
Industrial Fan Systems Virtual INPLT Training & Assessment

Session 5

11111111

Fan Virtual INPLT Facilitator

Ron Wroblewski, PE, Productive Energy Solutions, LLC Madison, Wisconsin

ron@productiveenergy.com (608) 232-1861

Acknowledgments

- William (Bill) Hunter, PE, Airclean Systems, Seattle WA
- Eddie Radd, CFW Fans, Cape Town, SA
- William (Bill) W.T. Corey, Corey Consultancy, Surrey England
- US Department of Energy , Advanced Manufacturing Office
- Oak Ridge National Laboratory
- United Nations Industrial Development Organization
- Air Movement and Control Association, AMCA International
 Many industrial clients both in the US and internationally

Agenda – Session 5

- Welcome and Introductions
- Safety and Housekeeping
- Agenda for Fan System Virtual INPLT (8 weeks)
- Today's Content:
 - **Industrial Fan Systems Fundamentals**
 - Pressure considerations in fan systems
 - Sizing ducts and system pressure losses
 - **MEASUR Tool**
 - Demonstration
- Kahoot Quiz Game
- Q&A

Safety and Housekeeping

- Safety Moment
 - Ensure that ducts carrying dust have adequate velocity to entrain the material and that ducts do not have stagnant branches
 - Accidents can be life-threatening
- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and a the meeting you are giving your consent to be recorded
 - $\,\circ\,$ A link to the recorded webinars will be provided, afterwards

Fan system Virtual INPLT Agenda

- Week 1 Industrial Fan Systems Fundamentals and Introduction to MEASUR
- Week 2 Fan and system curves, Fan types
- Week 3 Fan affinity laws, Fan system controls
- Week 4 Creating a fan performance measurement plan & selecting measurement planes
- Week 5 Pressure considerations, Sizing ducts and estimating losses, Optimization techniques
- Week 6 Psychrometrics and air density for fan systems, System effect in fan systems
- Week 7 Fan system optimization strategies, Fan system evaluation with MEASUR
- Week 8 Industrial Fan System VINPLT Wrap-up Presentations

Session 5 Learning Objectives

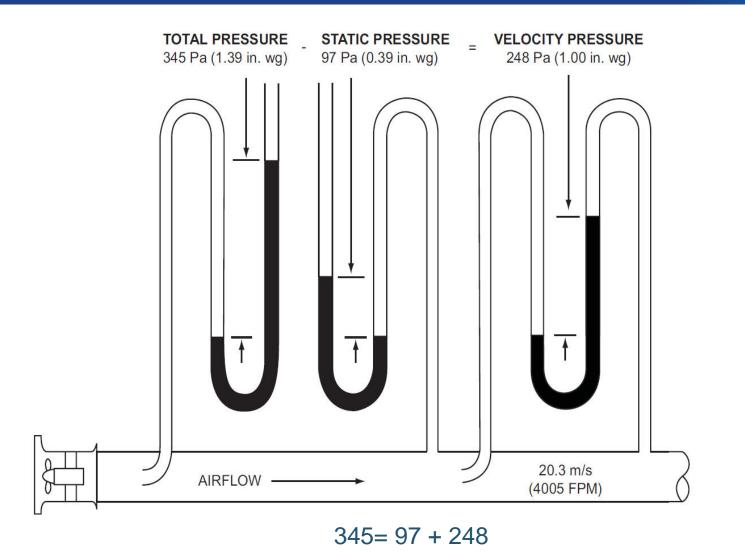
Class participants will:

- 1. Discuss fan system pressure considerations;
- 2. Examine the definition of fan static pressure;
- 3. Analyze losses due to duct design
- 4. Calculate losses due to duct design
- 5. Discuss duct design parameters
- 6. Analyze air velocity requirements for pneumatic conveyance
- 7. Analyze and calculate friction losses

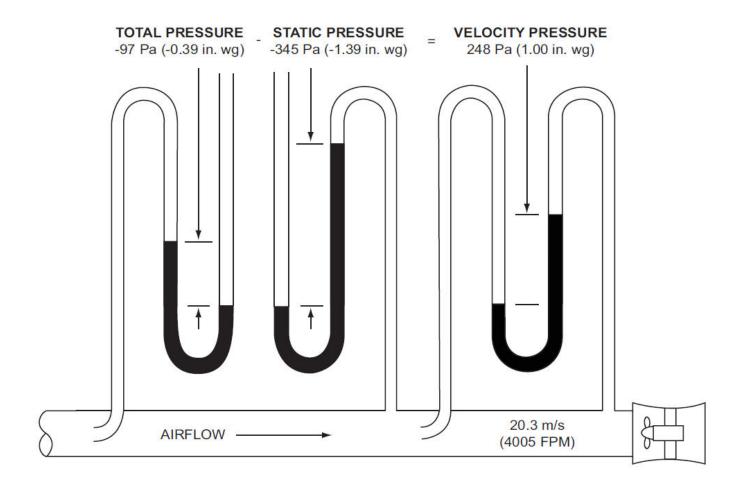
Pressure considerations in fan systems

Bernoulli's equation determines the relationship between the static pressure (P_s), velocity pressure (P_v) and total pressure (P_t).

