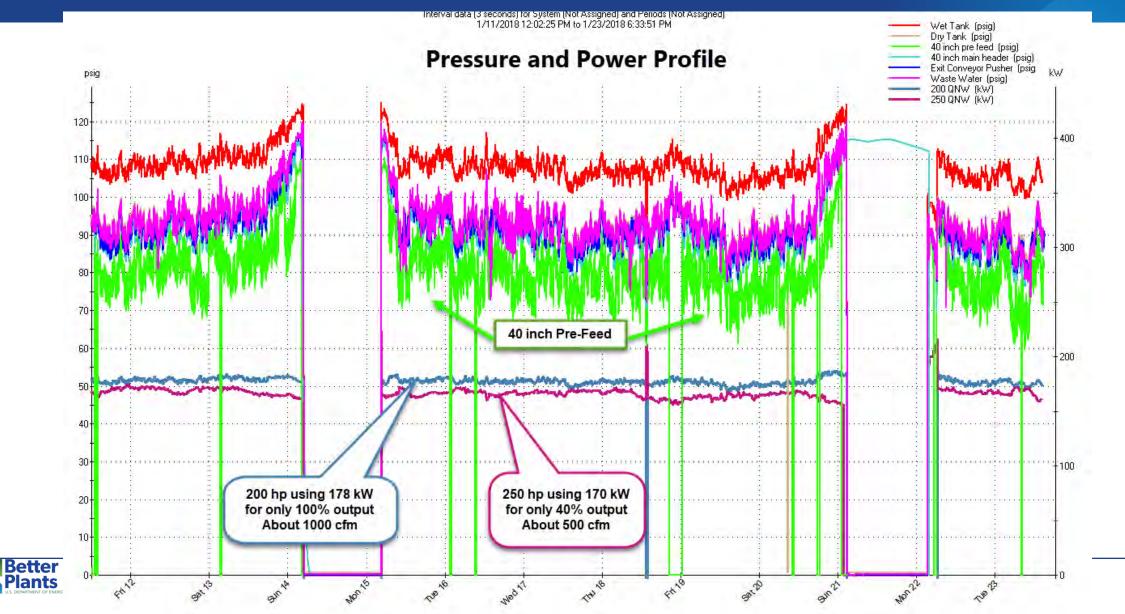
GY

ENER

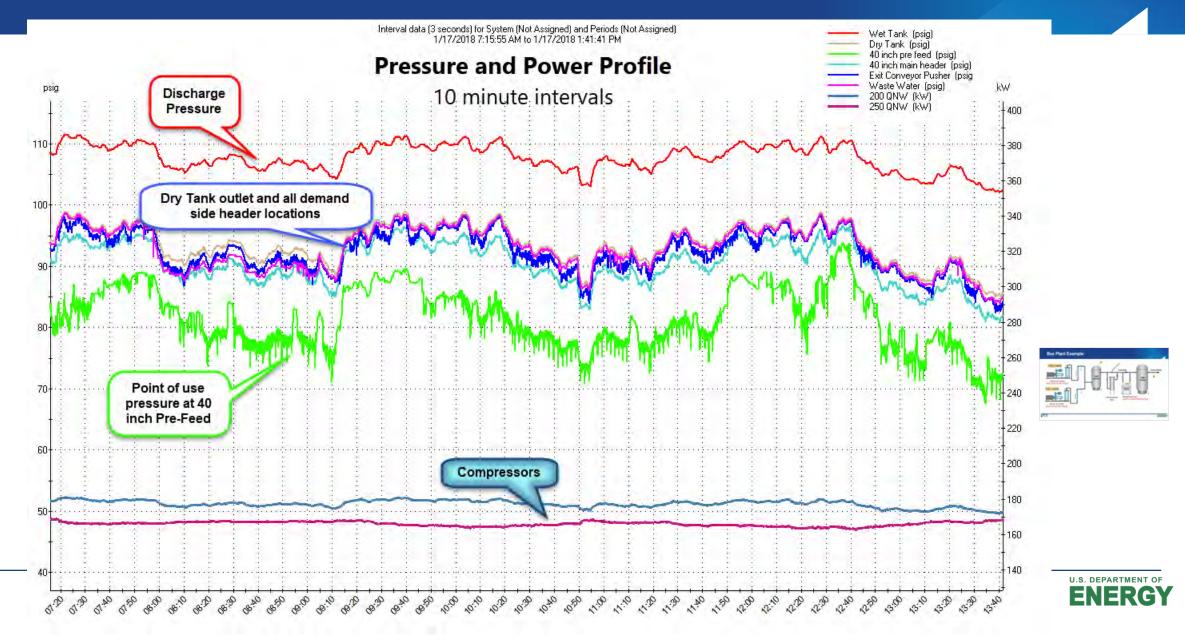

DayType Profiles

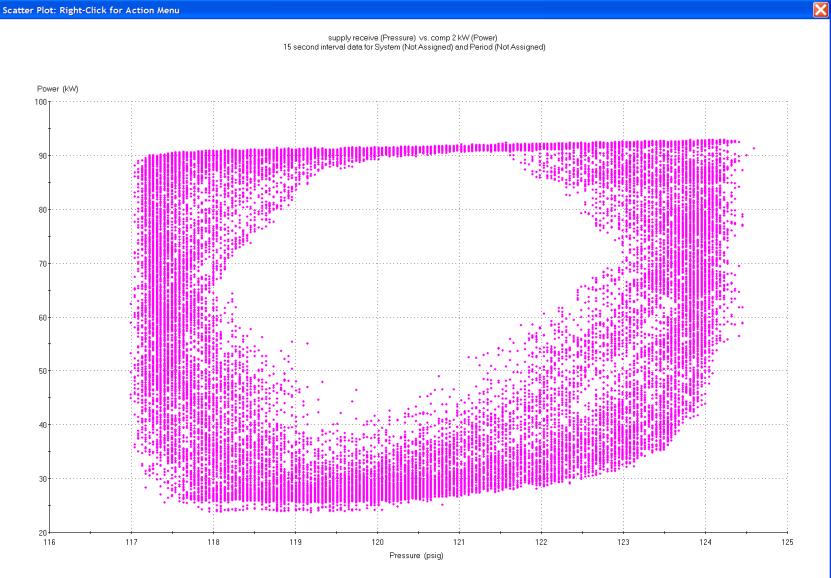

DayType Profiles

DayType Profiles



LogTool Trend Plot


Plants


LogTool Trend Plot

Better Plants

LogTool Scatter Plot

Scatter Plot: Right-Click for Action Menu

AIRMaster+ Main Menu

Better

Plants

AIRMaster+ Energy Efficiency Measures

- 1. Reduce Air Leaks
- 2. Improve End Use Efficiency
- 3. Reduce System Air Pressure
- 4. Use Unloading Controls
- 5. Adjust Cascading Set Points
- 6. Use Automatic Sequencer
- 7. Reduce Run Time
- 8. Add Primary Receiver Volume

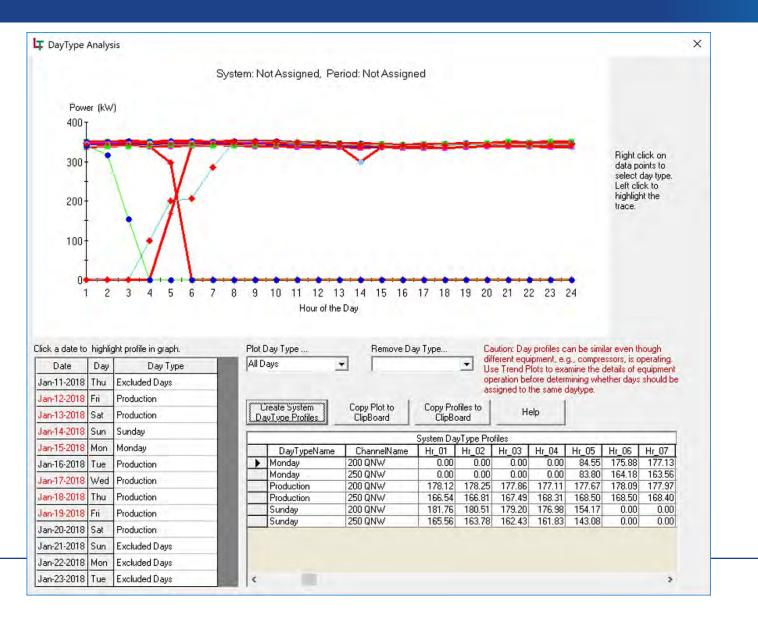
acility	<u>•</u>	Syste	m Production	•
System Data	Sequencer D	lata	Daytypes	End Uses
Daytype Description	Operating Days - Season 1	Operating Days - Season 2	Season demand mont Season	ns l
Monday	52	0	demand mont	ns I U
Week Day Sunday	261	0		
Sunday	32	0	Total annual da	ays 365
1			Total down da	avs 0

Compressor Information

🔄 Compressor Catalog				×
<u>S</u> earch Select Clear <u>A</u> dd	Сору			🗿 🢡 🚺 Cancel
- Search Criteria				
Compressor type Single stage lubricant-inject	ted rotary screw	Motor po rating, hp	wer Al	I- 🔽 🗖 User-
	,	Desired capa		
Control type Inlet modulation without ur	nloading		acfm	+/- %
-All-		Desired full I	oad 🥅	+/- %
Manufacturer Inlet modulation without un Inlet modulation with unloa	iloading idina	pressure,	psig I	
- Search results - 12 Variable displacement with				
Scroll right for me Load/unload				Compressor <u>D</u> etails
Start/Stop Proprietary			Motor	
Compressor Type	Manufacturer	Model		Control Type
			hp	
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW		Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	L 200	Inlet modulation without un
		· ·		
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un
Single stage lubricant-injected rotary screw	<generic> <generic></generic></generic>	200 hp/150 kW 200 hp/150 kW	200 200	Inlet modulation without un Inlet modulation without un
Single stage lubricant-injected rotary screw Single stage lubricant-injected rotary screw	<generic> <generic> <generic></generic></generic></generic>	200 hp/150 kW 200 hp/150 kW 200 hp/150 kW	200 200 200	Inlet modulation without un Inlet modulation without un Inlet modulation without un
Single stage lubricant-injected rotary screw Single stage lubricant-injected rotary screw Single stage lubricant-injected rotary screw	<generic> <generic> <generic> <generic></generic></generic></generic></generic>	200 hp/150 kW 200 hp/150 kW 200 hp/150 kW 250 hp/185 kW	200 200 200 250	Inlet modulation without un Inlet modulation without un Inlet modulation without un Inlet modulation without un
Single stage lubricant-injected rotary screw Single stage lubricant-injected rotary screw	<generic> <generic> <generic></generic></generic></generic>	200 hp/150 kW 200 hp/150 kW 200 hp/150 kW	200 200 200 250	Inlet modulation without un Inlet modulation without un Inlet modulation without un

