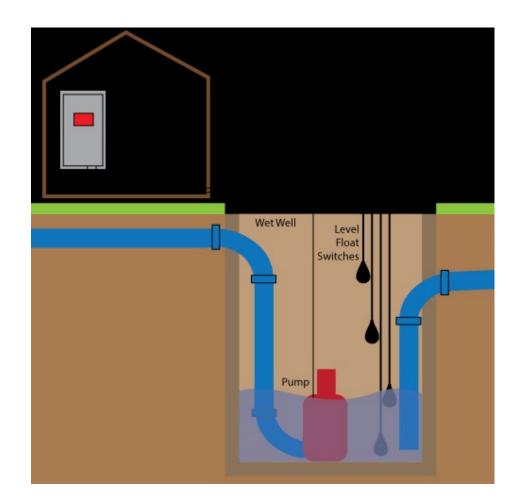


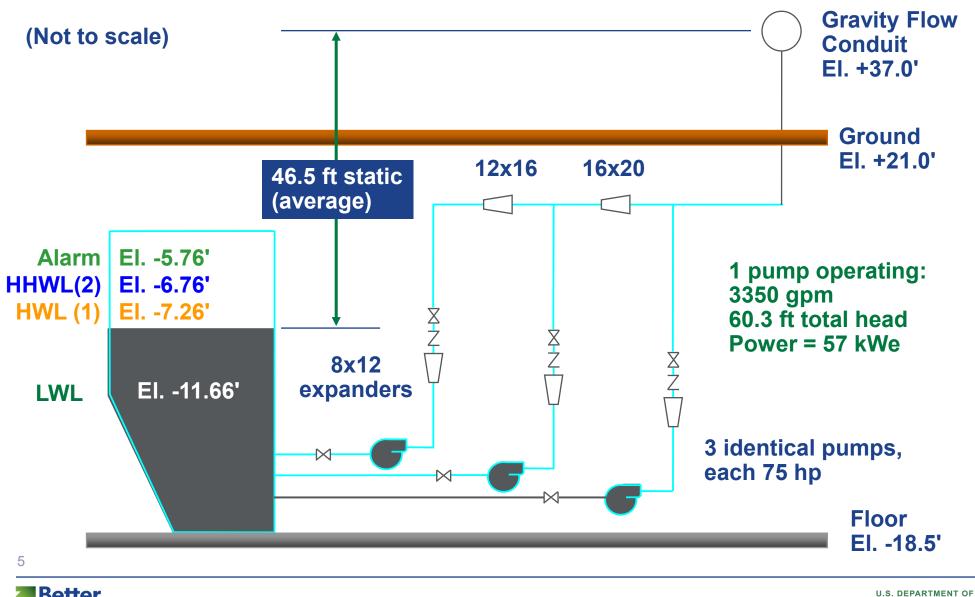
Case Studies

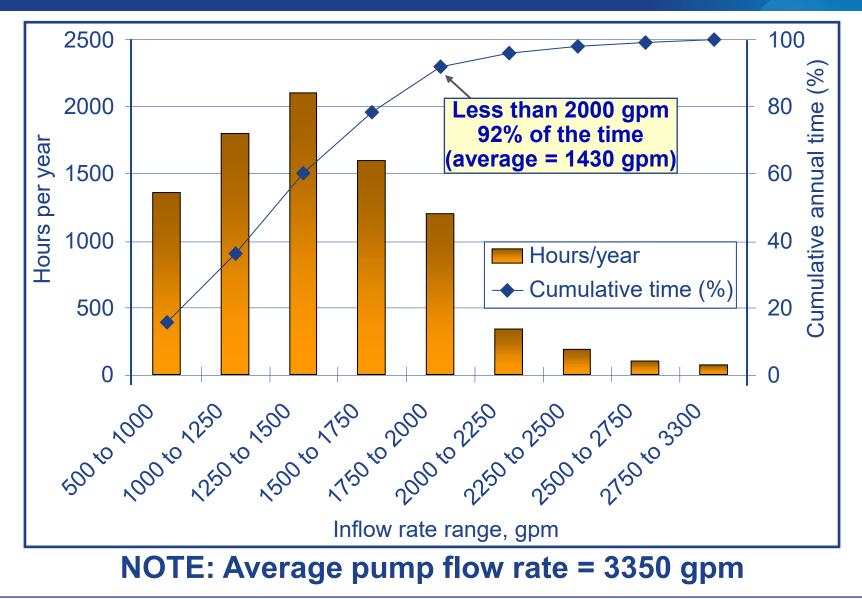
Applying basic principles to real world situations: Case Studies

Case study presentation agenda


- Describe "as found" case study configurations
- Look for indicators of energy reduction opportunities (prescreening method)
- Apply the MEASUR software to as found data
- Describe changes made to improve the situation

Welches Point Wastewater Lift Station (Milford, Connecticut)


- This case study is based on work done by ITT Flygt for the town of Milford
- Case study technical contact:
- Gunnar Hovstadius (retired)
- Tel: 203-227-4503 or 203-434-4840
- Email:gunnarh@msn.com
- Case study prepared by Don Casada, Diagnostic Solutions


The Welches Point Lift Station cycles pump(s) on/off (run 43% of time) to control wet well level