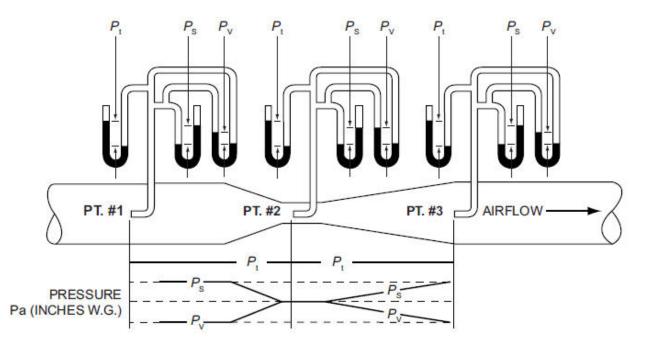
 $P_t = P_s + P_v$


The fan static pressure is defined in AMCA measurement protocols as the outlet static pressure minus the inlet static pressure minus the inlet velocity pressure:

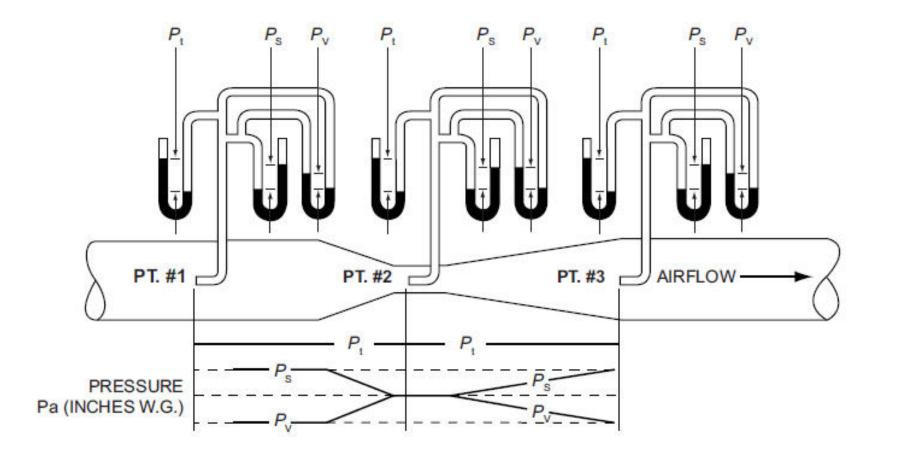
$$\mathsf{P}_{\mathsf{s}} = \mathsf{P}_{\mathsf{s}2} - \mathsf{P}_{\mathsf{s}1} - \mathsf{P}_{\mathsf{v}1}$$


System Pressure Illustration- Positive Pressure

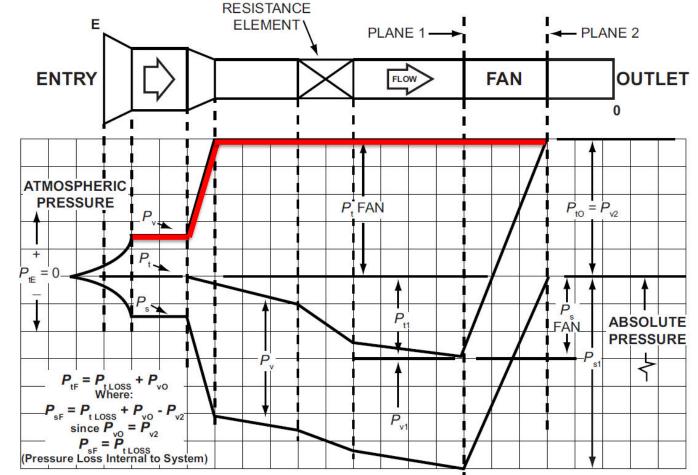
System Pressure Illustration- Negative Pressure


-97= -345 + 248

Venturi Flow Meter Pressure Relationships

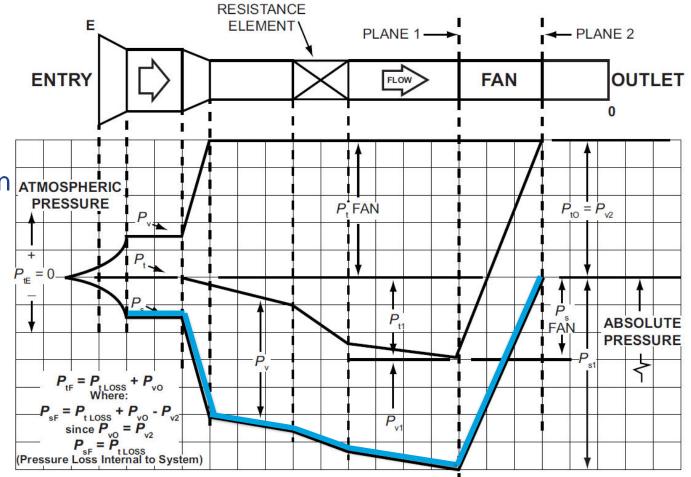

- Because the meter has very low losses, the total pressure at points 1, 2, and 3 are equal
- As the flow accelerates in the throat of the meter, the velocity pressure goes up, and the static pressure goes down
- Since the density, cross section and static pressure at inlet and throat are known, the flow can be calculated

