

Industrial Fan Systems Virtual INPLT Training & Assessment

Session 4

1111/1/1

Fan Virtual INPLT Facilitator

Ron Wroblewski, PE, Productive Energy Solutions, LLC Madison, Wisconsin

> ron@productiveenergy.com (608) 232-1861

Acknowledgments

- William (Bill) Hunter, PE, Airclean Systems, Seattle WA
- Eddie Radd, CFW Fans, Cape Town, SA
- William (Bill) W.T. Corey, Corey Consultancy, Surrey England
- US Department of Energy , Advanced Manufacturing Office
- Oak Ridge National Laboratory
- United Nations Industrial Development Organization
- Air Movement and Control Association, AMCA International
 Many industrial clients both in the US and internationally

Agenda – Session 4

- Welcome and Introductions
- Safety and Housekeeping
- Agenda for Fan System Virtual INPLT (8 weeks)
- Today's Content:
 - Creating a fan performance measurement plan
 - Selecting measurement planes
- Kahoot Quiz Game
- Q&A

Safety and Housekeeping

Safety Moment

- $\circ~$ When testing fans in hot systems beware that the pitot tube will get very hot
- $\circ~$ Be cautious of heat exhaustion and heat stroke when testing hot fans
- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded
 - $\circ~$ A link to the recorded webinars will be provided, afterwards

Fan system Virtual INPLT Agenda

- Week 1 Industrial Fan Systems Fundamentals and Introduction to MEASUR
- Week 2 Fan and system curves, Fan types
- Week 3 Fan affinity laws, Fan system controls
- Week 4 Creating a fan performance measurement plan & selecting measurement planes
- Week 5 Pressure considerations, Sizing ducts and estimating losses, Optimization techniques
- Week 6 Psychrometrics and air density for fan systems, System effect in fan systems
- Week 7 Fan system optimization strategies, Fan system evaluation with MEASUR
- Week 8 Industrial Fan System VINPLT Wrap-up Presentations

Learning objectives session 4

Class participants will:

- 1. Understand the use of manometers, pitot tubes, and other instruments as measurement tools in a fan performance test.
- 2. Develop a measurement plan as part of a performance test.
- 3. Use MEASUR to analyze fan performance test data

Creating a fan performance measurement plan

Fan performance is measured with the goal of definitively establishing what the fan is doing. This goal includes completely defining the performance of the fan as it relates to flow, pressure and power.

Instrumentation includes:

- Manometers
- Barometers
- Tachometers
- Thermocouple
- Power meter

Manometers

Inclined Tube Manometer

Offers greater precision

Disadvantage:

Fluid in an open tube

Digital Manometer

Pitôt Static Tube with Spherical or Ellipsoidal Head

Prone to becoming clogged if there is moisture or particles in the airstream

A better choice when dealing with particles or moisture

Double Reverse Tube (S-type) - Closeup of Tip

- Tip is fragile avoid damaging it
- Relatively wide open area resists clogging
- Must correctly apply correction factor when analyzing data
- Requires double correction when measuring static pressure –
 - Standard Pitot better for measuring static pressure

FKT Manometer Face

Better Plants

22

Pitôt Static for Connection to Manometer

IMPORTANT: Write down the **pressure** data

- **CAUTION:** To determine if the pressure in the duct is (+) or (-), **<u>ALWAYS</u>** connect pressure source to (+) port of the manometer.
- **CAUTION:** Always connect tubing and probe to manometer **<u>FIRST</u>** before inserting the probe into the flow.

