

Motor Systems Virtual INPLT Training & Assessment

Session 2

11111/1/1

Motors Virtual INPLT Facilitator

Ron Wroblewski, PE, Productive Energy Solutions, LLC Madison, Wisconsin

ron@productiveenergy.com (608) 232-1861

Acknowledgments

- Johnny Douglas, P.E.
- Gil McCoy, P.E.
- Dr. Hugh Falkner, England
- Dr. Anibal De Almeida, University of Coimbra, Portugal
- Many industrial clients both in the US and internationally

Safety and Housekeeping

Safety Moment

- $\circ~$ Motors can be dangerous, and caution should be used around them
- $\circ~$ Ensure that belt guards and equipment covers are fully in place
- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded
 - $\circ~$ A link to the recorded webinars will be provided, afterwards

Learning Objectives

- Discuss impact of poor power factor and its causes
- Review external factors affecting motor efficiency
- List 4 primary categories of causes of motor failure
- List 3 preventive maintenance strategies for improving motor reliability
- List 5 factors that to considered before repairing a burnt-out motor

Power factor is a measure of how much work is being done by the delivered amps

 $Power(kW) = \frac{Amps \ x \ Volts \ x \ Power \ Factor \ x \ \sqrt{3}}{1000}$

Where Volts is phase-to-phase voltage

- A low power factor "fills" the feeders and transformers with non-productive amps
- Some utility companies charge extra for low power factor

Low PF

Power Factor

Courtesy of DOE ITP

Power Factor

Courtesy of DOE ITP

Power Factor Calculations

Courtesy of DOE ITP

Poor Power Factor

External Factors Affecting Motor Efficiency

- Efficiency is never constant. External factors can reduce efficiency and require derating. Beginning with the worst, these include:
 - Voltage unbalance
 - Voltage deviation
 - Voltage harmonics

Voltage Unbalance

Definition

Voltage unbalance is given by:

L1 = 600 V
L2 = 585 V
L3 = 609 V

$$Average Voltage = \frac{600 + 585 + 609}{3} = 598 V$$

 $Max. deviation from avg. = 598 - 585 = 13 V$

Voltage Unbalance

- Unbalances greater than 5% should be immediately corrected.
- Significant increase in motor losses.
- Possible causes:
 - Improper transformer setup
 - Single phase loads
 - Faulty regulating equipment
 - Utility unbalance
 - Open connections
 - Unequal conductor or component impedance.

Insulation Life vs. Temperature

Courtesy Anibal T. De Almeida and Hugh Falkner and UNIDO

Motor Derating

Courtesy Anibal T. De Almeida and Hugh Falkner and UNIDO

Allowable starts per hour and minimum off-time between starts

- 10 hp / 1800 RPM 12.5 (46 sec)
- 50 hp / 1800 RPM
 6.8 (72 sec)
- 200 hp / 1800 RPM 4.0 (300 sec)
 - Source: NEMA Standard MG 10

The Starter

Four elements: (generally in a box on the wall)

- Means of isolation (positive shutoff)
- Circuit protection (protect upstream wiring from shorts)
- Motor controller (stops, starts, ramps up; may even regulate voltage)
- Motor protection (protects motor from overload current and certain other fault conditions).

The Load

Constant Torque

• This means the load's torque demand does not vary with motor speed.

Variable Torque

The load varies with torque. Most common is the cube law variation. Torque varies as the square of speed (plus a constant) and horsepower varies as the cube. Pumps and fans (i.e. centrifugal loads) are the most common examples.

Load Characteristics - Inertia

- High inertia loads present a challenge for motors to accelerate.
- Motors capability to start high inertia loads is covered in NEMA MG1 Part 20.
- If load inertia is too high, it may be necessary to upsize to a larger motor
- Variable Frequency Drives can be programmed for a slow ramp up without overheating. Other reduced voltage drives may overheat.

Why/how do motors fail?

