

WATER VIRTUAL IN-PLANT (VINPLT) TRAINING

Session 5

11111/1/1

Today - Session 5: Pumps

We've already covered: **Energy Basics Success Stories Power Company Relations KPIs Source Selection Energy Teams** Water Treatment 5Ls: Looping, Leaping, Leaking, Losing, Loading **Treasure Hunts**

Energy Efficiency & Renewable Energy

Sponsor:

Today's Agenda

Homework Recap

Pump Curves 101

Break

Pump Activity

Pump Calculations

Kahoot!

Q&A

HOMEWORK RECAP

POLL

Energy Efficiency & Renewable Energy

PUMP CURVES 101

Energy Efficiency & Renewable Energy

Pumps and Efficiency

Where we answer the age-old question: How come every pump in our plant is 30% bigger than it needs to be?!?!?

DEFINITION

Suction Lift (h_s)

When the supply is **below** the centerline of the pump.

Distance (in feet) from the centerline of the pump to the level of liquid to be pumped.

Suction Lift (h_s)

DEFINITION

Suction Head (h_s)

When the supply is **above** the centerline of the pump.

Distance (in feet) from the centerline of the pump to the level of liquid to be pumped.

Suction Head (h_s)

Total Head (H)

DEFINITION

Centrifugal Pump Power

$$BHP = \frac{Q * H}{3960 * \eta}$$

DEFINITION

Centrifugal Pump Power

$$BHP = \frac{Q * H}{3960 * \eta}$$

How to save power?

- Decrease Flow
- Decrease Head
- Increase Efficiency

And because **Energy = Power x Time,** we can reduce energy by reducing runtime

Centrifugal Pump Motor Power

$$MotorPower(hp) = \frac{Power(BHP)}{\eta_{motor}}$$

$$MotorPower(kW) = MotorPower(hp) \cdot \frac{0.75kW}{hp}$$

Centrifugal Pump Energy

Energy (kWh/yr)	Power (kW) X Annual Operating Hours (hours/yr)
Energy Cost (\$/yr)	Energy (kWh/yr) X Electric Rate (\$/kWh)

System Curves: Static Head

Ignoring pipeline friction, this is an example of purely static head.

Pump Curves: Frictional Head

Assuming no elevation change, this is an example of purely frictional head

Examples for Three Different Systems

Reading Pump Curves - Example

To Calculate Total Head (ft) With Suction Lift:Discharge Pressure (ft) + Suction Head h_s (ft)92 feet+ 8 feet = 100 feet Total Head

Better

Plants

21 **ENERGY**

Better

Plants

Better

Plants

23 **ENERGY**

at 500 gpm, what are the other operating conditions (H, η , BHP)? ft Size: 3X6-14/3X8-14 - S m Imp. Dwg: 257-95 80 260 Pattern: 55921 Eye Area: 21.6 in² 11" Impeller 240 2 - 4 VANE 7ft - 70 Diameter 9ft 220 🔨 14in 62 64 65 11ft 200 500 60 1\$ft 0 13in 65 GPM 180 15ft 50 160 12in 100 140 Η 40 Feet 120 - 60hp - 30 100 🔀 10in 50hp 80 n 57% 40hp 20 60 30hp 40 20hp 400 500 300 600 700 800 900 1000 0 gpm m³/hr 75 100 125 150 175 200 2250

U.S. DEPARTMENT OF

If the pump has a 11" impeller diameter, is pumping water, and is operating

etter

lants

$$BHP = \frac{Q * H}{3960 * \eta}$$

U.S. DEPARTMENT OF

If the pump has a 11" impeller diameter, is pumping water, and is operating at 500 gpm, what are the other operating conditions (H, η , BHP)?

Reading Pump Curves Continued

Reading Pump Curves Continued

If the pump has a 7.375" impeller diameter (D), and is operating at 320 gpm, what are the other operating conditions (H, η , BHP)?

Energy Efficiency & Renewable Energy

PUMP CURVE ACTIVITY

Pump Activity

EFFICIENCY WITH PUMPING

- You get to design a new pump station
- Booster Pump is at 820 feet
- Discharge point elevation is 860 feet
- What is the static head?