Depending on how you connect the Pitot tube to the manometer, you can measure:

- 1. Velocity pressure P_v
- 2. Static pressure P_s
- 2. Total pressure P_t

Using a manometer with three differential pressure transducers means you could simultaneously measure all three

Manometer-Pitôt Tube Connection for Static Pressure

Let's say we have a manometer with three pressure transducers:

- 1. Low pressure range (+/- 2 in w.g.)
- 2. Medium pressure range (+/- 10 in w.g.)
- 3. Higher pressure range (+/- 30 in. w.g.)
- Connect the plus (+) port of the manometer to the static port of the Pitôt

Manometer / Pitôt Tube Connection for Velocity Pressure

Remember that the velocity pressure is the total pressure *minus* the static pressure

Connect the plus port of the manometer to the total pressure port of the Pitôt

Connect the minus port of the manometer to the static port of the Pitôt

A barometer measures the local atmospheric pressure relative to a vacuum, in units of kPa or inches of Mercury (in Hg)

Wet bulb / dry bulb temperature Psychrometer for measuring humidity

- Old-school version pictured on the right
- More modern versions are digital electronic instruments to measure temperature and humidity
- Thermocouple for dry-bulb temperature
- Wetted cloth over thermocouple probe can measure wet bulb temperature

Tachometers

Tachometers measure rotational speed in revolutions per minute of the fan and motor.

Strobe Tachometer:

Non-contact

Uses flashes of light to freeze the action of the spinning shaft.

Disadvantage: Possible to get an incorrect reading if the operator accidentally observes a harmonic frequency.

Also, direct contact and strobe type

	Pressure
Where	 At the fan inlet, and fan outlet Also, upstream and downstream of any elements suspected of reducing efficiency, including: Dampers Filters Flow measuring stations Poor ductwork arrangements At every measurement plane

	Pressure
How	 When measuring static pressure at a plane, a manometer can be connected to points on the perimeter of the duct wall.
	 Or, use a manometer connected to the static ports of a pitot tube.

	Pressure (Flow same)
When	 Coordinate the timing of the measurements to the process.
	 The process must be held stable for the duration of the test (an hour), or the test should be performed at a time when the process is known to be stable.
	 If process conditions vary, it may be necessary to take measurements for each condition.
	 Record the state of the process when measurements are taken (e.g., damper open).
	Set dampers as they normally would be for the process.

	Pressure
Who	 Determine responsibilities within the staff.
	An engineer should determine the measurement planes and where to drill into the ducts.
	 Other staff should be assigned the drilling and mounting of measurement ports.
	 All necessary safety precautions should be taken.

	Pressure
Why	 To measure the loss across system elements. To measure the pressure rise across the fan.
So What	 To establish/understand process requirements and fan performance.

	Flow
Where	 In a portion of the duct that handles the full flow of the fan, and where a smooth velocity profile exists,
	 e.g., a long run of straight duct such as on the fan inlet. Other planes where it is useful to establish a flow profile
	(more on this later)

	Flow
How	 A measurement grid is established to measure velocity pressure using a micro-manometer and pitot tube.
	If the gas contains dust, an S-type pitot tube is better.
	 The manometer needs to be sensitive enough to measure delicate velocity pressures.
	 Flow rate is calculated from the velocity pressure measurements.
	See below for more information on measurement grids.

	Flow (already covered –same as pressure)
When	 Coordinate the timing of the measurements to the process.
	The process must be held stable for the duration of the test (an hour), or the test should be performed at a time when the process is known to be stable.
	 If process conditions vary, it may be necessary to take measurements for each condition.
	 Record the state of the process when measurements are taken (e.g., damper open).
	Set dampers as they normally would be for the process.

	Flow (already covered –same as pressure)
Who	Determine responsibilities within the staff.
	 An engineer should determine the measurement planes and where to drill into the ducts.
	 Other staff should be assigned the drilling and mounting of measurement ports.
	 All necessary safety precautions should be taken.

	Pressure
Why	 To establish the flow rate and quantify the air distribution within the duct.
So What	 To establish/understand process requirements and fan performance.

	Power
Where	Electrical Panel
How	 Measure motor power with a power meter, OR, Measure voltage and amperage with a voltmeter. NOTE: For voltages higher than 500V, use the ammeter mounted on the panel face.

	Power
When	 A recording power meter should be used throughout the test.
	 Otherwise, take voltmeter and ammeter readings before and after the pressure and flow measurements to verify that nothing has changed.
Who	 Power measurements should be performed only by a trained electrical technician with proper safety equipment. Follow established lockout/tagout procedures.

	Power
Why	 To establish power input.
So What	 Necessary to determine operating costs.