Venturi Flow Meter Pressure Relationships



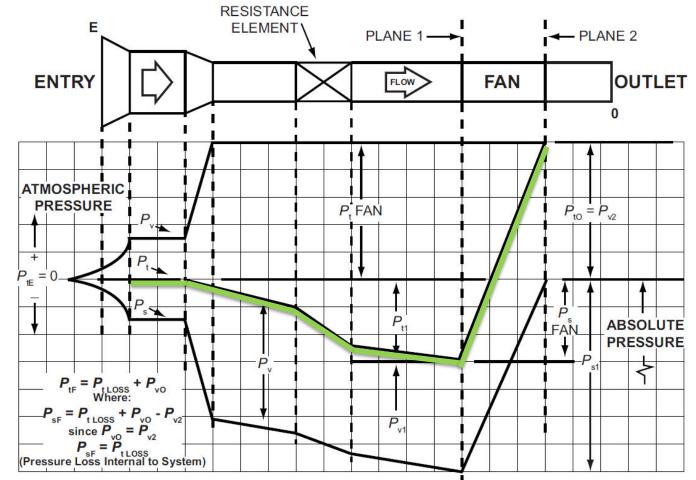
System Pressure Variations-Resistance on the Inlet Side of Fan

- Typical for an ID fan (Induced Draft)
- Velocity Pressure
 - Starts out at 0 at system inlet then goes positive as air accelerates into the intake
 - Goes further positive as velocity increases with duct size reduction
 - Stays level when duct size stays constant



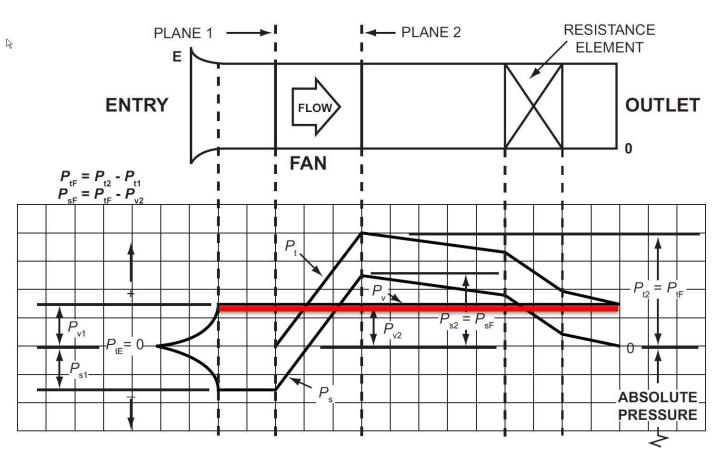
System Pressure Variations-Resistance on the Inlet Side of Fan

- Typical for an ID fan (Induced Draft)
- Static pressure
 - Starts out at 0 at system inlet then goes negative to offset velocity pressure
 - Goes further negative as velocity and velocity pressure increases with duct size reduction
 - Continues into deeper negative value until fan inlet, then goes back to zero at fan outlet



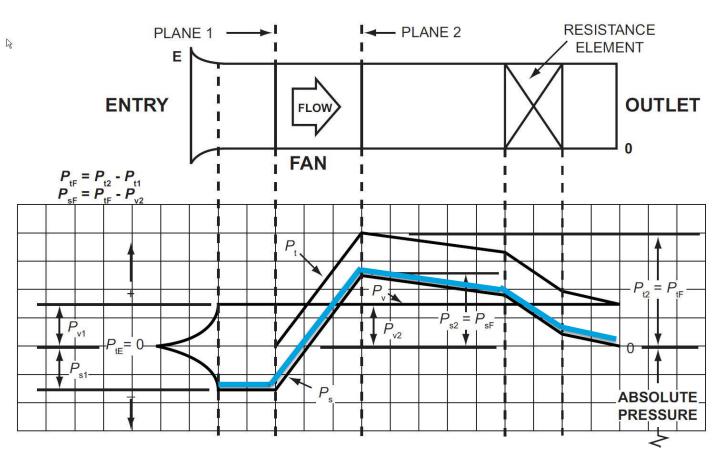
System Pressure Variations-Resistance on the Inlet Side of Fan

- Typical for an ID fan (Induced Draft)
- Total pressure
 - Starts out at 0 at system inlet
 - Goes down gradually as friction losses accumulate
 - Steeper decline through resistance element
 - Rises sharply through the fan



