Chat Question for the Week

Favorite BBQ?

Using Zoom!

Recording

This meeting is being recorded (both audio and video)

If you do not consent to being recorded, please let the meeting moderator know ASAP and we will facilitate your participation in another way.

WATER VIRTUAL IN-PLANT (VINPLT) TRAINING

Week 2

Week 2: Water Source Selection, KPIs, and Energy Teams

Energy Efficiency &

Sponsor:

Today's Agenda

Homework Recap
KPIs
Source Selection part 1
Break
Source Selection part 2
Energy Teams
Kahoot!
Q&A

Opportunity Register

Energy Projects

	Energy Project	VALUE GO TO VALU	MATRIX	Step 1		lde	ntify			
Opportunity #	Opportunity Name	Savings (1–10)	Cost/Effort (1–10)		Opportunity Description	Location	System"	Date Submitted	Capital or O&M	Submitted By
1			_							
2				1						
3			I) IV		EASU					
4										
5										
6		Facility Basi	cs Find Tr	easu	ure Treasure Chest Report					
7					_					
8										
9			F	Find	d ways to save your hard	earned	treasu	re!	_	
10	<u> </u>		Use one of the	e follo	wing calculators to determine savings on	ortunities with	in vour man	ifacturing faci	lity	
1.5			obe one of an	o rono	and calculators to betchnine surnings opp	vortainuos ma	an your man	and channing race		
P			Ond	e an	opportunity has been found, save the opp	ortunity to you	r "Treasure (Chest".		
		51	Add more o	letails	to each opportunity by clicking the 🕒	icon and fillin	g out an opp	ortunity sheet	1	
Better		- C		Clic	k the "Treasure Chest" tab to view a sum	mary of your fo	ound treasure	ə.		

KEY PERFORMANCE INDICATORS

| Energy Efficiency & | Renewable Energy "If you can't measure something, you can't understand it. If you can't understand it, you can't control it. If you can't control it, you can't improve it."

-H. James Harrington

Why Track Energy Performance?

What Metrics Do You Use?

Why Tracking Monthly Bills is not Sufficient

Know Your Energy Drivers

Energy KPIs vs. Energy Intensity Model

Energy Intensity Model

A Delicate Balance

This Photo by Unknown Author is licensed under CC BY-SA

Energy Efficiency & Renewable Energy

SOURCE SELECTION

Source Selection

Better Plants

Concept: All else being equal, choose the cheapest water source.

Jordan Valley Water Conservancy District, UT

"Until the team examined the data, they had assumed that the newest or most conveniently located wells were the most efficient."

Source Selection Example

- Baseline energy intensity (kWh/MG) is based on 2013, 2014, and 2015
- Spring flow is maximized
- What differences in 2016 were good
- What difference in 2017 used more energy

How to make an energy map

- 1. **Select** a water facility that:
- Has been used consistently
- Has been used for at least several months
- Has water production records
- Has energy use records
- 2. Gather water production and energy use data
- 3. **Compute**: Total Energy (kWh) divided by Total Water (MG or ac-ft)
- 4. Repeat for each water source, discuss the results, and update as needed

SOURCE SELECTION ACTIVITY

| Energy Efficiency & | Renewable Energy

Columbia Heights Water System

Calculating Energy Efficiency/Intensity

Treatment Plant Production (kWh/MG)

- Energy (Numerator)
 - WTP Intake Pumps (kWh)
 - Water Treatment Plant (kWh)
- Water Production (Denominator)
 - Finished Water (MG)

Calculating Energy Efficiency/Intensity

Deep Well Production (kWh/MG)

- Energy (Numerator)
 - Large Pump (kWh)
 - Small Pump (kWh)
 - VOC Treatment (kWh)
- Water Production (Denominator)
 - Large Pump (MG)
 - Small Pump (MG)

Slow Sand Filter Production (kWh/MG)

- Energy (Numerator)
 - SSF Intake Pumps (kWh)
 - Shallow Pumps (kWh)
 - UV Treatment (kWh)
- Wait, is that the right way to do it? Water Production (Denominator)
 - Shallow Pumps (MG)