	 Environment Barometric pressure Dry bulb and wet bulb temperatures Fan speed
Where	 Barometric pressure – Anywhere in the plant. Dry bulb and wet bulb temperatures – Usually need to be recorded within the duct a well as ambient plant conditions. Fan and motor speed – At the fan shaft and motor shaft.

	 Environment Barometric pressure Dry bulb and wet bulb temperatures Fan speed
When	 Read barometric pressure from a barometer or call the local airport.
	 Use a psychrometer to obtain wet bulb and dry bulb temperatures or fashion a wet bulb thermometer from a thermocouple probe wrapped in a wetted cloth.
	 Sometimes density in the duct can be inferred from ambient conditions.
	 Use a tachometer to determine rotational speed of the fan & motor.

	 Environment Barometric pressure Dry bulb and wet bulb temperatures Fan speed
When	 Barometric pressure – Before and after fan measurements are made. Temperatures – Can be measured at any time. Fan speed – Can be measured at any time.

	 Environment Barometric pressure Dry bulb and wet bulb temperatures Fan speed
Who	 Determine responsibilities within the staff. Only staff with proper training in the use of psychrometers and tachometers should perform all measurements. All necessary safety precautions should be taken.
Why	 To establish gas density and fan speed.
So What	 Necessary inputs for fan affinity laws.

Measurement Grids – AMCA 203

Measurement Grids – AMCA 203

Measurement Grids – AMCA 203

INSIDE DIAMETER OF DUCT	NUMBER OF TRAVERSE POINTS IN EACH OF 3 DIAMETERS	K1	K₂	K₃	K₄	K₅	K6	K7	Кв	K∍	K10	K11	K12	K13	K14	K15	K16
LESS THAN 8 ft	8	.021	.117	.184	.345	.655	.816	.883	.979	1	1	1	1		_	_	
8 ft THRU 12 ft	12	.014	.075	.114	.183	.241	.374	.626	.759	.817	.886	.925	.986	_	_	_	_
GREATER THAN 12 ft	16	.010	.055	.082	.128	.166	.225	.276	.391	.609	.724	.775	.834	.872	.918	.945	.990

Flow Traverse Plane Criteria

- 1. Uniform velocity distribution
- 2. Flow stream at right angles to plane
- 3. Regular duct cross section (i.e. rectangle or circle)
- 4. Uniform cross section at plane (not diverging or converging)
- 5. If in a converging or diverging section, the plane is at the tip of the pitot tube.
- 6. In a section of duct unaffected by leakage
- 7. If at the fan discharge, then a 100% effective duct length is needed
- 8. If at inlet, 1/2 duct diameter upstream of inlet
- 9. If in inlet box, then 12" downstream of inlet damper trailing edge

Satisfactory Velocity Pressure Distribution in Traverse Plane

Satisfactory Velocity Pressure Distribution in Traverse Plane (cont.)

Satisfactory Velocity Pressure Distribution in Traverse Plane (cont.)

Cement Plant Velocity Profile

Measurement Plan Example – Sawdust Collection System

Measurement Plan Example – Sawdust Collection System

- Locate the following measurement planes on the system shown in Fig. 3-1:
 - Inlet
 - Outlet
 - Traverse
- Locate measurement planes to measure the pressure drop across the cyclone.
- Estimate the system effect at the inlet and the outlet.
 - D: 12"
 - L1: 12"
 - L2: 18"
 - Q: 3,000 cfm
 - Blast A: 0.8 ft2
 - Outlet A: 1.2 ft2

Measurement Plan Example – Sawdust Collection System - Key

Note Measurement Planes SEF 2 2 SEF 1 **4-PIECE ELBOW** R/D = 1R 1 1 3 SIDE VIEW OUTLET SIDE VIEW

Selecting Measurement Planes Worksheet

Potential Measurement Planes:

- Inlet
- Upstream of inlet damper
- Upstream of filter
- Upstream of orifice plate
- Traverse plane for flow measurement
- Number of traverse points for traverse plane for flow measurement

- Outlet
- Downstream of outlet damper
- Downstream of filter
- Downstream of orifice plate