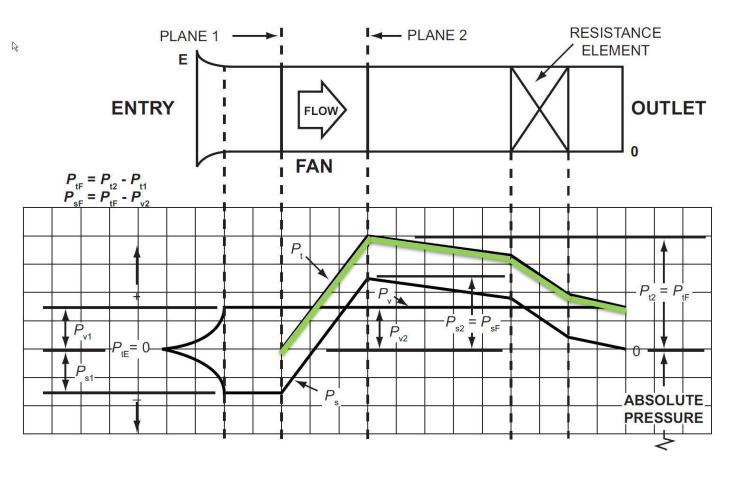
System Pressure Variations-Resistance on Outlet Side of Fan

- Typical for an FD fan (forced draft)
- Velocity pressure:
 - Starts at 0, then goes negative to offset the velocity pressure as air is draw into the inlet bell
 - Rises through the fan
 - Falls as air travels through ductwork
 - Returns to zero as air is discharged



System Pressure Variations-Resistance on Outlet Side of Fan

- Typical for an FD fan (forced draft)
- Static pressure:
 - Starts at 0, then goes negative to offset the velocity pressure as air is draw into the inlet bell
 - Rises through the fan
 - Falls as air travels through ductwork
 - Returns to zero as air is discharged



System Pressure Variations-Resistance on Outlet Side of Fan

- Typical for an FD fan (forced draft)
- Total pressure:
 - Starts at 0
 - Rises through the fan
 - Falls as air travels through ductwork due to friction loss
 - At the discharge, the total pressure equals the velocity pressure because the static pressure is zero

Sizing ducts and system pressure losses

Designing Ducting Systems

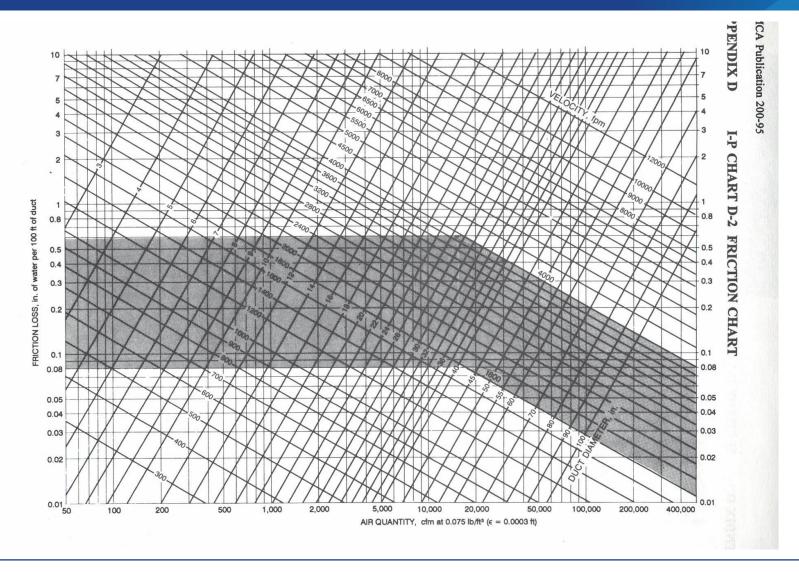
- Construction:
 - Steel
 - Sheet metal
 - Insulation
- Size:
 - Volume of air
 - Minimum velocity required

Commonly Accepted Air Velocities for Conveying Various Materials

Material	Velocity m/s	Velocity fpm
paper trim	25	4900
rags	22.5	4400
rubber pieces	22.5	4400
salt	27.5	5400
sand	35	6900
dry sawdust	15	3000
wood shavings	17.5	3400
wheat	29	5700
wool	25	4900
dry vegetable pulp	22.5	4400

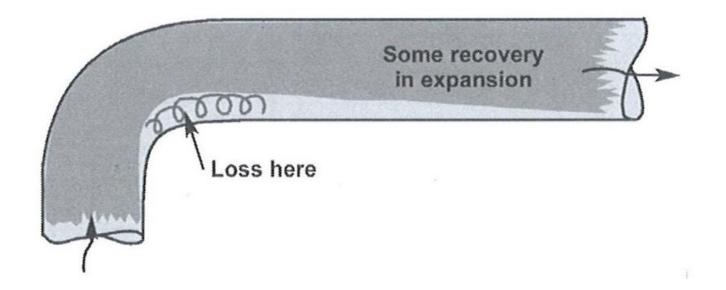
Commonly Accepted Air Velocities for Conveying Various Materials (cont.)

