WATER VIRTUAL IN-PLANT (VINPLT) TRAINING

Session 5

Today - Session 5: Pumps

We've already covered:

Energy Basics
Success Stories
Power Company Relations
KPIs
Source Selection
Energy Teams
Water Treatment
5Ls: Looping, Leaping, Leaking, Losing, Loading
Treasure Hunts

Thank You!

Sponsor:

Better Plants
 U.S. DEPARTMENT OF ENERGY

Today's Agenda

```
Homework Recap
Pump Curves }10
Break
Pump Activity
Pump Calculations
Kahoot!
Q&A
```


HOMEWORK RECAP

POLL

PUMP CURVES 101

Pumps and Efficiency

Where we answer the age-old question: How come every pump in our plant is 30% bigger than it needs to be?!?!?

Suction Lift $\left(\mathrm{h}_{\mathrm{s}}\right)$

When the supply is below the centerline of the pump.

Distance (in feet) from the centerline of the pump to the level of liquid to be pumped.

Suction Lift $\left(h_{s}\right)$

Suction Head $\left(\mathrm{h}_{\mathrm{s}}\right)$

When the supply is above the centerline of the pump.

Distance (in feet) from the centerline of the pump to the level of liquid to be pumped.

Total Head (H)

With Suction Lift
Discharge Pressure $(\mathrm{ft})+h_{\mathrm{s}}(\mathrm{ft})$

Discharge pressure

2.31 feet per psi

With Suction Head
Discharge Pressure (ft) - $h_{s}(\mathrm{ft})$

Centrifugal Pump Power

$$
B H P=\frac{Q * H}{3960 * \eta}
$$

Centrifugal Pump Power

How to save power?

$$
B H P=\frac{Q * H}{3960 * \eta}
$$

- Decrease Flow
- Decrease Head
- Increase Efficiency

And because
Energy = Power x Time, we can reduce energy by reducing runtime

Centrifugal Pump Motor Power

$$
\begin{gathered}
\text { MotorPower }(h p)=\frac{\operatorname{Power}(\text { BHP) }}{\eta_{\text {motor }}} \\
\text { MotorPower }(k W)=\text { MotorPower }(h p) \cdot \frac{0.75 \mathrm{~kW}}{h p} \\
\begin{array}{|l|l}
\text { BHP } & \text { Brake Horsepower } \\
\eta_{\text {motor }} & \text { Motor Efficiency (\%) } \\
\hline
\end{array}
\end{gathered}
$$

Centrifugal Pump Energy

Energy (kWh/yr) Power (kW) X Annual Operating Hours (hours/yr)
Energy Cost (\$/yr) Energy (kWh/yr) X Electric Rate (\$/kWh)

System Curves: Static Head

Ignoring pipeline friction, this is an example of purely static head.

Pump Curves: Frictional Head

Assuming no elevation change, this is an example of purely frictional head

Examples for Three Different Systems

System Curves

Reading Pump Curves - Example

To Calculate Total Head (ft) With Suction Lift:
Discharge Pressure (ft) + Suction Head $\mathrm{h}_{\mathrm{s}}(\mathrm{ft})$
92 feet $\quad+8$ feet $=100$ feet Total Head

Reading Pump Curves

Reading Pump Curves

Reading Pump Curves

Reading Pump Curves

If the pump has a $11^{\prime \prime}$ impeller diameter, is pumping water, and is operating at 500 gpm , what are the other operating conditions ($\mathrm{H}, \eta, \mathrm{BHP}$)?

11" Impeller Diameter

Q \quad| 500 |
| :--- |
| GPM |

H 100
Feet

П 57\%

Reading Pump Curves

$$
B H P=\frac{Q * H}{3960 * \eta}
$$

If the pump has a $11^{\prime \prime}$ impeller diameter, is pumping water, and is operating at 500 gpm , what are the other operating conditions ($\mathrm{H}, \eta, \mathrm{BHP}$)?

11" Impeller Diameter

Q 500
GPM

H 100
Feet

П 57\%

Reading Pump Curves Continued

u.s. department o

26 ENERGY

Reading Pump Curves Continued

If the pump has a $7.375^{\prime \prime}$ impeller diameter (D), and is operating at 320 gpm , what are the other operating conditions ($\mathrm{H}, \eta, \mathrm{BHP}$)?

BREAK

PUMP CURVE ACTIVITY

Pump Activity

EFFICIENCY WITH PUMPING

- You get to design a new pump station
- Booster Pump is at 820 feet
- Discharge point elevation is 860 feet
- What is the static head?

40 feet

Let's Draw!

Design flow is 350 GPM, and the pipe friction loss is estimated as follows:

100 GPM = $\mathbf{1}$ foot
200 GPM $=5$ feet
300 GPM = 15 feet
400 GPM = 30 feet
500 GPM = 50 feet system curve points

System curve head $=$

Static Head $=40$ feet

Use circles to mark the static + friction at each flow point

Let's Draw!

Flow (gpm)	Static Head (ft)	Friction Head (ft)	System Curve Head (ft)
0	\square	\square	
100			1
200			5
300			15
400			
500			50

Let's Draw!