Compressor Information

🔁 Compressor Inventory					×
File Calculators Help					
	Copy Compressor	Query Inv	rentory	Copy To Catalo <u>c</u>) <u>C</u> lose
Facility International Paper	▼ C	ompressor 2	00 hp QNW		•
System Production	•	200 hp, 9	Single Stag	e Rotary Scre	ew, 1005 acfm
User- assigned ID Description 200 hp QNW	Co	mpressor disc control Sequencer		- 120.0 psig	Manufacturer Compressor <u>D</u> etails
Nameplate	Controls	Per	formance	Totals	(from Profile module)
Inlet Conditions Avg. temperature, °F 85	Performance I (actual, not ra		Discharge Pressure psig	Airflow Dflt? acfm	Power Dflt? kW
Atmos. pressure, psia 14.2		load (cut-in)	110.0		
Lula dia Dia mining Ting	Max full flow (Unload p	mod begins) oint (cut-out)	110.0		☑ 175.0 ☑ 138.5
Unloading Blowdown Time For lubricant-injected		d (unloaded)	15.0		35.8
rotary screws, sec. 40	Pressures are reference	ced from the o	compressor di	scharge.	formance Profile]


Compressor Information

Create the baseline from the Data

DayTypeName	e ChannelName	Hr_01	Hr_02	Hr_03	Hr_04	Hr_05	Hr_06	Hr_07	Hr_08	Hr_09	Hr_10	Hr_11	Hr_12	Hr_13	Hr_14	Hr_15	Hr_16	Hr_17	Hr_18	Hr_19	Hr_20	Hr_21	Hr_22	Hr_23	Hr_24
Monday	200 QNW	0.0	0.0	0.0	0.0	84.6	175.9	177.1	181.6	182.2	180.8	177.2	177.7	177.0	178.6	5 178.7	178.7	176.9	177.0	178.2	177.2	178.7	179.6	180.1	179.3
Monday	250 QNW	0.0	0.0	0.0	0.0	83.8	164.2	163.6	164.5	165.0	166.7	171.6	169.9	168.1	164.9	163.3	162.5	163.6	164.8	165.6	167.1	167.1	167.0	166.2	166.9
Production	200 QNW	178.1	178.3	3 177.9	177.1	177.7	178.1	178.0	177.9	177.7	178.1	177.3	177.2	177.2	168.0	174.9	175.7	175.7	175.8	177.5	177.4	178.4	179.0	179.1	179.8
Production	250 QNW	166.5	166.8	3 167.5	168.3	168.5	168.5	168.4	168.0	168.1	167.1	166.4	166.1	165.0	167.1	165.9	164.7	164.5	165.2	165.0	165.8	165.3	164.5	164.2	164.4
Sunday	200 QNW	181.8	180.5	5 179.2	177.0	154.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sunday	250 QNW	165.6	163.8	3 162.4	161.8	143.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		,'	ļ!					ļ'	ļ'	<u> </u>	Ļ ^j		ا <u>ــــــا</u>	ا ــــــ ا	Ļ ^j		اا	Ļ'	()	Ļ'					
		ļ'	ļ]	\square	\vdash		I	ر ا	<u>ا</u>	()	·ا	ļ!	ا <u>ـــــا</u>	ا <mark>ر ا</mark>	·ا	\square	اا	·′	ļ!	·′		<u> </u>	\square	\vdash	<u> </u>
	′	'	<u>ا</u> ــــــــــــــــــــــــــــــــــــ		\square	L	\square	<u> </u>	<u> </u>	·'	<u> </u>	·ا	<u> </u>	<u>ا</u>	<u> </u>	\vdash	<u> </u>	<u> </u>	·ا	<u> </u>	\square	<u> </u>	\square	I	()
	Date	Day	Day Ty	ре			<u>ا</u>	· '	↓ '	<u> </u>	''	' <u>ـــــ</u> ا	ا <u>ــــــ</u> ا	''	''	\square	ا <u>ــــــ</u> ا	''	' <u>ـــــ</u>	''	ļ!	<u>ا</u>			
	Jan-11-2018	Thu	Exclud	ded Days	S		ال	''	<u> </u>	<u> </u>	''	ا	ا <u>ـــــ</u> ا	ا <u>ــــــا</u>	''		ا <u>ل</u>	''	·ا	''	<u> </u>				
	Jan-12-2018	Fri	Produc	ction	ا <u></u> ا		ا	ر ا	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ا <u></u> ا	ا ا	<u> </u>		ا <u></u> ا	<u> </u>	<u> </u>	<u> </u>				ا <u></u> ا	
	Jan-13-2018	Sat	Produc	ction				<u> </u>	<u> </u>	<u> </u>		ا <u>ل</u> ا		<u>ا</u> ا				L'		L'		!		ا	
	Jan-14-2018	Sun	Sunday	.y				()	<u> </u>	<u> </u>		ا <u></u> ا		I				<u> </u>	<u> </u>	<u> </u>				ا <u></u> ا	
	Jan-15-2018	Mon	Monda	ay				ļ'	<u> </u>	<u> </u>		ا <u>ل</u> ا	ا <u>ــــــا</u>	ا <u>ـــــــا</u>								!		ا <u></u>	
	Jan-16-2018	Tue	Produc	ction				<u> </u>	<u> </u>	<u> </u>		ا <u>ل</u> ا		<u>ا</u> ا				L'		L'		!		ا	
	Jan-17-2018	Wed	Produc	ction				''	<u> </u>	<u> </u>	ļ!			ļ!	ļ!			ļ'	()	ļ'					
	Jan-18-2018	Thu	Produc	ction				''	<u> </u>	<u> </u>	ļ!			ļ!	ļ!			ļ'	()	ļ'					
	Jan-19-2018	Fri	Produc	ction				ļ'	<u> </u>	<u> </u>		ا <u>ل</u>		/				<u> </u>	<u> </u>	<u> </u>				<u>ا</u>	
	Jan-20-2018	Sat	Produc	ction				ļ'	ļ'	<u> </u>	Ļ ^j		ا <u>ــــــا</u>	,,	Ļ ^j		ا <u>ـــــا</u>	Ļ'	ļ!	Ļ'					
	Jan-21-2018	Sun	Exclud	ded Days	S		ا <u>ل</u>	''	ļ'	<u> </u>	ļ!	·	ļ	ا ــــــ ا	ļ!			Ļ'	<u> </u>	Ļ'		L			
	Jan-22-2018	Mon	Exclud	ded Days	S		ا <u>ل</u>	''	ļ'	<u> </u>	ļ!	·	ļ	ا ــــــ ا	ļ!			Ļ'	<u> </u>	Ļ'		L			
	Jan-23-2018	Tue	Exclud	ded Days	S			⁾	<u> </u>					ا ا				^j		^j					

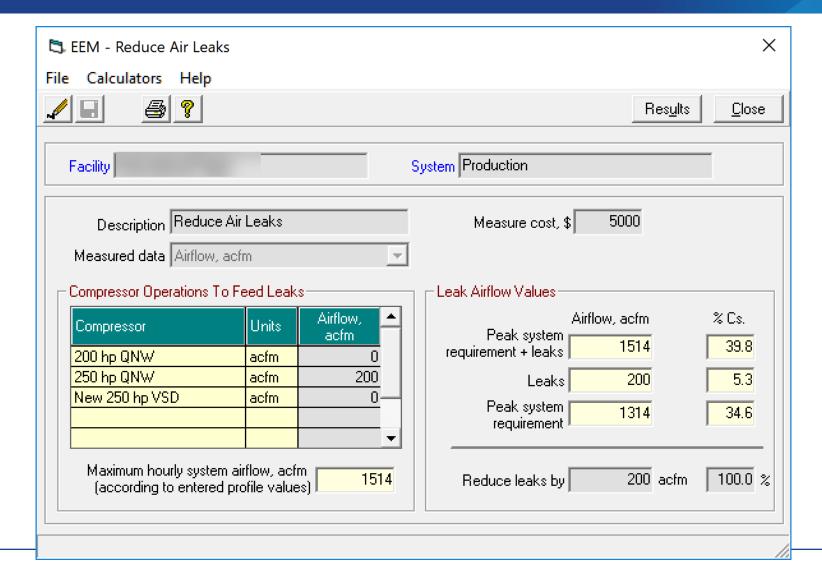
🔁 System Profiles										×
File Calculators Help										
∠ ∎ § ?										<u>C</u> lose
Select Facility	▼ ▼	ytype 😽	′eek Day	J	•	Sys	tem pres control ra	sure <mark>10</mark> 0 ange	0.0 - 120	0.0 psig
Data Entry			Profile S	Summary		\neg		T	otals	
Cascade Order - click cell to to	ggle stage	#/'off'				•		opy Prev	Col	<u>G</u> raph
Compressor 200 hp QNW 250 hp QNW	1 1 2	2 1 2	3 1 2	4 1 2	5 1 2	6 1 2	7 1 2	8 1 2	9 1 2	10 ▲ 1 2
New 250 hp VSD	Off	Off	Off	Off	Off	Off	Off	Off	Off	Off
										<u>}</u>
Profile data type: Power, kW		-		<u>P</u> a	aste From	I Clipboai	d Co	opy Prev	Col	Graph
Compressor Units	1	2	3	4	5	6	7	8	9	10 🔺
200 hp QNW kW 250 hp QNW kW New 250 hp VSD kW	178.1 166.5 0.0	166.8	167.5	168.3		168.5	168.4	168.0	168.1	16