Ground Water Mitigation (kWh/MG)

- Energy (Numerator)
 - SSF Intake Pumps 1,000 MG (kWh)
- Water Production (Denominator)
 - SSF Intake Pumps 1,000 MG (MG)

Slow Sand Filter Production

- Energy (Numerator)
 - SSF Intake Pumps MG over 1,000 MG (kWh)Core
 - Shallow Pumps (kWh)
 - UV Treatment (kWh)
- Water Production (Denominator)
 - Shallow Pumps (MG)

31

Columbia River

Treatment Plant Production (kWh/MG)

- Energy (Numerator) 511,436 kWh
 - WTP Intake Pumps: 96,151 kWh
 - Water Treatment Plant: 415,285 kWh
- Water Production (Denominator) 332.2 MG
 - Finished Water: 332.2 MG
- Energy Intensity: 1,540 kWh/MG

Ground Water Mitigation (kWh/MG)

- Energy (Numerator) 134,336 kWh
 - SSF Intake Pumps: 134,336 kWh
- Water Production (Denominator) 362 MG
 - SSF Intake Pumps: 362 MG
- Energy Intensity: 371 kWh/MG

Slow Sand Filter Production (kWh/MG)

- Energy (Numerator) 537,160 kWh
 - Shallow Pumps: 166,236 kWh
 - UV Treatment: 246,500 kWh
 - WTP Finished Water Pumps: 57,644 kWh
 - SSF Intake Pumps: 66,780 kWh
- Water Production (Denominator) 180 MG
 - Shallow Pumps: 180 MG
- Energy Intensity: 2,977 kWh/MG

Deep Well Production (kWh/MG)

- Energy (Numerator) 72,924 kWh
 - Deep Well Meter: 55,464 kWh
 - WTP Finished Water Pumps: 17,460 kWh
- Water Production (Denominator) 54.5 MG
 - Finished Water: 54.5 MG
- Energy Intensity: 1,338 kWh/MG

Energy Intensity Summary

- Treatment Plant: 1,540 kWh/MG
- Slow Sand Filters: 2,977 kWh/MG
- Deep Wells: 1,338 kWh/MG
- Ground Water Mitigation: 371 kWh/MG

Columbia Heights Water System

- Annual Energy Use: 11,345,205 kWh
- Annual Production: 6,038 MG
- Annual Ground Water Mitigation: 1,000 MG
- Annual Energy Intensity: 1,879 kWh/MG
- Production Capacity
 - WTP: 750 MGM
 - SSF Intake Pump: 360 MGM
 - Deep Wells: 1 MGM

		Deep Wells	WTP	SSF GWM		GWM	
	Capacity		1	750	360		
E	nergy Ir	ntensity (kWh/MG)	1,338	1,540	2,97	7	371
Monthly Demand (MGM)			Propos	sed Monthly Pr	oduction	MGI	M
	Jan	221					
	Feb	205					
	Mar	247					
	Apr	403					
	May	677					
	Jun	799					
	Jul	999					
	Aug	928					
	Sep	680					
	Oct	409					
	Nov	238					
	Dec	232					

			Deep Wells	WTP	SSF	GWM
	Capacity		1	750		360
E	Energy Intensity (kWh/MG)		1,338	1,540	2,97	7 371
Monthly Demand (MGM)			Propos	sed Monthly Pr	oduction	MGM
	Jan	221	1			
	Feb	205	1			
	Mar	247	1			
	Apr	403	1			
	May	677	1			
	Jun	799	1			
	Jul	999	1			
	Aug	928	1			
	Sep	680	1			
	Oct	409	1			
	Nov	238	1			
	Dec	232	1			

40

U.S. DEPARTMENT OF

		Deep Wells	WTP	SSF GWM		GWM	
Capacity		1	750	360			
E	Energy Intensity (kWh/MG)		1,338	1,540	2,977 37		371
Monthly Demand (MGM)			Propos	sed Monthly Pr	oduction	MG	M
	Jan	221	1				100
	Feb	205	1				100
	Mar	247	1				100
	Apr	403	1				100
	May	677	1				100
	Jun	799	1				100
	Jul	999	1				
	Aug	928	1				
	Sep	680	1				100
	Oct	409	1				100
	Nov	238	1				100
	Dec	232	1				100