Flow (gpm)	Static Head (ft)	Friction Head (ft)	System Curve Head (ft)
0	40	0	40
100			1
200			5
300			15
400			30
500			50

Let's Draw!

Flow (gpm)	Static Head (ft)	Friction Head (ft)	System Curve Head (ft)
0	40	0	40
100	40	1	41
200			5
300			15
400			30
500			50

Flow (gpm)	Static Head (ft)	Friction Head (ft)	System Curve Head (ft)
0	40	0	40
100	40	1	41
200	40	5	45
300	40	15	
400	40	30	
500	40	50	

Let's Draw!

System Curve

Pump Selection

Standard Performance Curves

Now We Pick a Pump

Draw the pump curve:
0 GPM = 92 feet
100 GPM = 90 feet
200 GPM = 85 feet
300 GPM = 75 feet
400 GPM = 60 feet
500 GPM $=40$ feet
Use Xs to mark the pump curve points

Where do the curves intersect?

Pump Curve

U.s. DEPARTMENT OF

System Curve and Pump Curve Intersection?

How Efficient is our Pump?

The pump we've selected has the following efficiency points:

0 GPM = 0\%
100 GPM $=30 \%$
200 GPM $=50 \%$
300 GPM = 60\%
400 GPM = 50\%
500 GPM $=30 \%$

Pump Curve

Pump Curve

What Power Will It Require?

Pumping Power

Equation

Q	370 GPM	$B H P=\frac{s . g \cdot Q \cdot H}{3960 \cdot \eta}$
H	65 feet	
s.g.	1.0 (we're pumping water)	

BHP

$11.2 \mathrm{hp} \times \underline{0.75 \mathrm{~kW}=8.4 \mathrm{~kW}}$ hp

How Much Will It Cost To Run?

Use 94\% motor efficiency

$$
\frac{8.4 \mathrm{~kW}}{0.94}=8.9 \mathrm{~kW} \text { into motor }
$$

$$
8.9 \mathrm{~kW} \times \frac{8,760 * * \mathrm{hrs}}{\text { year }}=\frac{78,000 \mathrm{kWh}}{\text { year }}
$$

$$
\frac{78,000}{\frac{\mathrm{k}}{} \mathrm{vkt}} \times \frac{\$ 0.06}{\text { year }}=\frac{\$ 4,680}{\text { year }}
$$

[^0]
Pumping Power Equation

$$
B H P=\frac{s . g \cdot Q \cdot H}{3960 \cdot \eta}
$$

You install the pump, and determine that it's actually running at 450 GPM

Q $\quad 450$ GPM

H \qquad feet
1.0
(we're pumping water)

$$
\eta
$$

\qquad \%

BHP \qquad $x 0.75=$ \qquad

Pump Curve

Pumping
Power Equation

Q 450 GPM

H $\quad 50$ feet
$\eta \quad 40 \quad \%$

Quick Power Check

$$
\begin{aligned}
& B H P=\frac{s \cdot g \cdot * Q * H}{3960 * \eta} \\
& \mathrm{BHP}=\frac{450 \mathrm{gpm} * 50 \text { feet }}{3960 * 0.40}=14.2 \mathrm{HP}
\end{aligned}
$$

Pumping Power Equation

Q 450 GPM
H 50 feet
s.g. $\quad 1$ (we're pumping water)

Pump
40\%
Efficiency η
1 (we're pumping water)

BHP

Quick Power Check

Pumping Power

Equation

Q	450 GPM
H	50 feet
П	40%
BHP	14.2 HP

Motor Output $=B H P * \frac{0.75 \mathrm{~kW}}{\mathrm{hp}}=14.2 \mathrm{hp} * \frac{0.75 \mathrm{~kW}}{\text { hp }}=10.6 \mathrm{~kW}$
Motor Input $=\frac{\text { Motor Output kW }}{\text { Motor Efficiency }}=\frac{10.6 \mathrm{~kW}}{0.94}=11.3 \mathrm{~kW}$

Pump Curve

Throttled Valve

Pump Curve

Pump Curve

Pump Curve

Pump Curve

System Curves: with VFD Operation

Pump Curve

Summary

Condition	Flow (GPM)	Head (Feet)	Input Power (kW)	Annual Cost $(@ \$.06 / \mathrm{kWh})$
Designed	370	65	8.9	$\$ 4,680$
Installed	450	50	11.3	$\$ 5,940$
Throttled	350	68	8.4	$\$ 4,420$
Add VFD	350	46	6.7	$\$ 3,520$

Summary

Condition	Flow (GPM)	Input Power (kW)	GPM / kW	kWh/MG Pumped
Designed	370	8.9	42	401
Installed	450	11.3	40	420
Throttled	350	8.4	42	400
Add VFD	350	6.7	52	319

Family of Curves

- Each curve is 100 RPM step
- VFD's are not a "cure all"