System Profiles										×
ile Calculators Help										
/ 🖬 🛛 🞒 📍										<u>C</u> lose
Select Facility	- Day	vtype Su	unday			Syst	tem press control ra	sure <mark>100</mark> nge).0 - 120	.0 psig
Data Entry			Profile S	ummary		γ		To	otals	
Cascade Order - click cell to tog	igle stage	#/'off'					C <u>o</u>	py Prev	Col	<u>G</u> raph
Compressor 200 hp QNW	1	2 1	<u>3</u>	<mark>4</mark>	<u>5</u>	<u>6</u> 1	7 1	<u>8</u>	<u>9</u> 1	<u>10</u> ▲
250 hp QNW New 250 hp VSD	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off	2 Off
Profile data type: Power, kW		-		<u>P</u> a	ste From	Clipboar	d Co	py Prev	Col	G <u>r</u> aph
Compressor Units	1	2	3	4	5	6	7	8	9	10 -
200 hp QNW kW 250 hp QNW kW	181.8 165.6	180.5 163.8	179.2 162.4			0.0 0.0				
New 250 hp VSD kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•										

File Calculators Help
I contraction of the second seco
Select Facility System Production Daytype Monday System pressure control range 100.0 - 120.0 psig
Data Entry Profile Summary Totals
Cascade Order - click cell to toggle stage#/'off' Copy Prev Col Graph
Compressor 1 2 3 4 5 6 7 8 9 10<▲ 200 hp QNW 1
▲ 250 hp QNW 2 2 2 2 2 2 2 2 2 2 2 2
New 250 hp VSD Off Off Off Off Off Off Off Off Off Of
Profile data type: Power, kW Paste From Clipboard Copy Prev Col Graph
Compressor Units 1 2 3 4 5 6 7 8 9 10 <mark>-</mark>
200 hp QNW kW 0.0 0.0 0.0 0.0 84.6 175.9 177.1 181.6 182.2 18
250 hp QNW kW 0.0 0.0 0.0 0.0 83.8 164.2 163.6 164.5 165.0 16
New 250 hp VSD kW 0.0 <

The Baseline

et sility tem Production		Dayty	pe		→ ^S	ystem pressure control range	100.0 - 120.0 psig
Data En	try	Y	Prof	ile Summary	Ţ		Totals
stem Summary							
Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Energy Cost,
Monday	1,040	1,459	38.4	348.8	51.3	349,102	23,564
Week Day	6,264	1,509	39.7	346.6	52.5	2,151,606	145,233
Sunday	260	1,434	37.7	347.4	51.0	86,809	5,860
System Totals	7,564	1,500	39.5	348.8	52.3	2,587,516	174,657
						Сору	To Clipboard
					÷ .	al demand cost,	\$ \$0


EEM's

Х Energy Efficiency Measures File Calculators Help 3 Î D Copy <u>E</u>EM Scenario Life Cycle Res<u>u</u>lts <u>C</u>lose Facility Ŧ EEM Scenario and reduce pressure Ŧ System Production Ŧ Savings Summary Data Entry Data Needs Edit/ Description and reduce pressure Include Order Review Review DEMAND SIDE Reduce Air Leaks $\mathbf{\nabla}$... Improve End Use Efficiency \mathbf{V} **Reduce System Air Pressure** 3 Use Unloading Controls SUPPLY SIDE Adjust Cascading Set Points Use Automatic Sequencer \mathbf{V} **Reduce Run Time** ☑ ... Add Primary Receiver Volume* * Available only if air storage capacity was entered in the system module. Visit the system module to edit this value. Only lubricant-injected rotary screw compressors with unloading controls will benefit from adding receiver volume.

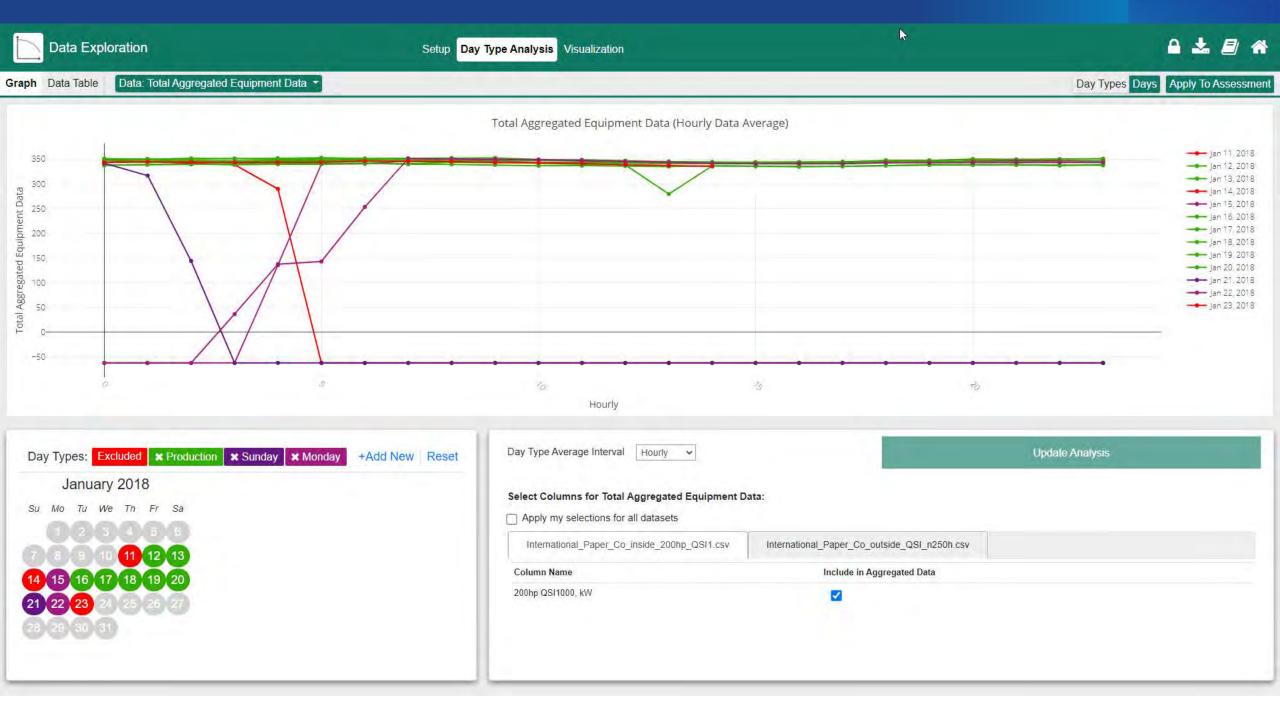
EEM's

🖏 EEM - Reduce Run T	īme									×		
File Calculators Help	p											
19 3 ?	Results Close											
Facility System Production								ata View C Existi T Prop	ng	Restore		
	Measure Description Description Measure cost, \$ 106700											
Daytype Monday		•	A che online.	ck indica Unche	ates a cor ck to ford	mpressor ce a com	is availat pressor c	ble or iff.				
Compressor	Airflow Cap.,acfm	1	2	3	4	5	6	7	8	9 📥		
200 hp QNW	1,006											
250 hp QNW	1,266											
New 250 hp VSD	1,527	V	V	<u>v</u>	Z	N	Z	V	M			
										-		
Available Airflow, acfm		1527	1527	1527	1527	1527	1527	1527	1527	152		
Required Airflow, acfm ◀		0	0	0						131 ▶		
												U

🔄 EEM - Reduce System Air Pressure 🛛 🗙 🗙
File Calculators Help
Results Close
Facility View System System Production
Description Reduce System Air Pressure Measure cost, \$ 0
Average system 10.0 Recommended 10.0 reduction, psig
Some equipment may not operate properly with reduced pressure. Consult facilities engineer to verify.

LogTool Trend Plot

Car minimition in the second second


EEM's

e Calculators Help	1			1			1	1	
	Copy EEM Scenario								
Facility									
EEM Scenario and reduce pressure									
System Production									
Data E	ntru				Sav	ings Sun	maru		
					544	niga Jun	mary		
	_								
Description	Energy Savings,	Energy	Energy Savings,	Demand Savings,	Demand Savings,	mstalleu	Total Savings,	Simple 🛃 Payback,	
D dsonption	kWh	Savings, \$	%	kW	\$	Cost, \$	\$	years	
Reduce Air Leaks	457,487	30,880	17.7	64.1	0	5,000	30,880	0.2	
Reduce Run Time	484,848	32,727	18.7	64.9	0	106,700	32,727	3.3	
Reduce System Air Pressure	179,769	12,134	6.9	24.0	0	0	12,134	0.0	
TOTALS	1,122,104	75,742	43.4	153.0	0	111,700	75,742	1.5	
•								► +	

