Week 3

WATER VIRTUAL IN-PLANT (VINPLT) TRAINING

Week 3: Water Treatment, the 5Ls

Thank You!

Sponsor:

Better Plants

U.S. DEPARTMENT OF ENERGY

Today's Agenda

Homework Recap

Managing Energy Use at Water Treatment Plants
Break
The 5 L's: Leaping
The 5 L's: Looping
Kahoot!
Q\&A

HOMEWORK RECAP

POLL

MANAGING ENERGY USE AT WATER TREATMENT PLANTS

Influent (Raw Water) Pumps

- Find most efficient (energy map!)
- Run constant

Chemicals

- Use only what's needed to meet effluent goals (don't overdose)
- Avoid producing excess sludge
- Coordinate offloading with air compressor use (more later)

Mixers

- Just enough power to get good results
- Use VFD to control speed

Filter Backwash

- Backwash on head loss or turbidity, not time
- Backwash one filter at a time (why?)

Finished Water Pumps

- Find most efficient (energy map!)
- Provide for flexibility (VFDs, multiple pumps and sizes, or downstream storage)

Air Compressors

- 3 main types
- Modulating (least efficient)
- Load/unload
- VFD (most efficient)
- Evaluate necessity, frequency, and pressure requirements (valve actuation, tools, backwash, chemical offloading, etc.)
- Reduce pressure
- Turn off on weekends
- Check for leaks!

Solids Handling

- If batch, process during off-peak power hours
- Use equalization tanks to convert batch to constant flow
- Optimize chemical dose to avoid unnecessary sludge production

Lighting and HVAC - easy wins!

- Occupancy sensors and timers for lights
- LEDs - check local incentives
- Unoccupied spaces - cool to 80°, heat to 50°
- Programmable thermostats
- Check overnight and weekend settings
- Fans - low speed, high volume for big areas

KENNEWICK WTP ADJUSTMENTS

Jeremy Lustig
Bob Bepple

BREAK

The 5 L's: Common Water System Inefficiencies - Leaping
 - Looping
 - Leaking
 - Losing
 - Loading

LEAPING

Leaping - Problem

Leaping - Solution

Leaping - Example

Leaping - Diagnosis

How to detect

- Pressure zone has no sources
- PRVs usually flowing
- Hydraulic modeling
- Disch. pressure over 200 psi

How to resolve

- Reconfigure pumps
- Supply target zone directly

Leaping Activity

LOOPING

Looping - Problem

"Pumping in Circles"

Looping - Solution

Looping - Diagnosis

How to detect:
$>$
-
How to resolve:

- Decrease PRV setting
- Downsize pump or add jockey pump
- Add VFD

Leaping and Looping - Example

Leaping and Looping - Example

Looping Activity

Looping Workbook Activity

Looping Activity

> 2. How much water is being let through the PRV each year?

PRV Flow:
130 MG/year - 100 MG/year
= $30 \mathrm{MG} /$ year (mass balance)
3. What can we do to avoid wasting energy through the PRV?

Adjust setting downward to keep pumped water in Zone 2

Zone 1

Looping Activity

Zone 2 - Demand: 100 MG

Zone 1

4. How much energy (kWh) can be saved by avoiding Looping?
(30 MG/year)(500 kWh/MG)
$=15,000 \mathrm{kWh} /$ year
5. At $\$ 0.05$ per kWh, how much money would this change save?
(15,000 kWh/year)(\$0.05/kWh)
= \$750/year

On your smart phone Go to: https://kahoot.it/ Game PIN:

KAHOOT!

u.s. department of \quad Energy Efficiency \& Energy Efficiency \&
Renewable Energy

Closing

Questions Comments Discussion

SEE YOU TUESDAY!

aquafficiency ${ }^{\circ}$

Saving energy, one gallon at a time