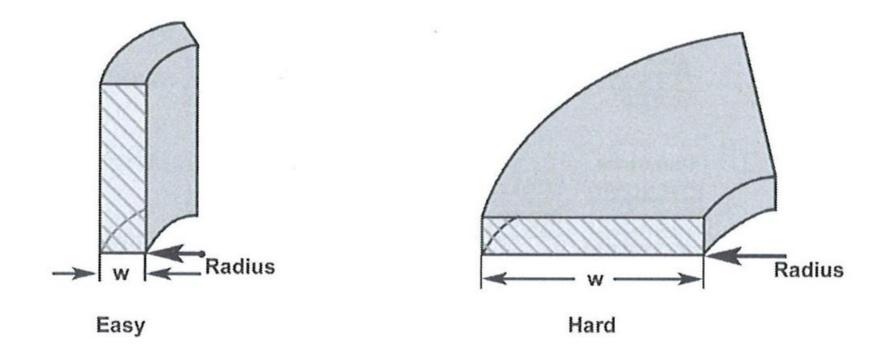
Material	Velocity m/s	Velocity fpm
castor beans	25	4900
cement	35	6900
powdered coal	20	3900
ground cork	15	3000
corn	28	5500
cotton	22.5	4400
Iron oxide	32.5	6400
pulverized limestone	25	4900
oats	22.5	4400



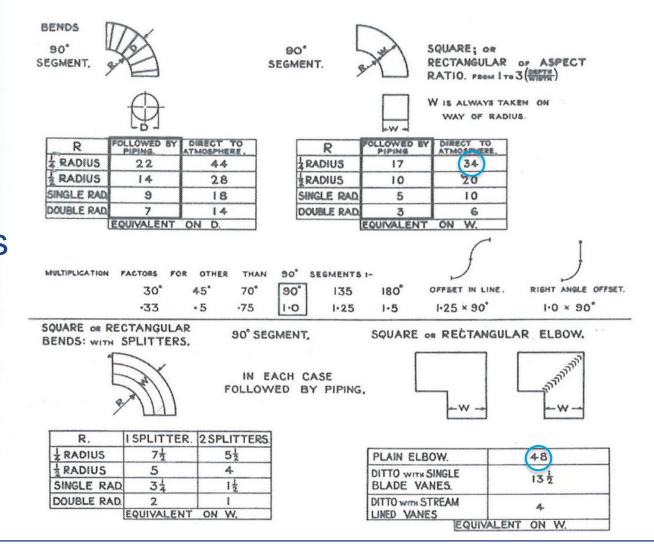
Friction Chart for Round Duct

by permission trom 1993


50

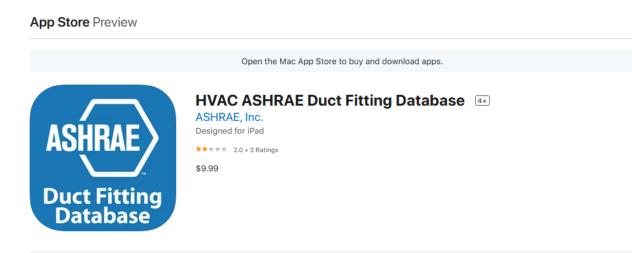

Recovery in Duct After a Bend

Easy and Hard Bends

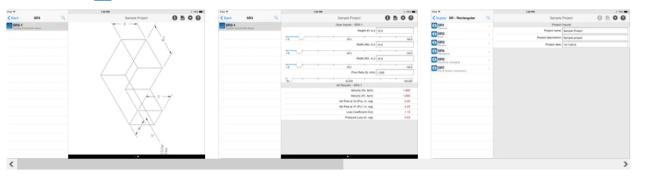


Duct Resistance Equivalent Lengths for Bends

 Although the method is dated, and not recommended for current use, the huge variation in losses for different fittings is dramatically illustrated



29


ASHRAE Duct fitting database ap

 \$9.99 Ap Works on Iphone, Ipad

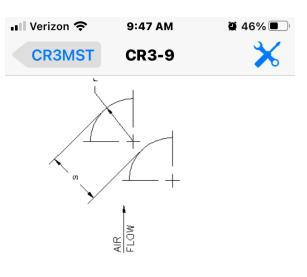
 Separate version for computer \$147

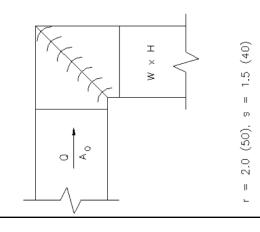
ASHRAE Duct fitting database ap

Navigate through the choices to match the fitting type

📲 Verizon 奈	9:47 AM	9 46% 🔳
Back	CR3	Q
CR3SR Smooth Rad	dius	>
CR3M Mitered		>
CR30 Other Elbov	VS	>

📲 Verizon 奈	9:47 AM	2 46% 🔳
CR3M	CR3MST	Q
CR3-9 1 1/2-in. Va	ane Spacing	>
CR3-12 3 1/4-in. V	2 ane Spacing	>