U.S. DEPARTMENT OF

Da	ata Explora	ation						Setup D	Day Type A	nalysis	Visualizatio	'n											۵ ځ	. 8 A
Graph Data	a Table	Data: Total	l Aggregate	d Equipme	ent Data 🝷													Display	Selected [)isplay All	Day Type	əs Days	Apply To F	Assessment
Day Туре	Summarie	s (Total A	.ggregated	d Equipm	ent Data)																			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Excluded	345.233	344.441	342.737	341.011	316.626	140.599	141.751	141.474	141.22	140.354	140.009	208.291	207.075	206.017	205.018	140.7	140.813	140.648	142.405	142.431	143.513	143.433	143.463	144.12
Production	344.656	345.067	345.346	345.418	346.18	346.584	346.363	345.848	345.827	345.186	343.719	343.299	342.132	332.419	340.844	340.385	340.169	340.974	342.559	343.259	343.725	343.441	343.333	344.144
Sunday	341.5	316.585	143.837	-62.476	-62.479	-62.478	-62.478	-62.48	-62.48	-62.478	-62.48	-62.48	-62.477	-62.479	-62.481	-62.48	-62.481	-62.478	-62.479	-62.48	-62.476	-62.48	-62.479	-62.48
Monday	-62.479	-62.48	-62.48	-13.16	136.523	241.439	296.894	348.648	349.049	348.693	348.558	347.426	345.133	343.489	341.657	340.832	340.753	341.281	343.225	343.56	344.614	345.199	344.928	344.662
																							Cor	py Table
Dov Sum	mariae (Te		totod Equ	inmont D	ata)																			
Day Sum	maries (Tot	al Aggrey	ateo Equi	pment Da	ata)																			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Excluded																								/
Jan 11, 2018												346.218	345.07	343.465	342.276	343.887	344.11	343.776	347.291	347.341	349.506	349.346	349.406	350.719
Jan 23, 2018	343.151	344.6	343.84	343.205	343.652	343.678	345.983	345.427	344.92	343.188	342.499	341.135	338.636	337.064	335.257									
Jan 14, 2018	347.315	344.282	341.634	338.817	289.6	-62.48	-62.481	-62.479	-62.48	-62.48	-62.482	-62.481	-62.48	-62.48	-62.48	-62.488	-62.483	-62.48	-62.48	-62.479	-62.479	-62.48	-62.48	-62.48
Production																								
Jan 12, 2018	350.503	350.457	349.767	350.922	349.444	350.735	350.126	349.697	348.726	347.911	348.143	348.613	346.908	343.422	343.798	343.359	343.994	344.688	346.835	347.03	350.133	349.088	350.24	350.696
Jan 13, 2018	351.026	349.585	351.782	351.001	351.894	352.74	351.297	351.961	352.383	352.372	349.311	346.937	345.905	345.548	344.381	343.145	343.407	344.375	346.107	344.937	346.216	345.54	345.22	346.343
Jan 16, 2018	347.61	347.97	347.122	346.248	347.541	347.869	347.655	346.948	347.811	345.907	343.795	343.826	342.966	340.637	341.396	342.32	341.424	341.937	343.92	343.374	343.997	345.062	343.421	344.827
Jan 17, 2018	344.128	344.633	344.586	344.258	346.296	347.187	345.95	346.432	344.017	345.032	342.959	343.33	341.718	340.763	341.098	341.488	341.749	342.284	344.047	344.131	344.641	344.578	344.717	345.682
Jan 18, 2018	344.129	344.662	345.205	345.692	346.339	346.123	346.506	345.632	345.089	344.363	341.707	339.446	338.237	279.357	336.221	335.939	335.253	335.215	337.038	338.875	338.816	338.304	338.122	337.499
Jan 19, 2018	337.229	339.573	339.789	338.727	339.595	339.627	341.793	339.637	339.3	338.219	336.391	336.754	336.199	334.947	336.405	335.468	334.589	335.592	337.082	337.984	338.112	338.727	336.751	339.25
Jan 20, 2018	337.969	338.586	339.17	341.079	342.147	341.811	341.216	340.627	343.462	342.497	343.729	344.185	342.992	342.259	342.607	340.974	340.766	342.729	342.885	346.484	344.162	342.792	344.86	344.712
Sunday																								
Jan 21, 2018	341.5	316.585	143.837	-62.476	-62.479	-62.478	-62.478	-62.48	-62.48	-62.478	-62.48	-62.48	-62.477	-62.479	-62.481	-62.48	-62.481	-62.478	-62.479	-62.48	-62.476	-62.48	-62.479	-62.48
Monday																								
Jan 15, 2018	-62.48	-62.481	-62.479	-62.48	135.607	340.068	340.692	346.157	347.243	347.519	348.732	347.609	345.048	343.513	341.95	341.139	340.554	341.815	343.719	344.359	345.83	346.652	346.369	346.135
Jan 22, 2018	-62.479	-62.48	-62.48	36.16	137.439	142.81	253.096	351.139	350.856	349.867	348.384	347.243	345.219	343.466	341.363	340.524	340.952	340.747	342.73	342.761	343.397	343.746	343.488	343.188
																							Cop	py Table

Day Type Average Interval Hourly 🗸

_

D

 \times

🛅 MEASUR

 Day Types:
 Excluded
 X Production
 X Sunday
 X Monday
 +Add New
 Reset

MEASUR Tool Energy Efficiency Measures

	CURRENT INVENTORY		HELP		
Name	Compressor Type	Control Type	Pressure Range		
200 hp QNW	Single stage lubricant-injected rotary screw	Inlet modulation with unloading	110 - 120 psig	a 43	1
> 250 hp QNW	Single stage lubricant-injected rotary screw	Inlet modulation with unloading	105 - 115 psig	🗖 එ	1
			+Add Ne	w Compress	sor
erformance F					
	npressors Graph Average Operating Poi	the second second second		_	
100%	200 hp QNW(Unloading) — 200 hp QNW 2	the second second second		-	
100% 80%		the second second second			

MEASUR Tool Energy Efficiency Measures

Fuji System Basics Assessment Diag	gram Report Sankey Calculators		<i>8</i> \$ 5 4
etup Profile Profile Summary Table Profile Summary Graphs			Scenario 4 Selected Scenario
SELECT POTENTIAL ADJUSTMENT PROJECTS	MODIFICATION RESULT	S PERFORMANCE PROFILE	HELP NOTES
Select potential adjustment projects to explore opportunities to increase efficiency and the effectiveness of your system. Add New Scenario		All Day Types >	Scenario 4
Modification Name Scenario 4		Daseine	Scenario 4
Reduce Air Leaks Demand	Percent Savings (%)		Han
mprove End Use Efficiency Demand	Off ~		
Reduce System Air Pressure supply	Flow Reallocation Energy Savings Peak Demand	— — 177.9 kW	148,744 kWh 161.05 kW
Adjust Cascading Set Points supply	Off Annual Energy Annual Emission Output Rate	1,432,803 kWh kg CO ₂	1,284,059 kWh kg CO ₂
Jse Automatic Sequencer supply	Off V Peak Demand Savings		16.85 kW
Reduce Run Time supply	Annual Energy Savings Off V Annual Emission Savings	==	148,744 kWh kg CO ₂
	Flow Reallocation Savings Peak Demand Cost Annual Energy Cost	\$34,156.80 \$136,689.40	\$9,817.09 \$30,920.83 \$122,499.24

Annual Energy Cost

Annual Cost Savings

Peak Demand Cost Savings

Annual Energy Cost Savings

Annual Cost

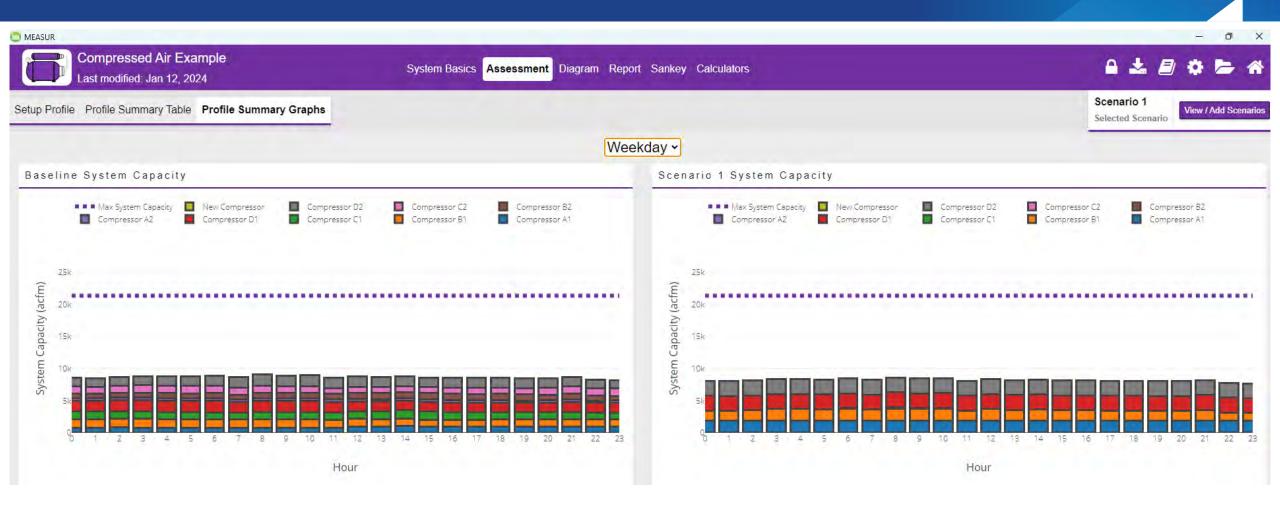
\$170,846.20

\$153,420.06

\$3,235.97

\$14,190.16

\$17,426.14


MEASUR Tool

C MEASUR				– 0 X		
Compressed Air Example Last modified: Jul 29, 2022	System Basics Assessment Diagram	Report Calculators				
Setup Profile Profile Summary Table Profile Summary Grap	ns			Scenario 1 Selected Scenario		
SELECT POTENTIAL ADJUSTMENT PROJEC	CTS	MODIFICATION RESULTS	PERFORMANCE PROFILE	HELP NOTES		
Select potential adjustment projects to explore opportuniti	es to increase efficiency and the effectiveness of your system.		All Day Types -			
Add Ne	w Scenario	1	Baseline	Scenario 1		
Modification Name	Scenario 1					
Reduce Air Leaks Demand	1 ¥	Percent Savings (%)		54.7%		
Implementation Cost	1000 5			A CALL STATE OF THE OWNER		
Leak Flow	2000 acim	Flow Reallocation Energy Savings Improve End Use Efficiency Energy Savings		6,181,004 kWh 542,044 kWh		
Leak Reduction	10 %	Reduce Air Leaks Energy Savings	22	476,610 kWh		
Improve End Use Efficiency Demand	2 👻	Reduce System Air Pressure Energy Savings		300,157 kWh		
		Peak Demand Annual Energy	2,655.2 kW 20,569,267 kWh	1,968.64 kW 13,069,452 kWh		
New Nozzels		Annual Emission Output Rate	8,860,829 kg CO ₂	5,630,059 kg CO ₂		
Implementation Cost	500 \$	Peak Demand Savings		686.56 kW		
Substitute Auxiliary Equipment?	No 🔶	Annual Energy Savings Annual Emission Savings		7,499,815 kWh 3,230,770 kg CO ₂		
Airflow Reduction Type	O Variable		1000			
Airflow Reduction	200 acfm	Flow Reallocation Savings		\$407,946.29		
Day Type 1 2 3 4 5 6 7 8 9 10 11	12 13 14 15 16 17 18 19 20 21 22 23 24	Improve End Use Efficiency Savings Reduce Air Leaks Savings		\$35,774.92 \$31,456.24		
Weekday 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reduce System Air Pressure Savings		\$19,810.36		
Weekend I </td <td></td> <td>Peak Demand Cost</td> <td>\$159,312.00</td> <td>\$118,118.26</td>		Peak Demand Cost	\$159,312.00	\$118,118.26		
	+Add Efficiency Improvement	Annual Energy Cost Annual Cost	\$1,357,571.65 \$1,516,883.65	\$862,583.83 \$980,702.09		
	Add Eliteroly improvement	Peak Demand Cost Savings		\$41,193.74		
Reduce System Air Pressure supply	3 🗸	Annual Energy Cost Savings		\$494,987.82		
		Annual Cost Savings		\$536,181.56		
Implementation Cost	400 5					
Average System Pressure Reduction	2 psig					
Adjust Cascading Set Points supply	Off ∽					
Reduce Run Time Supply	ОП 🗸					
Add Primary Receiver Volume supply	Off Y					

