

Industrial Fan Systems Virtual INPLT Training & Assessment

Session 3

11111111

Fan Virtual INPLT Facilitator

Ron Wroblewski, PE, Productive Energy Solutions, LLC Madison, Wisconsin

ron@productiveenergy.com (608) 232-1861

Acknowledgments

- William (Bill) Hunter, PE, Airclean Systems, Seattle WA
- Eddie Radd, CFW Fans, Cape Town, SA
- William (Bill) W.T. Corey, Corey Consultancy, Surrey England
- US Department of Energy, Advanced Manufacturing Office
- Oak Ridge National Laboratory
- United Nations Industrial Development Organization
- Air Movement and Control Association, AMCA International
 Many industrial clients both in the US and internationally

Agenda – Session 3

- Welcome and Introductions
- Safety and Housekeeping
- Agenda for Fan System Virtual INPLT (8 weeks)
- Today's Content:
 - **Industrial Fan Systems Fundamentals**
 - Fan affinity laws
 - Fan system controls

MEASUR Tool

- Demonstration
- Kahoot Quiz Game
- Q&A

Better

Plants

Safety and Housekeeping

- Safety Moment
 - A blockage in a fan system might be enough to put the fan into surge.
 Fans operating in surge can experience intense vibrations and pulsations that can cause structural failure of the impeller.
 - o Accidents can be life-threatening
- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants

5

- We will be recording all these webinars and by staying on-line and a the meeting you are giving your consent to be recorded
 - $\circ~$ A link to the recorded webinars will be provided, afterwards

Fan system Virtual INPLT Agenda

- Week 1 Industrial Fan Systems Fundamentals and Introduction to MEASUR
- Week 2 Fan and system curves, Fan types
- Week 3 Fan affinity laws, Fan system controls
- Week 4 Creating a fan performance measurement plan & selecting measurement planes
- Week 5 Pressure considerations, Sizing ducts and estimating losses, Optimization techniques
- Week 6 Psychrometrics and air density for fan systems, System effect in fan systems
- Week 7 Fan system optimization strategies, Fan system evaluation with MEASUR
- Week 8 Industrial Fan System VINPLT Wrap-up Presentations

Learning objectives session 3

Class participants will:

- 1. Apply simplified affinity laws to predict changed fan performance When density or rotational speed is changed.
- 2. Describe the characteristics of the 4 most common methods of controlling fan flow rate
 - 1. Speed control (VFD)
 - 2. Radial inlet vanes (VIV)
 - 3. Inlet box dampers (IBD)
 - 4. Outlet damper or system damper

Fan affinity Laws

Generalized Affinity Laws

1st law

 $\left(\frac{Q_c}{Q}\right) = \left(\frac{D_c}{D}\right)^3 \left(\frac{N_c}{N}\right) \left(\frac{K_p}{K_{p_c}}\right)$

2nd law

 $\left(\frac{P_{tc}}{P_{t}}\right) = \left(\frac{D_{c}}{D}\right)^{2} \left(\frac{N_{c}}{N}\right)^{2} \left(\frac{K_{p}}{K_{P_{c}}}\right) \left(\frac{\rho_{c}}{\rho}\right)$

3rd law

$$\left(\frac{P_{vc}}{P_{v}}\right) = \left(\frac{D_{c}}{D}\right)^{2} \left(\frac{N_{c}}{N}\right)^{2} \left(\frac{\rho_{c}}{\rho}\right)$$

Generalized Affinity Laws (cont.)

4th law

$$\left(\frac{H_c}{H}\right) = \left(\frac{D_c}{D}\right)^5 \left(\frac{N_c}{N}\right)^3 \left(\frac{K_p}{K_{Pc}}\right) \left(\frac{\rho_c}{\rho}\right)$$

5th law

$$P_{sc} = P_{tc} - P_{vc}$$

6th law

$$\eta_{sc} = \eta_{tc} \left(\frac{P_{sc}}{P_{tc}} \right)$$

Simplified Affinity Laws – density change

Changes in density when Kp can be neglected

$$\left(\frac{Q_c}{Q}\right) = \left(\frac{D_c}{D}\right)^3 \left(\frac{N_c}{N}\right) \left(\frac{K_p}{K_{Pc}}\right)$$
$$\left(\frac{P_{tc}}{P_t}\right) = \left(\frac{D_c}{D}\right)^2 \left(\frac{N_c}{N}\right)^2 \left(\frac{K_p}{K_{Pc}}\right) \left(\frac{\rho_c}{\rho}\right) \qquad \text{OR}$$

$$\left(\frac{H_c}{H}\right) = \left(\frac{D}{D}\right)^5 \left(\frac{N_c}{N}\right)^3 \left(\frac{K_p}{K_{Pc}}\right) \left(\frac{\rho_c}{\rho}\right)$$

 $Q_{c} = Q$ $P_{tc} = P_{t} \times (\rho_{c}/\rho)$ $P_{sc} = P_{s} \times (\rho_{c}/\rho)$