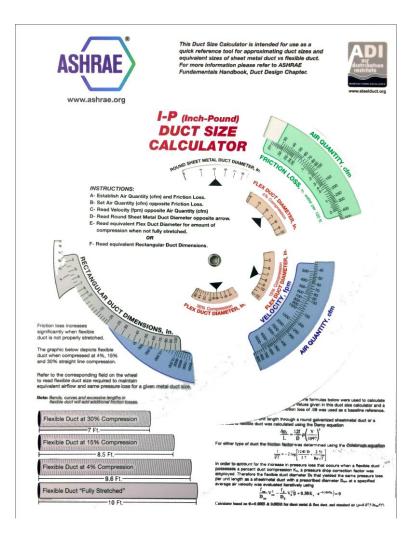

🖬 Verizon 奈	9:47 AM	፼ 46% ■
CR3	CR3M	Q
CR3MST Single-Thick	• ness Vanes	>
CR3MDT	 kness Vanes 	>
CR3-6 Without Vane	es	>



ASHRAE duct fitting database ap

📲 Verizon 奈	9:47 AM	2 46%
CR3MST	CR3-9	\mathbf{x}
Use	er Inputs - CR3-9	
	Width (W, in.):	12.0
1 3.0 + +	79.5	156.0
	Height (H, in.):	12.0
1 3.0	79.5	156.0
	Flow Rate (Q, cfm):	1,500
10 + +	i i i i 50,005	i i 100,000
Summary Results - CR3-9		
L	oss Coefficient (Co):	0.11
Pr	essure Loss (in. wg):	0.02

📲 Verizon 奈	9:47 AM	2 46%
CR3MST	CR3-9	\mathbf{x}
All	Results - CR3-9	
	Velocity (Vo, fpm):	1,500
Vel Pr	es at Vo (Pv, in. wg):	0.14
L	oss Coefficient (Co):	0.11
Pr	essure Loss (in. wg):	0.02
Reports		(i) >



Duct calculator wheel - ASHRAE and others

- Handheld cardboard calculator wheels are old standby for sizing ducts and calculating friction in straight sections of ductwork.
- Available from ASHRAE and some vendors of HVAC equipment

Instructions:

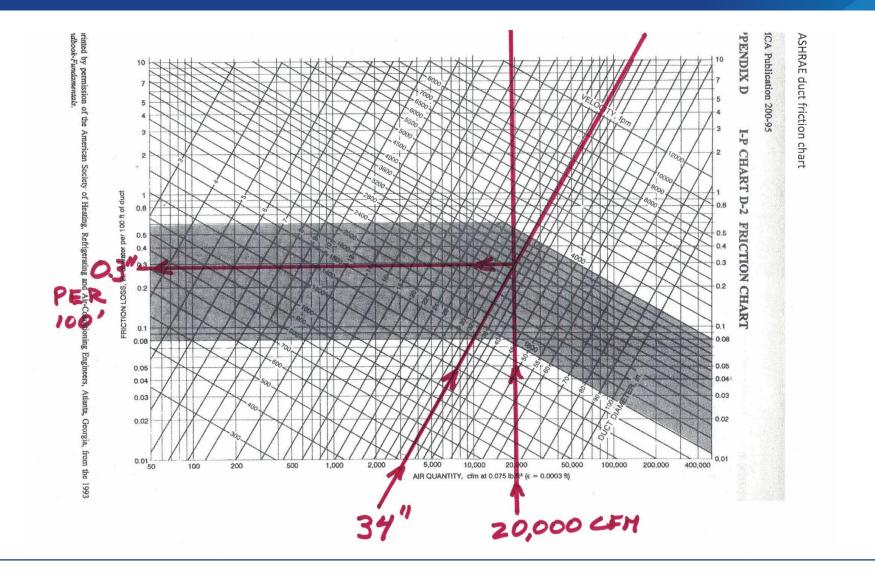
Let's say we need a duct 400 feet in length to carry 20,000 cfm of air that is loaded with sawdust. The baghouse loss is 3 inches w.g.

- What size duct is needed? Q = V.A
- What would be the pressure loss across the duct?
- Estimate the fan power required for this application

Let's say we need a duct 400 feet in length to carry 20,000 cfm of air that is loaded with sawdust. The baghouse loss is 3 inches w.g.

- 1. What size duct is needed? $Q = V \times A$
- a. First, we look in the table to determine the minimum velocity: 3000 fpm
- b. Next determine cross section: A = Q/V
 - 20,000/3000 = 6.67 ft²
- c. Determine duct diameter A = Pi x $D^2/4$ or D = Sqrt(A / Pi)

D = 2 x sqrt(6.67/3.1415) or 2.9 ft or 34.8 inches


Let's say we need a duct 400 feet in length to carry 20,000 cfm of air that is loaded with sawdust. The baghouse loss is 3 inches w.g.