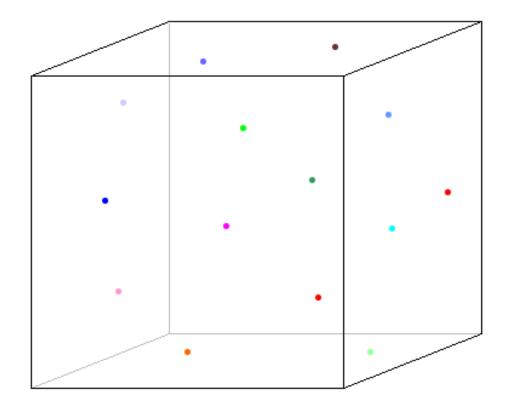
Better Plants U.S. DEPARTMENT OF ENERGY

MEASUR Tool

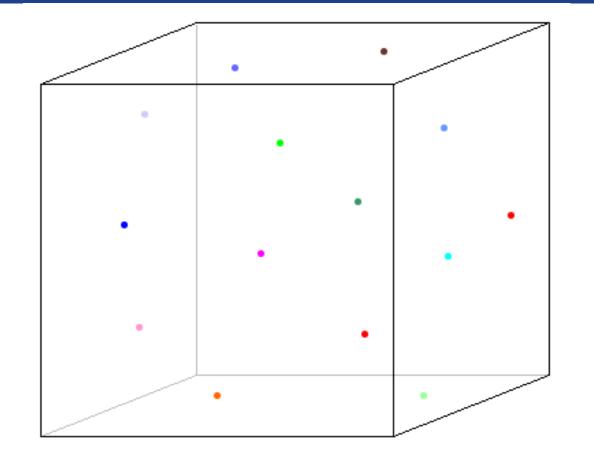
Virtual Session 1 – The Basics

Let's leave the compressor room and have a look out in the demand.....

You'll have to keep coming back each week for this session and more.....



Pressure?



- Imagine a closed container with air inside.
- Air, as a gas, is composed of molecules that you can imagine as round elastic balls.
- Molecules move in straight lines until they collide with neighboring molecules or the container wall.
- Molecules of gas hitting the wall impose a force on the wall.
- The amount of this impact force per area of the container inner walls is called pressure.

Gas Theory

On a square inch of surface there are over two sextillion molecular impacts per second....that's 2 followed by 21 zeros!!!

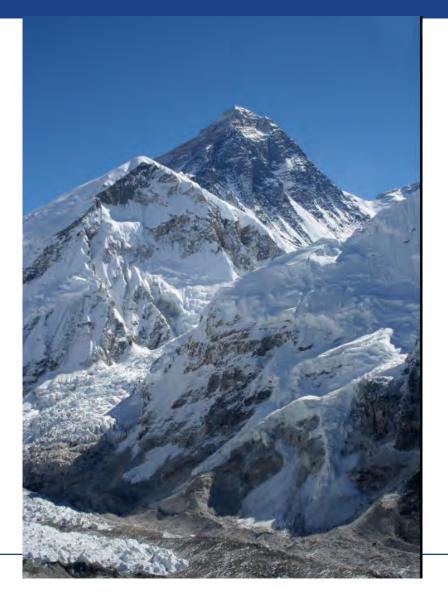
ALL THIS TRANSLATES TO PRESSURE. AT SEA LEVEL THIS PRESSURE WOULD BE -- 14.69 PSIA; 29.92"HgA; 1013mBar; or 760 Torr

Gas Theory

- Air pressure is explained by three scientific laws:
 - Boyle's Law explains that if air volume halves during compression, the pressure is doubled.
 - Charles' Law states that the volume of air changes in direct proportion to the temperature.
 - The First Law of Thermodynamics tells us that an increase in pressure equals a rise in heat and that compressing air creates a proportional increase in heat.
 - Collectively, these three laws explain that pressure, volume, and temperature are proportional. If you change one variable, then one or two of the others will also change, according to this equation:

$$\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}$$

- At sea level, atmospheric pressure is 14.7 psia
- psia stands for pounds per square inch (Absolute)



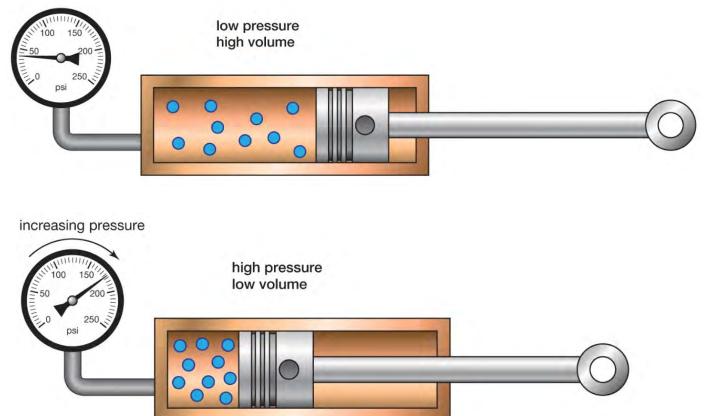
 In Death Valley, which is 500 feet below sea level, The air pressure is 14.94 psia

- On top of a 5,000-foot mountain, air pressure is only 12.2 psia
- Mount Everest is 29,000 feet above sea level, and the air pressure is 4.56 psia

Pressure Terms

- psig is pounds per square inch gauge the pressure on the gauge or digital readout of the compressor's controller.
- At zero gauge, the pressure is at atmospheric pressure. If the gauge reads 100 psig, then that means the pressure is 100 pounds above ambient atmospheric pressure.
- psia is pounds per square inch absolute. This is the sum of the existing gauge pressure plus the atmospheric pressure. At sea level, a gauge showing 95 psig would have an absolute pressure of 109.5 psia.

14.5 + 95 = 109.5 psia

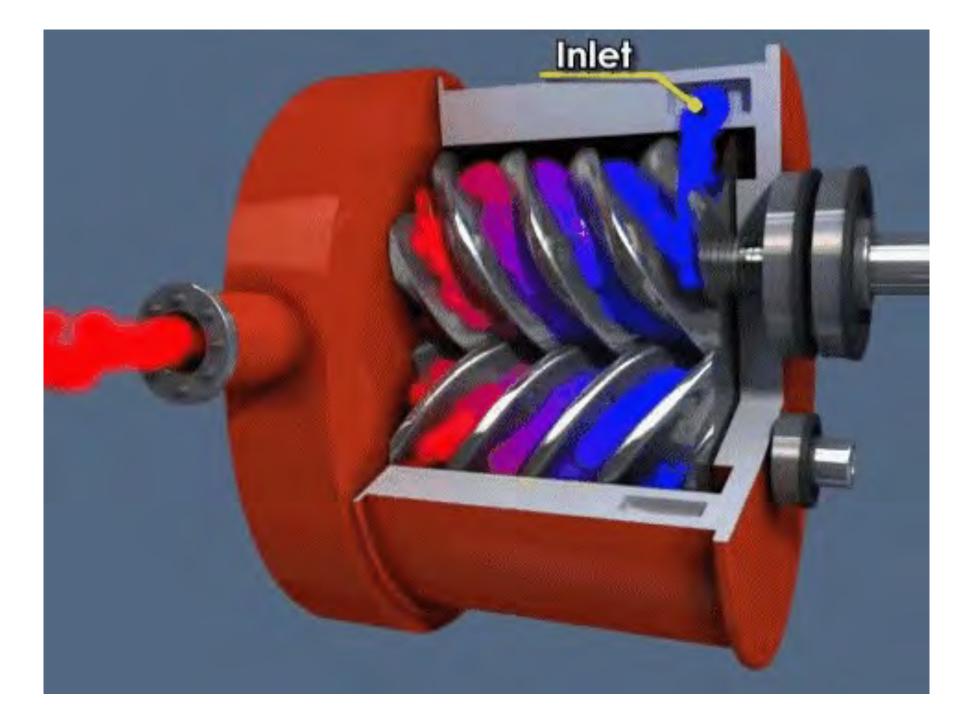


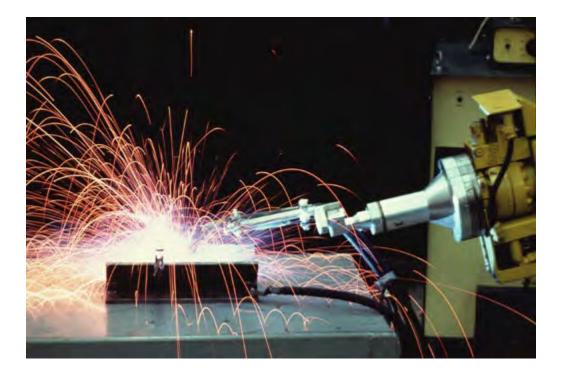
- Compress: To press together or force into a smaller space; condense
- Air: A colorless, odorless, tasteless gaseous mixture, mainly nitrogen (78%) and oxygen (21%) and 1-2% water vapor and, carbon dioxide and other gases
- When controlled, compressed air can be used to perform work.