 $P_{\rm vc} = P_{\rm v} \times (\rho_{\rm c}/\rho)$

 $H_{\rm c} = H \times (\rho_{\rm c}/\rho)$

Density change fan and system curves

PERCENT OF SYSTEM AIRFLOW

12

Density change power curve

PERCENT OF SYSTEM AIRFLOW

13

Simplified Affinity Laws – speed change

Changes in Fan speed when Kp can be neglected

$$Q_{c} = Q \times \left(\frac{N_{c}}{N}\right)$$
$$P_{c} = P \times \left(\frac{N_{c}}{N}\right)^{2}$$
$$H_{c} = H \times \left(\frac{N_{c}}{N}\right)^{3}$$

$$H_c = \frac{P_c \times Q_c}{6356 \times \eta}$$

Fan Performance at Different Speeds

Technique	Advantages	Disadvantages	
New Belt Drive Ratio	Inexpensive	Damper control required	
	Quick fix		
Convert to Belt Drive	Machanical modification only	Can be expensive	
		Damper control	
Variable Speed Drive	Optimal efficiency	Can be expensive	
	Excellent process control	Press reduced with speed	
Fluid Couplings		Inefficient at high turndown	
	 Speed control for efficiency turndown and process control 	Mechanical issues	
		 Oil, Cooling water 	

A fan's original operation at 1200 rpm was:

- Flow 50,000 cfm
- Pressure 12 in.w.g.
- Power 128,700 W

The fan speed is then slowed to 840 rpm. Apply the simplified affinity laws to calculate the new flow, pressure and power.

	Α	В	С	D	E
Q1 Flow	25000	35000	24500	17150	12500
Q2 Pressure	6.00	8.40	5.88	4.12	3.00
Q3 Power	64350	90090	63063	44144.1	32175

Fan system Control

Fan Accessories and Dampers

- Caveat Emptor!
- Avoid Inlet
 Dampers
- Use VFD with Caution
- Avoid Discharge Dampers

Parallel Blade Damper

- Used in conjunction with an inlet box, the parallel blade damper can reduce power usage somewhat
- When used elsewhere in the fan system:
 - Can create inefficient, non-uniform airflow
 - Best used as a shut off damper

Swirl Flow in Inlet Box with ILD Partly Closed

Opposed Blade Damper

- This type of damper can sometimes be found at the fan outlet, (outlet damper)
- Also found elsewhere in the fan system, (system damper)
- Each blade rotates in opposite direction
- Produces uniform airflow
- More stable control

Variable Inlet Vanes

- Pie-shaped blades
- Slightly more efficient
- Use to trim airflow down to 85%

CONE TYPE VARIABLE INLET VANES CYLINDRICAL TYPE VARIABLE INLET VANES

Inlet Louver Damper

- Located at fan inlet
- Parallel bladed
- Used with an inlet box

Outlet Louver Damper

- Bolted to the fan outlet
- Worst place for a damper

Fan Outlet Velocity Distribution

System Damper

- Located elsewhere in the ductwork
- Types
 - Opposed blade
 - Parallel blade
 - Butterfly
 - Single leaf

Four blade opposed

Two blade parallel

Four blade parallel

Single blade

Damper Response

Radial vane inlet control

Two blade parallel

Four blade parallel

Variable Frequency Drive

- Constantly adjusts the motor speed (and therefore fan capacity) to meet changing process needs
- Cost has been dropping
- Reliability has improved

Fan Performance Curve with Variable Speed Drive

Fan Power Curve with Variable Speed Drive

Fan Performance Curve with Variable Inlet Vanes

Varying Power Curves for Variable Inlet Vanes

Fan Performance Curve for Inlet Louver Damper

Fan Power Curves for Inlet Louver Damper

Fan Curve for Outlet Louver Damper

Fan Power Curve for Outlet Louver Damper

Fan Performance Curve for Two Fans in Parallel

Fan Power Curve for Two Parallel Fans

Variable Pitch Axial Fan Characteristic

Performance shown is for Model VAD/VRD with inlet and outlet ducts.

VAV System Characteristic Curve and Fan Stall Regions for Backward Bladed Fans

Air flowrate Q

Comparison of Fan Control Methods

Polling Question 4-6

4) Among the following control methods which is generally the least efficient?

a) Variable Frequency Drive b) Variable Inlet vanes c) Inlet box damper d) Outlet damper

5) Among the following control types which is generally the most efficient?

a) Variable Frequency Drive b) Variable Inlet vanes c) Inlet box damper

d) Outlet damper

6) Among the following control types which is generally the most efficient?

a) Variable Inlet vanes b) Inlet box damper

c) Outlet damper

d) System Damper

Key Points / Action Items

- The change in flow is directly proportional to the speed change
- The change in pressure is proportional to the square of the speed change,
- The change in power is proportional to the cube of the speed change
- 2. Normally slowing down the fan is more efficient than using a damper to control the flow
- 3. Variable Inlet Vanes are generally the most efficient form of damper control, since they impart a pre-swirl
- 4. Avoid using a VFD for constant flow application.
- 5. Especially avoid using a VFD for applications with high constant pressure requirements

- Identify the type of fan control used on the top 10 fans in your facility
- Are there any systems with damper control where the damper is less than 90% open?

Thank You all for attending today's webinar.

See you all on next Thursday –

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at ron@productiveenergy.com