2. What would be the pressure loss across the duct?

Using pressure loss chart

Let's say we need a duct 400 feet in length to carry 20,000 cfm of air that is loaded with sawdust:

2. What would be the pressure loss across the duct?

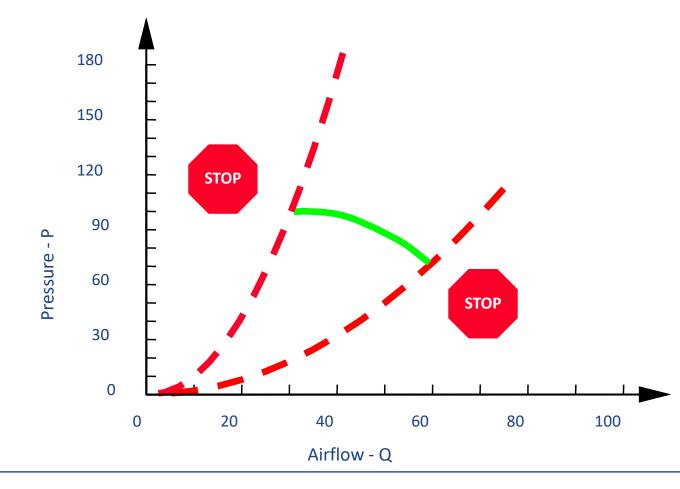
a. Looking in the chart, we see that the pressure loss in a 34 inch duct with 20,000 cfm is 0.3 inches per 100 ft.

b. Since the duct is 400 feet long the overall loss is $4 \times 0.3 = 1.2$ in. w.g.

Let's say we need a duct 400 feet in length to carry 20,000 cfm of air that is loaded with sawdust. The baghouse loss is 3 inches w.g.

- 3. Estimate the fan power required for this application
- a. Total loss is 1.2 inches w.g. + 3 Inches w.g. or 4.2 inches total
- b. Using fan power law, assuming our fan can be 75% efficient $20,000 \times 4.2 \times 1.0 / (6354 \times 0.75) = 17.6 \text{ hp}$

Fan System Optimization Techniques


Considerations for a well-designed fan system:

- 1. Establish the process needs by quantifying them.
- 2. Select a fan that is well-matched for the task:
 - Style of fan
 - Size of the fan
 - Issues with the load
 - Special requirements

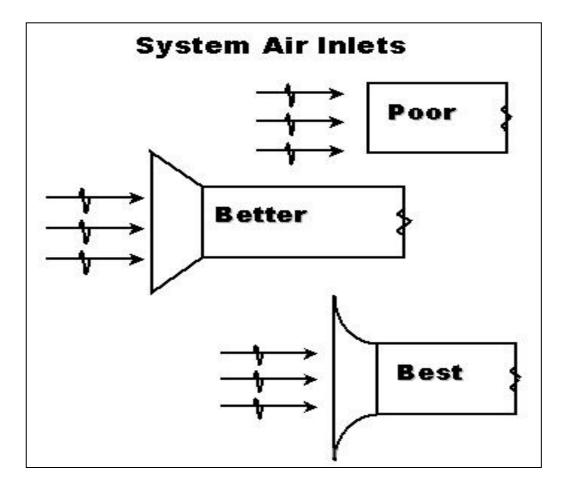
Recommended Selection Range as Seen on the Fan Curve

Considerations for a Well-Designed Fan System (cont.)

3. Eliminate unnecessary frictional losses.

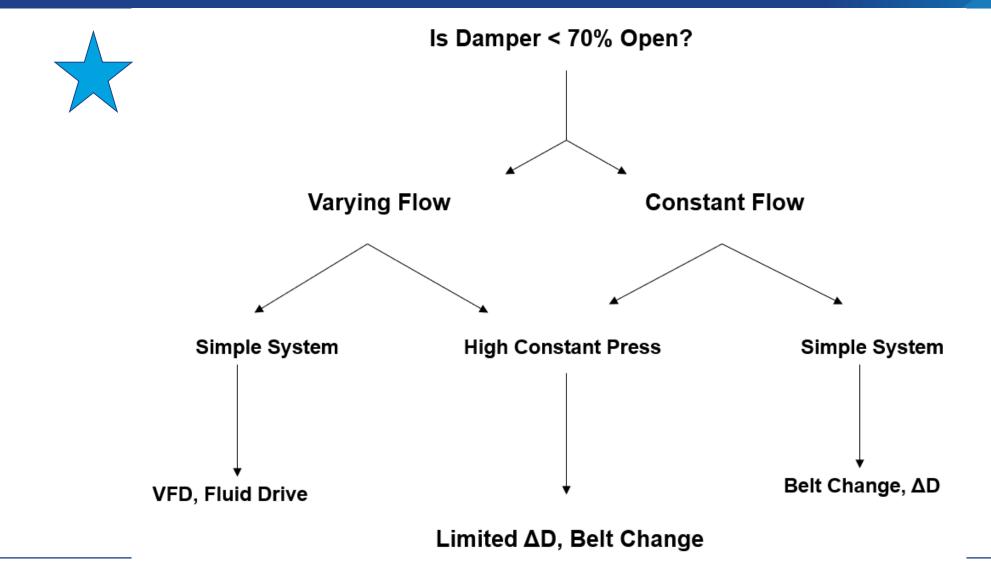
4. Put the fan on the "cold" or "cooler" side of a heat exchanger, if possible.