© 2012 Encyclopædia Britannica, Inc.

- Step 2: The space in that tank becomes smaller, which forces the air molecules closer together
- The now-compressed air remains trapped in this smaller state, waiting to expand again until it's ready for use.

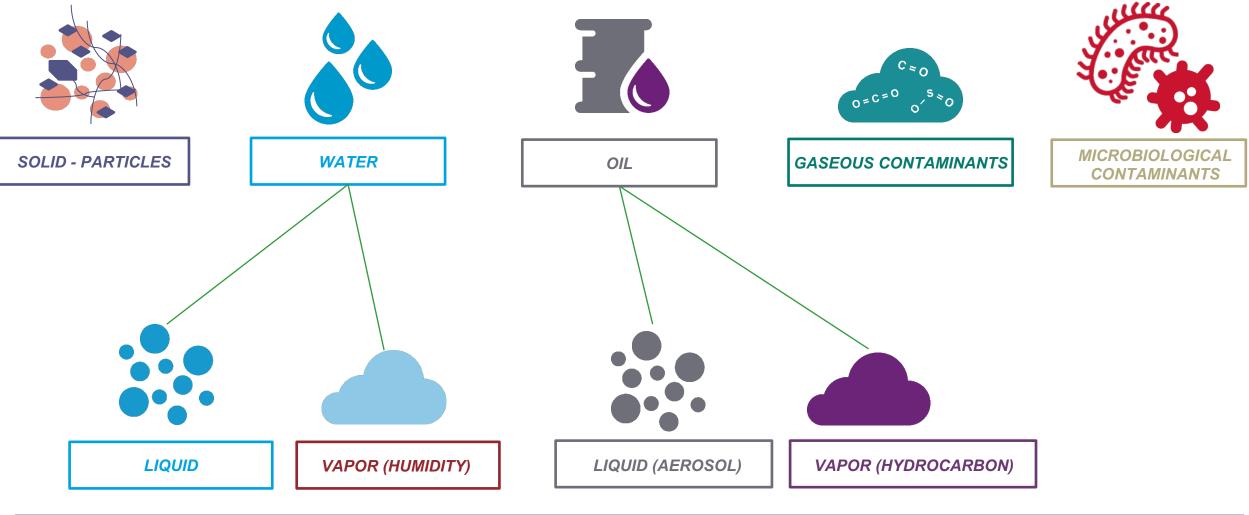
- But pistons aren't the only way to force air into a smaller space. There are numerous styles of air compressors on the market, each with its advantages and disadvantages.
- For example, rotary screw air compressors use dual spinning screws to push air down and compress it:





- Rotary screw air compressors are chosen over reciprocating because they are compact, powerful, and can run continuously.
- Regardless of the mechanism used, air is always compressed by taking atmospheric air and squishing it down, so the molecules are condensed and pressurized.

- Energy from compressed air is used to power pneumatic production equipment.
 - E.G.--air motors, actuators, instrumentation, tools, etc.
- To cool components or parts during fabrication
- To blow off waste material



- Process Air
- Compressed air is an integral part of a process, and/or comes in contact with product.
 - Chemicals
 - Pharmaceuticals
 - Food & Beverage
 - Aeration and agitation
 - Semiconductor & Electronics
 - Medical Breathing Air
- CDA Quality--means Clean, Dry, Air

Which Contaminants do we find in compressed air?

Which Contaminants do we find in compressed air?

Compressed Air Quality

- As illustrated in the following table, a number of different air quality levels can be achieved.
- Care should be taken when using these terms and actual specifications for air quality should always be given.

Quality	Applications
Plant Air	Air tools, general plant air
Instrument Air	Laboratories, some paint spraying, powder coating, climate control
Process Air	Food and pharmaceutical process air, electronics
Breathing Air	Some hospital air systems, diving tank refill stations, respirators for cleaning and/or grit blasting

ISO 8573-1 Compressed Air Quality Classes

 ISO 8573 provides detailed standards on air-quality classes for various levels of particulate, moisture, and lubricant contaminants.

ISO 8573-1:2010 Compressed Air Quality Classes

Class	Max. Par	ticle Size	•			
	(μm)	(mg/m³)	(°C/°F)	(g/m³)	(mg/m³)	
0	Specified by t	the equipment r	nanufacturer/su	ipplier and grea	iter than class 1	
1	0.1	0.1	-70/-94	0.003	0.01	
2	1	1	-40/-40	0.12	0.1	
3	5	5	-20/-4	0.88	1	
4	15	8	3/37	6	5	
5	40	10	7/45	7.8	25	
6			10/50	10/50 9.4		
7			Not Sp	ecified		

Note: the Class 0 certification was created in response to industry needs for oil-free air. Stating Class 0 without an agreed specification will mean it is not in accordance with the standard. Class 0 air purity is best achieved at the point of use to minimize cost.

Air Quality

- The air quality level required is a function of the dryness and contaminant level required by the end-uses, and is accomplished with separating, filtering and drying equipment.
- For certain applications, more than one class may be considered.
- Ambient conditions will influence the selection, especially dew point.
- Point of use equipment manufacturers should be consulted to determine their specific needs.

Capacity Ratings and Corrections

- Before beginning a discussion of compressor ratings, a couple of often misused terms need to be understood.
- SCFM Standard Cubic Feet per Minute
 - A standard cubic foot of air is the amount of air in one cubic foot of volume when the air is at standard conditions of pressure, temperature and relative humidity.
 - There are a number of different standards:
 - The most common is air at sea level (14.5 PSIA)
 - 68° F and a relative humidity of 0%

Capacity Ratings and Corrections

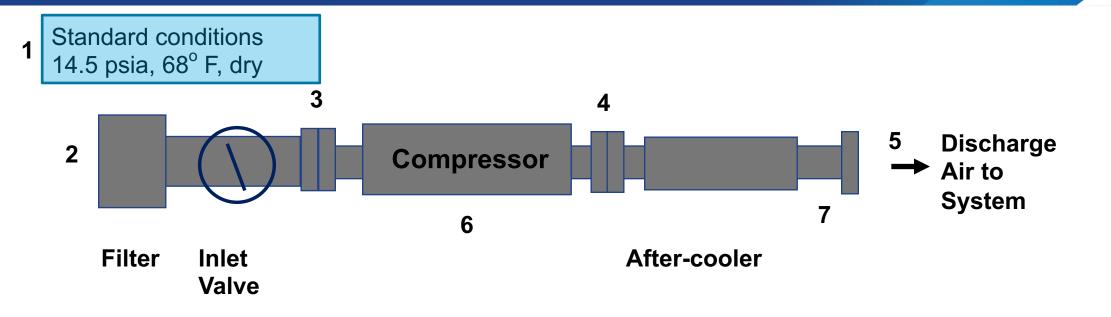
- ASME Standard
- Pressure 14.7 PSIA
- Temperature 68° F
- R/H 36%

- ISO, CAGI, Pneurop Standard
 - Pressure
 - Temperature
 - R/H

- 14.5 PSIA
- 68° F
- 0%

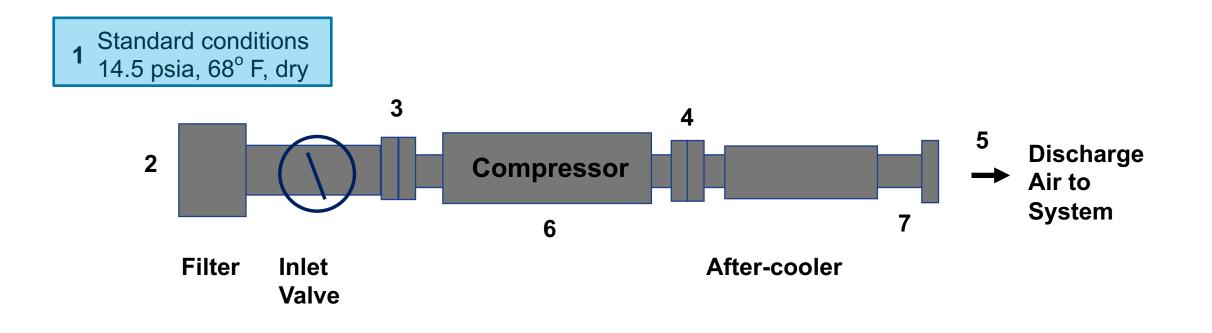
Ratings

- In the industry, there are four different capacity definitions for CFM.
 - Free Air Delivery (FAD CFM)
 - Actual Cubic Feet per Minute (ACFM)
 - Inlet Cubic Feet per Minute (ICFM)
 - Standard Cubic Feet per Minute (SCFM)


Definitions and Formulas

- Capacity calculations (Positive-Displacement)
 - **Golden rule**: FAD, ACFM, and ICFM are fixed volume flow rates which do not change with respect to atmospheric conditions.
 - In other words, a given compressor, when operating at rated speed and discharge pressure will essentially deliver the same volume flow rate regardless of inlet conditions.
 - SCFM delivery of an air compressor is calculated from the unit's FAD volume flow rate.
 - SCFM delivery will vary, depending on how the actual atmospheric conditions deviate from the "standard" reference set of conditions.
 - In winter, the SCFM delivery of a given air compressor is greater than during the summer, and vice versa.