40 feet

Design flow is 350 GPM, and the pipe friction loss is estimated as follows:

100 GPM = **1 foot**

200 GPM = 5 feet

300 GPM = **15 feet**

400 GPM = **30 feet**

500 GPM = **50 feet**

Use circles to mark the system curve points

System curve head = static + friction at each flow point

Static Head = 40 feet

Flow (gpm)	Static Head (ft)		Friction Head (ft)	System Curve Hea (ft)		
0						
100			1			
200			5			
300			15			
400			30			
500			50			

Flow (gpm)	Static Head (ft)		Friction Head (ft)	System Curve Hea (ft)		
0		40		0	40	
100				1		
200				5		
300				15		
400				30		
500				50		

Flow (gpm)	Static F (ft)	Static Head (ft)		Sys Curve (f	
0	40		0	4	0
100	40		1	_4	1
200			5		
300			15		
400			30		
500			50		

Let's Draw!

Flow (gpm)	Static Head (ft)	Friction Head (ft)	System Curve Head (ft)
0	40	0	40
100	40	1	41
200	40	5	45
300	40	15	
400	40	30	
500	40	50	

System Curve

Pump Selection

Standard Performance Curves

Now We Pick a Pump

Draw the pump curve:

0 GPM = **92 feet**

100 GPM = **90 feet**

200 GPM = **85 feet**

300 GPM = **75 feet**

400 GPM = **60 feet**

500 GPM = **40 feet**

Solution Use Xs to mark the pump curve points

Where do the curves intersect?

Better Plants

System Curve and Pump Curve Intersection?

Better Plants

How Efficient is our Pump?

The pump we've selected has the following efficiency points:

0 GPM = **0%**

100 GPM = **30%**

200 GPM = **50%**

300 GPM = **60%**

400 GPM = **50%**

500 GPM = **30%**

Use Δ's to mark the pump curve efficiency points

Better Plants

What Power Will It Require?

Pumping Power Equation		
Q	370 GPM	$s.g. \cdot Q \cdot H$
н	65 feet	$BHP = \frac{s.g. \cdot Q \cdot H}{3960 \cdot \eta}$
s.g.	1.0 (we're pumping water)	
η	54% (0.54)	
BHP		11.2 hp x <u>0.75 kW</u> = 8.4 kW hp

How Much Will It Cost To Run?

Use 94% motor efficiency $\underline{8.4 \text{ kW}} = 8.9 \text{ kW}$ into motor 0.94

78,000kWhr x
$$$0.06 = $4,680$$
yearkWhyearkWh

**Assume continuous operation

Quick Power Check

Quick Power Check			
Pumpin Equation	n Power		
Q	450 GPM		
н	50 feet		
η	40%		
BHP	14.2 HP		

Motor Output =
$$BHP * 0.75 kW$$

hp = 14.2 hp* $0.75 kW$ = 10.6 kW

Motor Input =
$$\frac{\text{Motor Output kW}}{\text{Motor Efficiency}} = \frac{10.6 \text{ kW}}{0.94} = 11.3 \text{ kW}$$

Throttled Valve

U.S. DEPARTMENT OF

System Curves: with VFD Operation

etter

lants

Example of system curve for open loop system: System curve is at 100% valve position. VFD speed is adjusted to reduce the flow.

Pump Curve

Summary

Condition	Flow (GPM)	Head (Feet)	Input Power (kW)	Annual Cost (@ \$.06 /kWh)
Designed	370	65	8.9	\$4,680
Installed	450	50	11.3	\$5,940
Throttled	350	68	8.4	\$4,420
Add VFD	350	46	6.7	\$3,520

Summary

Condition	Flow (GPM)	Input Power (kW)	GPM / kW	kWh/MG Pumped
Designed	370	8.9	42	401
Installed	450	11.3	40	420
Throttled	350	8.4	42	400
Add VFD	350	6.7	52	319

61

Family of Curves

• Each curve is 100 RPM step

• VFD's are not a "cure all"

Figure 4: Efficiency versus Load Curve for Induction Motors

Source: Courtesy EASA. Understanding Energy Efficient Motors. Out of print.

http://www.pge.com/includes/docs/pdfs/mybusiness/energysavingsrebates /incentivesbyindustry/agriculture/industrial_guidebook.pdf Oversize motors can cost you a LOT of money over the years! Motor Efficiency,

Selection and Management

A Guidebook for Industrial Efficiency Programs

Energy Efficiency & Renewable Energy

A 100 hp pump is 80% loaded and runs 24/7. Motor efficiency is 95%. What is the operating power? Annual energy use and cost?