- Neglect / abuse
- Misapplication
- Severe Environment
- Normal Wear and Tear

Failures of Neglect and Abuse

- Dirt
- Bad Lubrication
- Poor Power Quality
- Harmonics
- Unbalance in voltage
- Over/under voltage
- Poor belt drive maintenance

Failures of Misapplication

- Under-sizing
- Over-sizing
- Wrong enclosure
- Coupling, Belts & Shimming

Failures of Severe Environment

- Hot Ambient
 - Requires derating
- High Altitude
 - Causes overheating requires derating
- Humidity
 - Motors in storage (zaps insulation or bearings)
 - Motors with significant off time (zaps insulation)
 - Requires internal or ambient heating
- Airborne Contaminants
 - Damages insulation or bearings
 - Kills by abrasion or chemical deterioration

Without unusual stresses, motors sometimes last for many tens of thousands of operating hours but will eventually succumb to...

- Bearing wear
- Insulation failure due to time and temperature.

How much maintenance?

Size Importance level	Maintenance Level
Small non-critical	Break down o.k. Preventive recommended
Medium non-critical	Preventive
Medium, & Large Critical	Preventive & Predictive

Image courtesy DOE

Computerized Maintenance Management System - CMMS

 Many software providers offer CMMS products to track maintenance, prioritize work, maintain spares, inventory, trend condition changes, and generate reports to organize and optimize whole plant maintenance.

Polling Question 1 & 2

Polling Question

1) Does your organization use a CMMS?

- a) Yes
- b) No
- 2) If so, which one do you use, or if you have experience with more than one, which do you prefer?

Importance of Motor Maintenance

- According to the 2021 Motor Systems Market Assessment Report:
- Collectively, all US industry suffers from 6 million hours of downtime annually due to motor-related failures
- On average, an industrial facility will experience 47 hours per year of downtime due to motor-related failures

Foundry Case Study – Implemented PM program

Foundry Production in Tons

Mechanical Transmissions Gears

- Used for low speed, high torque loads
- Several types: helicoidal, spur, conic, and screw
- Losses are related to the friction of gears and bearings, windage and lubricating viscosity.

Mechanical Transmissions Gears

- Worm gear efficiency between 50 & 85%, depending on:
 - The transmission ratio
 - Speed
 - Lubricant
 - Temperature

Mechanical Transmissions Helical Gears

Helical and conic gears have an efficiency of 98-98.5% per stage (1.5-2% loss per stage)

Courtesy Anibal T. De Almeida and Hugh Falkner and UNIDO

Mechanical Transmissions - Belts

- 1/3 of motors use belts.
- High flexibility of speed adjustment.
- Several types:
 - Vee belts
 - Vee belts without cogs
 - Flat belts
 - Synchronous belts

- The Vee type is the widely used, with an efficiency of 90-96% for larger motor sizes (depending on the motor size, elasticity, tension slip, and alignment).
- If the tension is excessive: accelerated wear of the belts and bearings.
- If the tension is too low: the slip and losses increase.
- The most efficient belt types are the flat and the synchronous. The synchronous has an efficiency of about 98-99%.

Critical V-Belt Installation Parameters

- Replace all belts at the same time.
- Never use a crowbar to put on the new belts.
- Align the shafts and pulleys.
- Tension the belt properly using a:
 - Sonic tensioning meter or
 - Straight-edge & belt tensioning testing tool
- Run the machine for 24 hours.
- Re-tension the belts.

Belt Tensioning Tools & Techniques

Use Manufacturer's recommended deflection force.

Images courtesy Gates Rubber

Critical Elements for Proper Motor Greasing

RTFM

- Schedule
- Type of Grease
- Amount of Grease
- Purge old Grease

Lubrication Interval Guide

Recommendations by Electrical Apparatus Service Association

Lubrication Guide: Frequency in Months				
RPM	Frame Range	Type of Service		
		8 Hours/Day	24 Hours/Day	
	143T-256T	*	*	
3600	284TS-286TX	6	2	
	324TS-587US	4	2	
	143T-256T	*	*	
	284T-326T	48	18	
1800	364T-365T	12	4	
	404T-449T	9	3	
	505U-587U	6	2	
1200	143T-256T	*	*	
and	284T-326T	48	18	
below	354T-449T	12	4	
	505U-587U	9	3	
* These motors often do not have bearings that can be relubricated.				
Replace after 14,000 to 17,000 service hours.				