Definitions



- 1 = Standard conditions 14.5 psia, 68° F, dry
- 2 = Ambient conditions, example 14.5 psia, 95° F, 90% RH
- 3 = Inlet flange of compressor
- 4 = Discharge flange of compressor
- 5 = Compressed air to system
- 6 = Seal losses
- 7 = Condensate losses from intercoolers and after-cooler separators

Definitions

F.A.D.	= amount of compressed air measured at 5 referred back to ambient conditions 2	
SCFM	= amount at 5 referred back to standard conditions 1	
ACFM	= amount at 5 referred back to inlet flange 3	
ICFM	 amount of air flowing by inlet flange, 3 (used primarily by dynamic compressors, centrifugal) 	

Formulas

- To convert the required scfm to the flow that will be required at a specific geographic location with acfm, the formula below can be used.
 - Where:
 - *P_s* = standard pressure, psia
 - *P_a* = Atmospheric pressure, psia
 - PP_{wv} = Partial Pressure water vapor at ambient temperature
 - Rh = Relative Humidify
 - T_a = Ambient Temperature, °F
 - *T_s* = Standard Temperature,°F

$$acfm = scfm \times \frac{P_s}{\left[P_a - \left(PP_{wv} \times Rh\right)\right]} \times \frac{\left(T_a + 460\right)}{\left(T_s + 460\right)}$$

Formulas

Temp. °F	Ambient Pressure Lb/Sq.In.	Temp. °F	Ambient Pressure Lb/Sq.In								
32	0.008854	49	0.1716	67	0.3276	85	0.5959	103	1.0382	121	1.7400
33	0.0922	50	0.1781	68	0.3390	86	0.6152	104	1.0695	122	1.7888
34	0.0960	51	0.1849	69	0.3509	87	0.6351	105	1.1016	123	1.8387
35	0.1000	52	0.1918	70	0.3631	88	0.6556	106	1.1345	124	1.8897
36	0.1040	53	0.1990	71	0.3756	89	0.6766	107	1.1683	125	1.9420
37	0.1082	54	0.2064	72	0.3886	90	0.6982	108	1.2029	126	1.9955
38	0.1126	55	0.2141	73	0.4019	91	0.7204	109	1.2384	127	2.0503
39	0.1171	56	0.2220	74	0.4156	92	0.7432	110	1.2748	128	2.1064
40	0.1217	57	0.2302	75	0.4298	93	0.7666	111	1.3121	129	2.1638
41	0.1265	58	0.2386	76	0.4443	94	0.7906	112	1.3504	130	2.2225
42	0.1315	59	0.2473	77	0.4593	95	0.8153	113	1.3896	131	2.2826
43	0.1367	60	0.2563	78	0.4747	96	0.8407	114	1.4298	132	2.3440
44	0.1420	61	0.2655	79	0.4906	97	0.8668	115	1.4709	133	2.4069
45	0.1475	62	0.2751	80	0.5069	98	0.8935	116	1.5130	134	2.4712
46	0.1532	63	0.2850	81	0.5237	99	0.9210	117	1.5563	135	2.5370
47	0.1591	64	0.2951	82	0.5410	100	0.9492	118	1.6006	136	2.6042
48	0.1653	65	0.3056	83	0.5588	101	0.9781	119	1.6459	137	2.6729
		66	0.3160	84	0.5771	102	1.0078	120	1.6924		

Partial Pressure of Moisture at Various Temperatures

Example

- Requirement.
 - 1000 scfm using ISO standard (68°F, 0% RH, 14.5 psig (1 bar))
 - Altitude 5000 ft above sea level
 - Maximum ambient temperature 100°F
 - Maximum Relative Humidity 50%
 - Ambient pressure at 5000 ft. = 12.2 psia
 - Partial pressure of moisture at 100°F from vapor pressure chart = 0.95 psia
 - Partial pressure at 50% RH = 0.95 x 0.50

$$acfm = scfm \times \frac{P_s}{\left[P_a - \left(PP_{wv} \times Rh_a\right)\right]} \times \frac{\left(T_a + 460\right)}{\left(T_s + 460\right)}$$

$$acfm = 1000 \, scfm \times \frac{(14.5 - 0Rh)}{\left[12.2 - (0.95 \times .50)\right]} \times \frac{(100 + 460)}{(68 + 460)}$$

$$acfm = \frac{14.5}{11.725} \times \frac{560}{528} = 1312 \, acfm$$

Ps = standard pressure, psia Pa = Atmospheric pressure, psia PPwv = Partial Pressure water vapor at ambient temperature Rh = Relative Humidify Ta = Ambient Temperature, °F Ts = Standard Temperature, °F

Example using the MEASUR Tool

11 ACTUAL TO STANDARD AIRFLOW ACFM Convert to Actual Airflow Convert to Standard Airflow Actual Atmospheric Pressure 12.2 psia Auto Calculate From Elevation Actual Ambient Temperature 100 Actual Relative Humidity 50

Standard Atmospheric Pressure Standard Ambient Temperature Standard Relative Humidity Standard Airflow

14.5	psia		
68	٩Ē		
0	%		
1000	scim		

ENERGY

Results

SCFM

°F

%

Formulas

- The example on the previous page demonstrates the need for accurate requirement specifications.
- In this case, the actual compressor capacity required at the prevalent ambient conditions is one-third greater than the stated scfm.
- Consideration also must be given to the fact that the temperature at this site will not always be as high as 100 degrees Fahrenheit, and relative humidity also may be lower.
- Some geographic locations have wide changes in ambient temperature from day to night and from season to season.
- This will result in less volume being required from the compressor.
- The right compressor with the proper controls will help to manage the supply for these various demands.

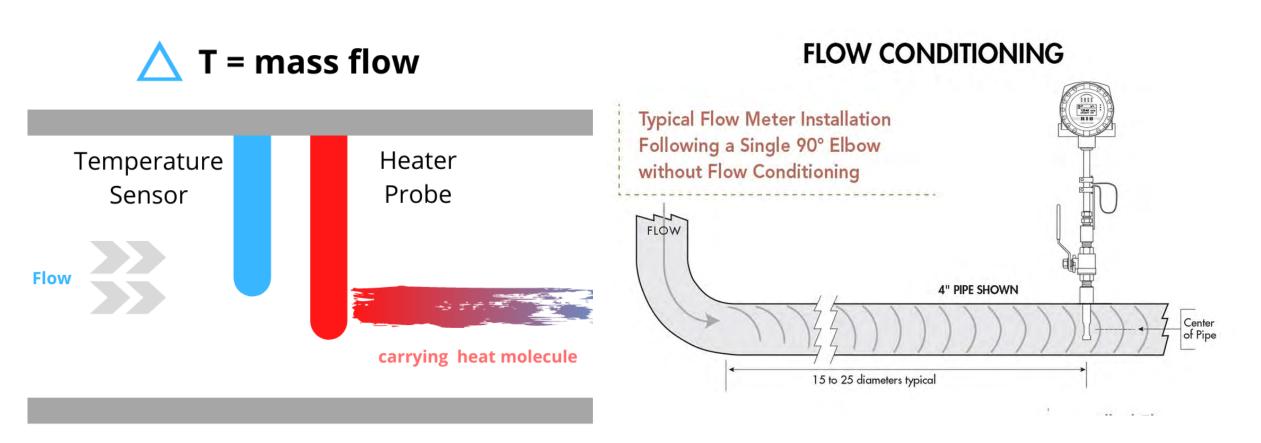
Taking Measurements

The Need to Make Measurements

- Flow (cfm)
- Pressure (psi)
- Power (kW)
- Energy (kWh)
- Dollars (\$)

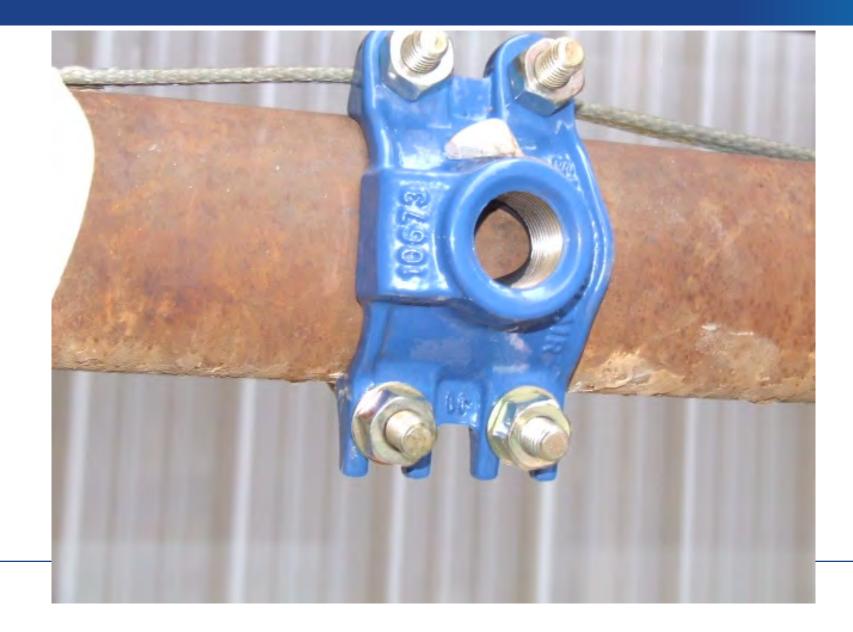
Measurement Tools

Measurement Tools

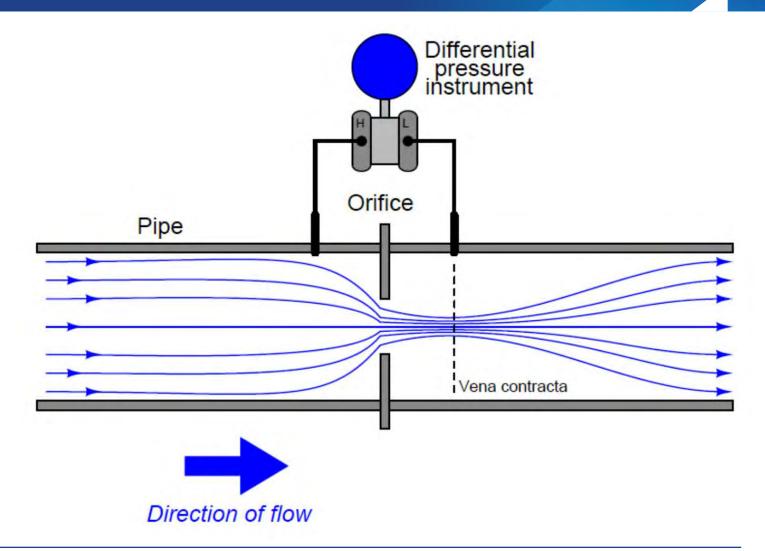


Measurement Tools

Thermal mass measurement versus other technologies


- Understanding the difference between a thermal mass flowmeter and other measurement technologies is the first step in deciding if the TMFM is the correct device for an application.
- The primary difference between a TMFM and other technologies is that it directly measures mass flow versus volumetric flow based on heat transfer.
- Gas is compressible. The gas volume changes under pressure and temperature fluctuations.
- For this reason, orifice plates, venturi meters and other Delta-P (differential pressure) devices, as well as turbine meters, rotary gas meters and vortex meters, require additional instruments to measure the temperature and pressure and then mathematically convert the volume to mass.
- A TMFM does not need separate temperature or pressure transmitters as it directly measures mass flow.