BHP = 100 hp x 0.80 load = **80 hp**

Annual energy use?

 80 hp x 0.746 kW x 24 hr x 365 days = 550,000 kWh hp day year year 0.95 motor efficiency
Energy \$ = 550,000 kWh * \$0.05 = \$27,500 yr kWh year

A 100 hp pump draws 70 amps at 460 volts operating at 100 psi year-round. Assume power factor is 0.8.

How much energy would be saved by reducing the discharge pressure to 90 psi (estimate)?

AMP TO KWH CALCULATION

For three phase power (be wary of using amps from a VFD panel readout):

Amps X Volts X 1.73 X Power Factor X $\frac{1}{1,000}$ X hours = kWh

70 x 460 x 1.73 x 0.8 / 1,000 x 8,760 = 390,000 kWh

- % savings = (100 psi 90 psi) / 100 psi = 10%
- Energy reduction = 390,000 kWh x 0.10 = 39,000 kWh
- Energy Savings \$ = 39,000 <u>kW.h</u> * <u>\$0.05</u> = <u>\$1,950</u>

Motor Nameplates

- If we don't know amps and assume an 80% motor load that is 80%*120 = 96 amps
- If this was the motor from the last example, then 70 amps is 70/120 = 58% motor load

U.S. DEPARTMENT OF

Activity

Calculate the energy savings for installing a VFD on a 50 hp pump Currently throttled condition is 450 gpm

Actual pressure needed downstream of the valve is 40 psi

Baseline Pump Energy

Baseline Energy Calculations

Input Motor Power

25 BHP x 94 % motor eff x
$$\frac{0.746 \, kW}{hp} = 19.8 \, kW$$

Baseline Pump Energy

Baseline Pump Energy Costs

<u>174,000</u> kWh x \$ 0.05 /kWh = \$8,700 \$/yr

VFD Energy Calculations

Pump Head:

40 psig x
$$\frac{2.31ft}{psi} = 92.4$$
 FT

Pump Speed: (Which of the pump curves provides 92.4 ft @450 gpm)

$$1400 \operatorname{RPM} \times \frac{1}{1750 \operatorname{RPM}} = 80\%$$
 Speed

Pump Brake Horsepower:

BHP

15

VFD Energy Calculations

Input Motor Power

15 BHP x 94 % motor eff x
$$\frac{0.746 \, kW}{hp}$$
 X $\frac{1}{97 \% \, VFD \, eff} = 12.3 \, kW$

(read from above)

VFD Pump Energy

<u>12.3</u> kW x <u>8,760</u> Hours of Operation/yr = <u>108,000</u> kWh/yr

VFD Pump Energy Costs

<u>108,000</u> kWh x \$ <u>0.05</u> /kWh = <u>\$5,400</u> \$/yr

VFD Energy Savings

(VFD operating costs read from above)

MULTIPLE PUMPS

Energy Efficiency & Renewable Energy

Combining Pump Curves

Pump Station with 3 Pumps

Why? The faster you pump, the more friction you create!

Remember the System Curve!

What affects head loss the most?

Head loss is most sensitive to changes in **diameter**

On your smart phone Go to: <u>https://kahoot.it/</u> Game PIN:

KAHOOT!

Energy Efficiency & Renewable Energy

- Use your pump curves to see where they can operate efficiently
- Review pump curves when picking new equipment
- Consider VFD's where they make sense
- Reach out to your power provider about incentives when you are considering new equipment

Closing

Questions Comments Discussion

SEE YOU TUESDAY!

Saving energy, one gallon at a time