Considerations for a Well-Designed Fan System (cont.)


5. To achieve a smooth flow:

- Use smooth, gradual transitions
- Design fan inlet and outlet to optimize flow
- Avoid adjacent elbows, if possible, or an elbow close to another component
- Incorporate a straight length of ductwork upstream of components that may be adversely affected by uneven flow

Various Inlet Configurations



Fan optimization techniques overview

Optimization Method Flow Chart

Fan system optimization techniques overview

- 1. Reduce system pressure losses
- 2. Reduce system flow rate
- 3. Replace impeller
- 4. Replace fan
- 5. New belt drive ratio
- 6. Convert to belt drive
- 7. New variable inlet vane (VIV)
- 8. New VFD
- 9. Fluid Coupling (old technology)

- 1. Replace Impeller
 - + Better performance
- May not be available
- \$\$ marginally higher cost of custom design

Best suited for 200 kW+ and where new impeller design would be more efficient

- 2. Replace Fan
 - + Can be sized
- \$\$ New base
- \$\$ Modification
- \$\$ Ductwork may require modification
- Downtime

Best suited for fans smaller than 150 kW and for aging or deteriorating fans.

3. New Belt Drive Ratio

- + Inexpensive
- + Reversible
- + Ratio can be changed
- Preparation required
- Performance tests needed

Best suited when there is an existing belt drive, the load is fixed and the fan is oversized with a damper used as a control mechanism

4. Convert to Belt Drive

- + Fan speed can be changed
- + Less expensive than a VFD
- Fan bearings may not withstand the lateral force or belt thrust
- A new base may be required for the motor or fan
- Will require additional maintenance

4. Convert to Belt Drive

Best suited:

•when the current fan is oversized and has a direct drive motor operating at 190 kW or less.

•if a VFD is too expensive or otherwise unsuitable for the system

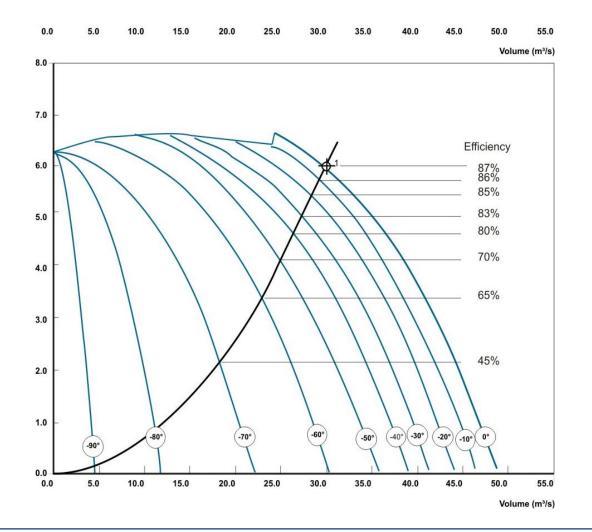
- 5. Variable Frequency Drive (VFD)
- + Fan output can be exactly matched to process needs
- + No changes needed
- + Very cost effective
- + Can easily replace throttle control
- + Can be used to over speed the fan motor

- 5. Variable Frequency Drive (VFD)
- Costly for large motors over 300 kW
- Efficiency falls at lower speeds
- Can cause problems with electrical systems
- Additional space is needed in the electrical room
- Air conditioning is needed

- 5. Variable Frequency Drive (VFD)
- Very sensitive to electrical power quality
- Purchase requires time and expertise
- The VFD vendor needs to know:
- starting torque of the fan,
- age and condition of the fan motor, and
- distance between the fan and electrical room

- 5. Variable Frequency Drive (VFD)
- Best suited for fan motors at 300 kW or smaller, with a system that needs variable flow

There will be no benefit to using a VFD with a system already at full capacity, under a steady load, or when there are only minor flow variations



- 6. Fluid Couplings
- + formerly used for larger fan motors greater than 500 kW where a belt drive could not be used
- \$\$ Can be expensive and inefficient
- Best suited to vary the speed on larger motors

Clinker Cooler Fan Curve

Key Points / Action Items

- 1. "follow" a particle of air through the duct system and examine the trade off between static pressure and velocity pressure.
- 2. Remember that as the velocity goes up due to a duct constriction, the velocity pressure goes up also, so there is a corresponding decrease in the static pressure
- 3. When materials are conveyed through the fan system, ensure that velocities are high enough to keep particles entrained, but not excessive to incur additional losses
- 4. Use easy bends and gradual transitions in ductwork
- 5. Use ASHRAE duct fitting ap to estimate duct losses

Homework #5

- Collect system pressure data for the top 1 or 2 likely optimization candidate projects you've been scoping.
- Use MEASUR to conduct preliminary analysis of top 2 or 3 candidates and submit the .json files for review

Thank You all for attending today's webinar.

See you all on next Thursday –

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at ron@productiveenergy.com