_		Deep Wells	WTP	SSF GWI		GWM	
Capacity		1	750	360			
E	nergy Ir	ntensity (kWh/MG)	1,338	1,540	2,97	7	371
Monthly Demand							
(MGM)			Propos	sed Monthly Pr	oduction	MG	Μ
	Jan	221	1	220			100
	Feb	205	1	204			100
	Mar	247	1	246			100
	Apr	403	1	402			100
	May	677	1	676			100
	Jun	799	1	750			100
	Jul	999	1	750			
	Aug	928	1	750			
	Sep	680	1	679			100
	Oct	409	1	408			100
	Nov	238	1	237			100
	Dec	232	1	231			100

		-				
			Deep Wells	WTP	SSF	GWM
Capacity		1	750 360		0	
E	nergy Ir	ntensity (kWh/MG)	1,338	1,540	2,977	371
Monthly Demand (MGM)			Propos	sed Monthly Pr	oduction MG	М
	Jan	221	1	220		100
	Feb	205	1	204		100
	Mar	247	1	246		100
	Apr	403	1	402		100
	May	677	1	676		100
	Jun	799	1	750	48	100
	Jul	999	1	750	248	
	Aug	928	1	750	177	
	Sep	680	1	679		100
	Oct	409	1	408		100
	Nov	238	1	237		100
	Dec	232	1	231		100

			Deen Wells	\ \ /TP	SSE	GWM			
T		Canacity	1	750	251				
lotal	E a a a a a la		⊥	/50	500	J			
10 246 707	Energy Ir	ntensity (kvvn/lviG)	1,338	1,540	2,977	371			
10,346,797		Monthly Demand							
		(MGM)	Proposed Monthly Production MGM						
	Jan	221	1	220		100			
	Feb	205	1	204		100			
	Mar	247	1	246		100			
	Apr	403	1	402		100			
	May	677	1	676		100			
	Jun	799	1	750	48	100			
	Jul	999	1	750	248				
	Aug	928	1	750	177				
	Sep	680	1	679		100			
	Oct	409	1	408		100			
	Nov	238	1	237		100			
	Dec	232	1	231		100			
Better			16,056	8,551,620	1,408,121	371,000			

U.S. DEPARTMENT OF GY ENEI

Original Strategy: 11,345,205 kWh Revised Strategy: 10,346,797 kWh Savings: 998,408 kWh Percent Savings: 8.8%

Original Intensity: 1,879 kWh/MG Revised Intensity: 1,714 kWh/MG

ENERGY TEAMS

Energy Efficiency & Renewable Energy

An Engaged Workforce...

UNDERSTANDS the goals and objectives for energy management.

KNOWS their jobs impact energy performance.

Feels **EMPOWERED** to take steps.

Are **AWARE** of the process for collecting and vetting their energy ideas.

Are **RECOGNIZED** for their contributions.

Energy Team

Energy Team

Homework #2

Energy Map

- How to make an energy map
- **1. Select** a water facility that:
 - a. Has been used consistently
 - b. Has been used for at least several months
 - c. Has water production records
 - d. Has energy use records
- 2. Gather water production and energy use data
- 3. Compute: Total Energy (kWh) divided by Total Water (MG or ac-ft)
- 4. Repeat for each water source, discuss the results, and update as needed.

Note: If you are starting from scratch, consider looking at two water facilities in the same pressure zone.

 Keep track of energy saving opportunities and see if you can start working on them

- Know the energy intensity of each of your water sources and incorporate this knowledge into your decision making
- Consider having an energy team

On your smart phone Go to: <u>https://kahoot.it/</u> Game PIN:

KAHOOT!

Energy Efficiency & Renewable Energy

Closing

Questions Comments Discussion

Email Wendy at: wendy.waudby@cascadeenergy.com

SEE YOU TUESDAY!

Saving energy, one gallon at a time