Figure 4: Efficiency versus Load Curve for Induction Motors

Oversize motors can cost you a LOT of money over the years!
 ```Motor Efficiency, \\ Selection and Management \\ A Guidebook for \\ Industrial Efficiency Programs```

Source: Courtesy EASA. Understanding Energy Efficient Motors. Out of print.

WWTP Effluent Pump Efficiency Test Results North Effluent Pump

WWTP Effluent Pump Efficiency Test Results South Effluent Pump

PUMP ENERGY CALCULATIONS

A 100 hp pump is 80% loaded and runs $24 / 7$. Motor efficiency is 95%. What is the operating power? Annual energy use and cost?

BHP $=100 \mathrm{hp} \times 0.80$ load $=80 \mathrm{hp}$

Annual energy use?

- 80 惂. $\times \underline{0.746 \mathrm{~kW}} \times \underline{24 \mathrm{hr}} \times \underline{365 \text { darks }=550,000 \mathrm{kWh}}$ rip. dax year year
0.95 motor efficiency
- Energy \$ = 550,000 kW.h $* \mathbf{\$ 0 . 0 5}=\mathbf{\$ 2 7 , 5 0 0}$ yr kWoh year

A 100 hp pump draws 70 amps at 460 volts operating at 100 psi year-round. Assume power factor is 0.8.

How much energy would be saved by reducing the discharge pressure to 90 psi (estimate)?

AMP TO kWH CALCULATION

For three phase power (be wary of using amps from a VFD panel readout):
Amps \times Volts $\times 1.73 \times$ Power Factor $\times \frac{1}{1,000} \quad \times$ hours $=k W h$
$70 \times 460 \times 1.73 \times 0.8 / 1,000 \times 8,760=390,000 \mathrm{kWh}$

- \% savings = (100 psi $-90 \mathrm{psi}) / 100 \mathrm{psi}=10 \%$
- Energy reduction $=390,000 \mathrm{kWh} \times 0.10=39,000 \mathrm{kWh}$
- Energy Savings \$ $=39,000 \frac{\mathrm{kLW.h}}{\mathrm{yr}} * \frac{\$ 0.05}{\mathrm{kWWh}}=\frac{\$ 1,950}{\text { year }}$

Motor Nameplates

- If we don't know amps and assume an 80% motor load that is $80 \%{ }^{*} 120=$ 96 amps
- If this was the motor from the last example, then 70 amps is $70 / 120=$ 58% motor load

MODEL \#

AMPS

NIDEC MOTOR

 CORPORATION www.usmotors.com
Activity

Calculate the energy savings for installing a VFD on a 50 hp pump

Currently throttled condition is 450 gpm

Actual pressure needed downstream of the valve is 40 psi

Baseline Pump Energy

- Flow: 450 gpm

\%- Head: $\frac{159 \mathrm{ft}}{25}$ ${ }^{80}$ - BHP: 25 BHP

Baseline Energy Calculations

Input Motor Power

$$
25 \text { BHP } \times \frac{1}{94 \% \text { motor eff }} \times \frac{0.746 \mathrm{~kW}}{h p}=\underline{19.8} \mathrm{~kW}
$$

Baseline Pump Energy

$\underline{19.8} \mathrm{~kW} x \quad 8,760$ Hours $/ \mathrm{yr}=\quad 174,000 \mathrm{kWh} / \mathrm{yr}$

Baseline Pump Energy Costs

174,000

$$
\text { _kWh } \times \$ 0.05 \quad / k W h=
$$

\qquad \$/yr

VFD Energy Calculations

VFD Energy Calculations

Input Motor Power

15 BHP $\times \frac{1}{94 \quad \% \text { motor eff }} \times \frac{0.746 \mathrm{~kW}}{h p} \times \frac{1}{97 \% V F D \text { eff }}=\underline{12.3 \mathrm{~kW}}$
(read from above)

VFD Pump Energy

$12.3 \mathrm{~kW} \mathrm{x} \quad 8,760$ Hours of Operation/ $\mathrm{yr}=108,000 \mathrm{kWh} / \mathrm{yr}$

VFD Pump Energy Costs

108,000_kWh x $\$ 0.05 \quad / \mathrm{kWh}=\quad \$ 5,400 \quad \$ / \mathrm{yr}$

VFD Energy Savings

\$8,700 \$/yr

(baseline operating costs read from above)

- \$5,400 \$/yr
(VFD operating costs read from above)
$=\$ 3,300 \quad \$ / \mathbf{y r}$

MULTIPLE PUMPS

Combining Pump Curves

Pumps in Parallel Add flows at same pump head...in theory.

Pumps in Series
Add pump head at same flow...in theory.

Pump Station with 3 Pumps

Why? The faster you pump, the more friction you create!

Remember the System Curve!

System Curves

What affects head loss the most?

Total Dynamic Head = Static Head + Head Loss
$h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g}$

Head loss is most sensitive to changes in diameter

On your smart phone Go to: https://kahoot.it/ Game PIN:

KAHOOT!

Takeaways

- Use your pump curves to see where they can operate efficiently
- Review pump curves when picking new equipment
- Consider VFD's where they make sense
- Reach out to your power provider about incentives when you are considering new equipment

Closing

> Questions Comments Discussion

SEE YOU TUESDAY!

aquafficiency ${ }^{\circ}$

Saving energy, one gallon at a time

[^0]: **Assume continuous operation