How to Hot Tap



Orifice Plate Flow Meters

These meters are another carry over from fluid engineering.

They operate on the physics of a pressure drop being created as a medium flows through an orifice.

The problem with these meters is just that; they, themselves are a pressure drop.

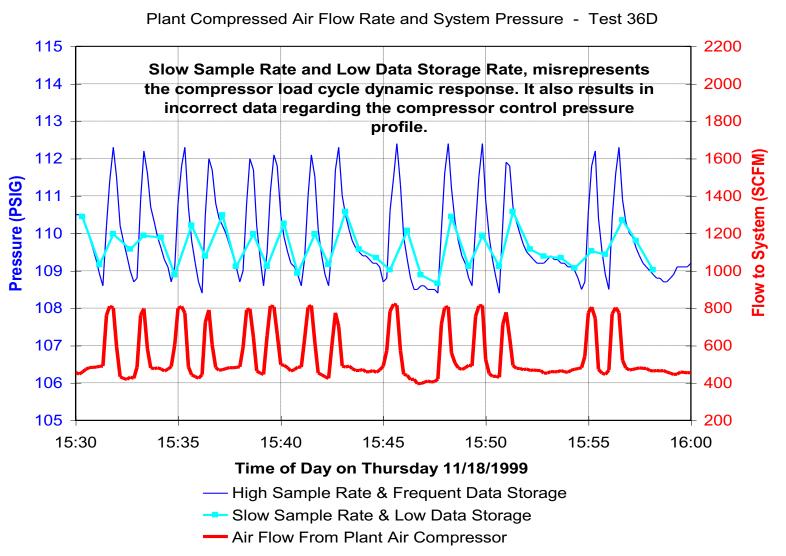
U.S. DEPARTMENT OF

Ultrasonic Flow Meters

Better Plants

Taking Measurements

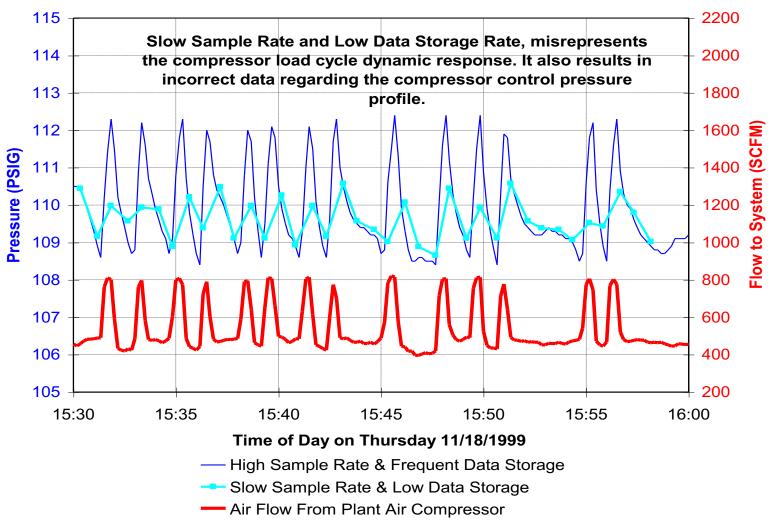
- Money spent on energy is calculated by converting kWh to dollars.
- Dollars can be estimated using average \$/kWh rates, or more complicated calculations can be made using actual electricity rates.
- You need to understand your electricity rate structure, your electricity bill, and how the compressed air system is impacting the bill.
- Calculations on how much is spent on compressed air should always be tied back into production by calculating dollars spent on compressed air per unit of production


- Taking data at a single point, or even during various shifts can provide some answers, but not the complete picture.
- The use of data logs is important in determining how a system operates over time.
- When data logging system performance sample rate (reading transducer signals), and data storage interval are critical.
- Sample rate, data reduction averaging methods, and data storage interval must be consistent with system dynamics.

- This data chart shows a comparison of different sampling rates and data intervals.
- The inappropriate data collection leads to a misrepresentation of compressor load cycles.

	High Rate	Slow Rate
Sample Rate	1 sample per 1 second	1 sample per 3 seconds
Data Averaging	10 samples	15 samples
Data Interval	10 seconds	45 seconds

Plant Air Consumption

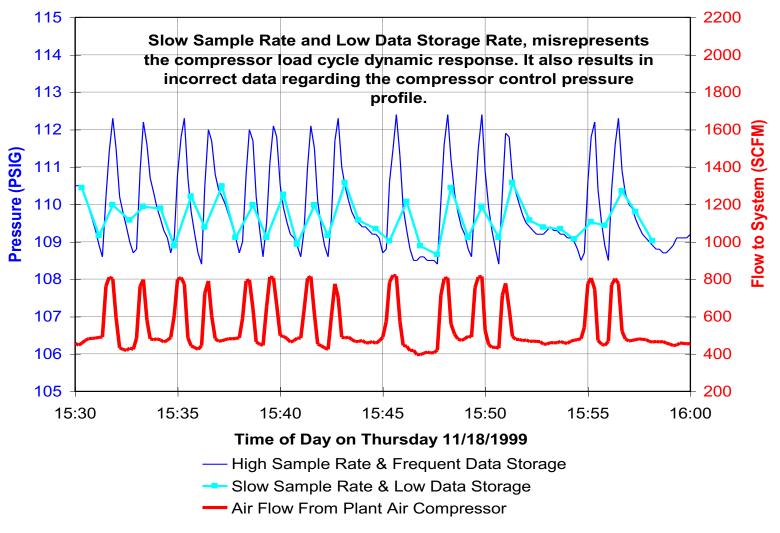


- Signal aliasing in the data tracing above could easily lead to misinterpretation of the recorded system dynamics.
- The 350 scfm swing in flow to the system is NOT a demand event.
- The true wave forms, collected at the high sample rate, clearly show a direct correlation of increasing flow with increasing pressure.

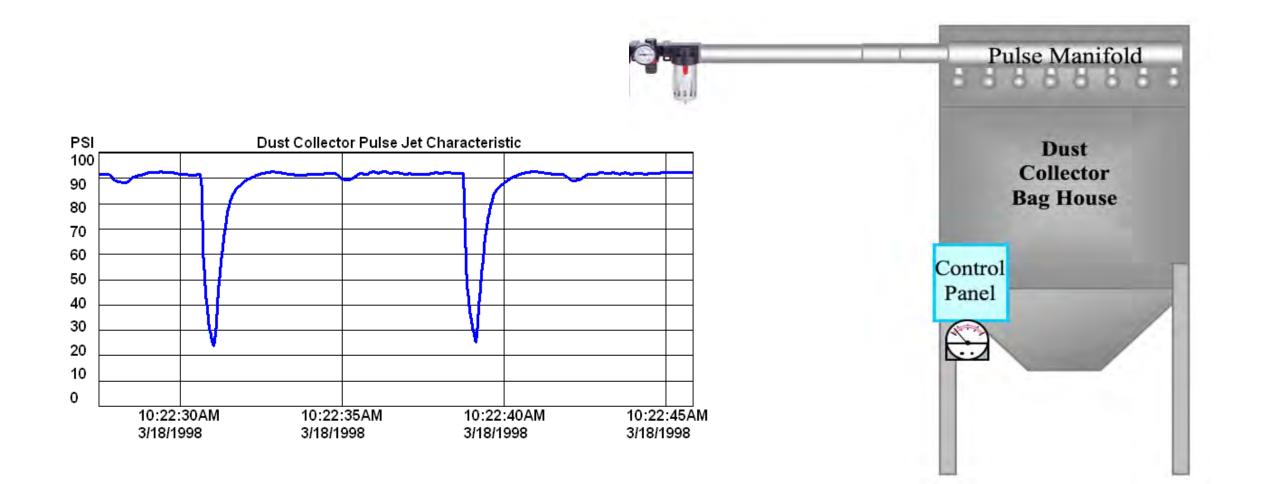
	High Rate	Slow Rate
Sample Rate	1 sample per 1 second	1 sample per 3 seconds
Data Averaging	10 samples	15 samples
Data Interval	10 seconds	45 seconds

Plant Air Consumption

Plant Compressed Air Flow Rate and System Pressure - Test 36D



- The aliased pressure tracing between 15:30 hours and 15:35 hours might be interpreted to show increasing flow with decreasing pressure, or no change in pressure.
- The slow sample rate and alias pressure tracing could lead to the conclusion that the flow increase is a demand event.
- Increasing flow with decreasing, or no pressure change, is due to a demand event.


Plant Air Consumption

Plant Compressed Air Flow Rate and System Pressure - Test 36D

High Speed Data Collection

Using Measurements

- Measurements take the "vital signs" of a compressed air system to see how it is operating and how efficient the system is
- Once the system baseline is established, it can be tracked over time to monitor improvements or degradation in the system's performance.
- This information is then converted into dollars and communicated to management.

Summary

- Measurements need to be taken to understand how a compressed air system is operating
- Measurements can help you adjust and optimize your system
- Data logging can help you better understand and optimize the system, although sometimes substantial improvements can be made without them
- Care needs to be taken to ensure that you have the right tools for the job, know how to use them, know their limitations, and know how to interpret the data being produced
- Understanding the difference between accuracy and repeatability is important when taking measurements
- Measurements will help you understand how much you are spending on compressed air on a per unit of production basis

- Positive Displacement Typically Rotary Screw
- Dynamic Compressors Typically Centrifugal
- Compressor Room Ventilation