Corporate culture & lubrication

- Leverage QC processes to document correct procedure
 - Six Sigma
 - ISO
- Delegate to a responsible team
- Consider outsourcing?
- Consider using more motors with sealed bearings?

Infra-Red Photography

Hot Bearing Headed for Failure

The motor is supposed to be warmer than the bearing

Image courtesy Peterson Predictive Maintenance

Ultrasonic Bearing Maintenance

Bearing Check

Acoustic Grease gun adapter

Image courtesy SDT North America
Better
Plants

Equipment Set-Up: Mechanical

- Provide a flat, rigid mounting for motors and driven equipment.
- Ensure that motor and load are properly aligned.
- Proper Alignment:
 - Reduces motor frame distortions
 - Reduced motor frame stress
 - Reduced vibration
 - Increases motor life
 - Increases efficiency

Laser Alignment

If not properly aligned, the coupling will quickly fail

Equipment Set-up: Electrical

- Electrical codes generally based on 2% loss
- Suggested practice upsize wire gauge one size larger than required by code
- Specify adequate conductor size:
 - Reduces line losses
 - Mitigates harmonics
 - Reduces sags
 - Reduces undervoltage
 - Accommodates load growth
 - Accommodates low power factor
 - Accommodates Design A motors

Repairing, Rewinding, and Rebuilding

Polling Questions

- 1) We rewind very few motors if any. T/F
- 2) We rewind definite or special purpose motors. T/F
- 3) We rewind general purpose TEFC motors 50 hp and smaller.
- 4) We rewind general purpose TEFC motors over 50 hp. T/F
- 5) We rewind general purpose ODP motors 50 hp and smaller. T/F
- 6) We rewind general purpose ODP motors over 50 hp T/F

According to the 2021 Motor Systems Market Assessment Report...

- Only 54% of industrial facilities have a repair replace policy, and sometimes these are very informal.
- In 36% of industrial facilities, the guiding policy is lowest first cost among the repair vs replace options.
- 4% of industrial motors were rewound in the last 2 years
- Less than 1% of commercial motors were rewound over the past 2 years

Repair vs. Replace:

Things to Consider...

- Rewinding a motor *can* reduce efficiency 0.5 to 1% (if not done according to EASA best practices)
- First cost of repair and new purchase.
- Efficiency of existing and proposed new motor.
- Urgency and availability of each alternative.
- Possible modifications to the mounting.
- Annual hours of operation.
- Cost of down time and repairs from a possible early failure in either scenario.

How does a poor rewind degrade efficiency?

Stator Winding

- Undersize wire may be used.
- Errors can occur in the turn count.
- Winding pattern may be revised

How does a poor rewind degrade efficiency?

Rotor

- Damaged rotor bars may be missed and not repaired.
- Machine work on the rotor may increase the air gap or smear the laminations together on the rotor surface.
- Failure to repair bent shaft can interfere with magnetic flux uniformity in the air gap.

How does a poor rewind degrade efficiency?

Stator Core Iron

- Overheating to roast out the old windings can damage interlaminar insulation.
- Machining can increase the air gap or smear the laminations together on the stator surface.
- Failure to repair damage from the actual fault condition can leave a hole in the stator or welded laminations.

Energy Management for Motor Driven Systems

This book is a very comprehensive guide to managing your electric motor systems for an improved bottom line.

Resources Pertaining to Motor Repair and Rewinding

Electrical Apparatus Service Association

EASA

Catalog of Resources

www.easa.com

Resources Pertaining to Motor Repair and Rewinding

Switch to live demonstration of MEASUR motor calculators

Thank you!

For Questions or Comments please reach out to the following:

Ron Wroblewski, PE Productive Energy Solutions, LLC ron@productiveenergy.com Thomas Wenning Oak Ridge National Lab wenningtj@ornl.gov