Selecting Measurement Planes Worksheet

Measurement plan for combustion air blower

Fan System Field Data Collection Sheet initial <u>RW</u> test # <u>1</u> 1 of 3 File 1215										
FAN SYSTEM SURFACE	COMBUST	ON AIR I	BLOWER							
Customer		E.								
Tester RW/FP	Test Start Ti ິ່ງ: 0 ບໍ	me 2/19/96	Test End Tim	e/0:10						
PROCESS CONDITIONS 5 teachy	59%	Doryer -	load - Try	pical						
Hours operation 8,000										
MOTOR NAME PLATE DA	ATA									
Manufacturer SIEMEN	5	Model/Fr	EFF /44	57						
HP 125 17	85 Volts 46	D FLA /	45 PF 89	EFF 95.4						

FAN NAME PLATE DATA	
Manufacturer	Model
CHAMPION FAN	385 HPR
Impeller Flat radial	serial 266 V 92-1
rpm 2473	Impeller diameter
Notes (age and general condition)	
Approx 15 years o	old. good condition
SYSTEM EFFECT FACTORS Estimate as per	Fans and Systems, AMCA Publication 201.
SEF1	
NIA	
SEF2	

AMBIENT CONDITIONS		DB	WB	PBarometric
Does $P_{Barometric}$ require altitude correction? λD	pre test	65°F	50°F	29,45
Altitude	post test	67 °F	50 °F	in. Hg 2.9.45

Fan System Field Data Collection Sheet	initial <u>R</u> W	test #	_/	2 of 3
	file	. 1215	-	
	V			
FAN AND MOTOR		A	В	С
Motor rpm /787	Volts	460	458	462
Fan rpm 2473	Amps	104	104.4	104.2
Drive type BELT	or kW			
TEST PLANES (show on sketch)	DB	WB	Area	P (local)
Plane #1 Fan Inlet BELOW ORIFICE #3	°F 127.5	°F 71.7	12.76/	in. H₂O -6,850
Plane #2 Fan Outlet	155°F	°F	ft ² or 1 x w 1, 611	in. H₂O 35,60
SAME AS #1	127.5	71.7°F	ft ² or 1 x w 2,761	in. H₂O -6,850
Plane #4 Upstream	127.5	°F 71.7	ft ² or 1 x w Z,761	in. H₂O -2,95
Plane #5 Downstream	155°F	°F	ft ² or 1 x w 2,297	in. H ₂ O
Plane #6	°F	۴	ft ² or I x w	in. H₂O
	°F	°F	ft ² or I x w	in. H ₂ O

TRAVE	RSE DA	TA velo	city press	sure in. w	v.g.								
		Points											
Ports	1	2	3	4	5	6	7	8	9	10			
1	0,20	1.20	Z.50	0.90	0.20	-0.05	-0.04	6.35					
2	0.30	1.50	1.90	0.40	0.10	-0.01	0.03	0.65					
3	0,10	1.90	05.5	0.40	0.20	0.20	0.50	0.70					
4													
5							-						
6													
7													
8	-									2			
9													
10													

Key Points / Action Items

- 1. Proper selection of measurement planes is critical when setting up an in-situ fan performance test
- 2. Ideally, the traverse plane should be located in a section of duct that is at least a few diameters downstream of elbows or other flow impediments, and relatively near the fan inlet if possible.
- 3. Avoid putting the flow traverse plane on the outlet of the fan, if possible
- 4. For dusty airstreams use an S-type pitot tube and make sure you apply the correction factor
- 5. Work with a mentor to gain experience in conducting a fan test somethings are not possible to learn from a book or a webinar they require hands-on training.

Homework #4

- Identify measurement planes for the system or systems that you think are best candidates for an optimization project. Take pictures, markup drawings, or make a sketch to locate:
 - the traverse plane
 - Inlet plane
 - Outlet plane
- Consider other measurement planes to measure pressure loss across elements of interest in your fan system, such as dampers, filters, orifice plates, etc.

Thank You all for attending today's webinar.

See you all on next week –

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at ron@productiveenergy.com

U.S. DEPARTMENT OF