FNFRG

The pump design capability greatly exceeds the normal operational requirement

Putting the box around the pump and motor for the existing flow and head condition

rpm

°F

cSt

hp

rpm

/kWh

gpm

V

kW

V

Pump Type	End Suction Sewage	
Pump Speed	1170	
Drive	Direct Drive	
Fluid Type	Water	
Fluid Temperature	68	
Specific Gravity	1	
Kinematic Viscosity	1	
Stages	- + 1	
Line Frequency	60 Hz	
Rated Motor Power	75	
Motor RPM	1170	
Efficiency Class	Standard Efficiency	
Rated Voltage	460	
Full-Load Amps	92.3	
Estimate Full-Load Amps		
Operating Hours	3740	h
Electricity Cost	0.082	\$/
Flow Rate	3350	(
Head	60.3	
Calculate Head		
Load Estimation Method	Power	

57

460

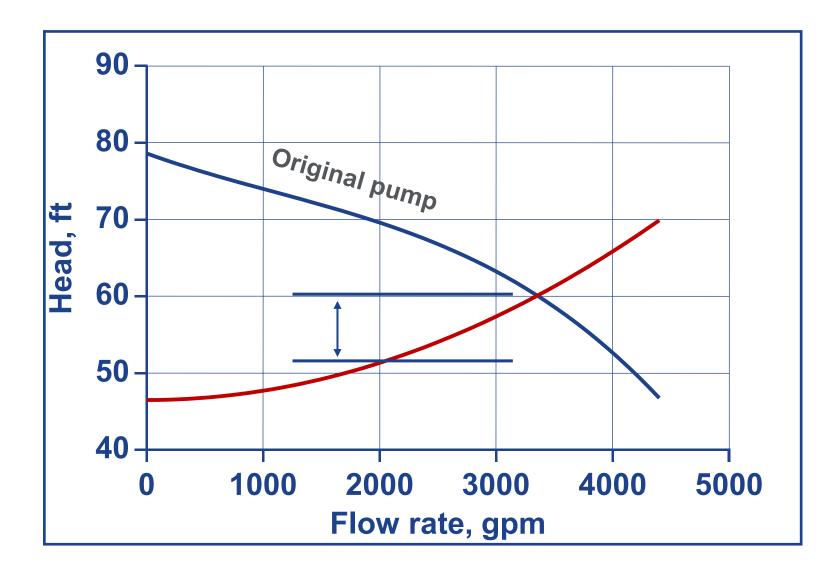
Measured Voltage

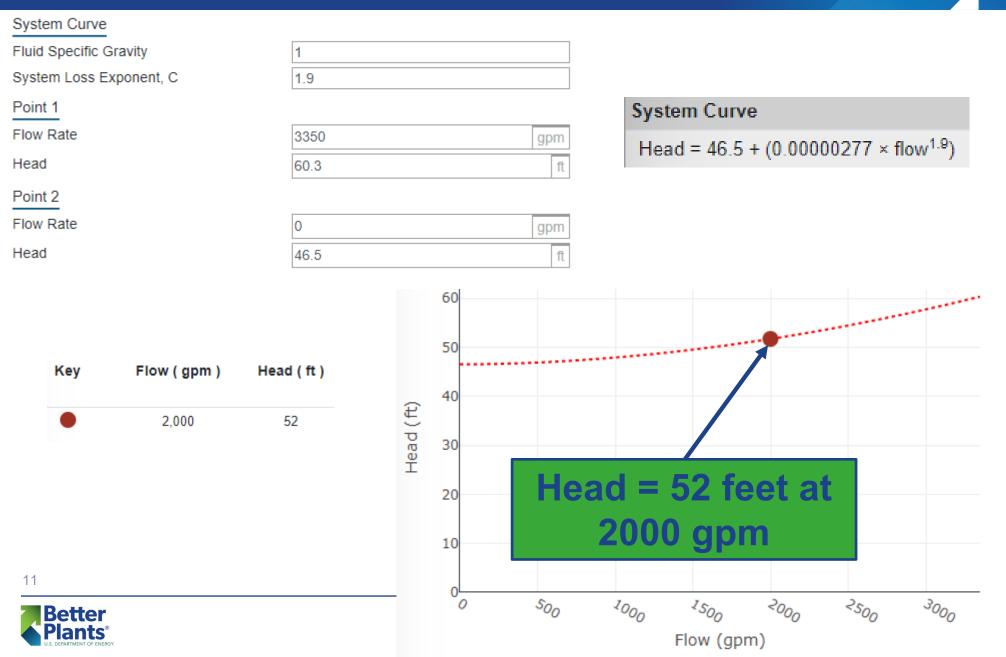
Motor Power

Putting the box around the pump and motor for the existing flow and head condition


RESULTS	SANKEY	HELP
	Baseline	Optimal Pump
Percent Savings (%)		14.0%
Pump efficiency (%)	72.3	83.5
Motor rated power (hp)	75	75
Motor shaft power (hp)	70.6	61.1
Pump shaft power (hp)	70.6	61.1
Motor efficiency (%)	92.4	92.4
Motor power factor (%)	82.2	81.2
Percent Loaded (%)	94	81
Drive efficiency (%)	100	100
Motor current (amps)	87	76
Motor power (kW)	57	49.3
Annual Energy (MWh)	213	184
Annual Energy Savings (MWh)	-	29
Annual Cost	\$17,481	\$15,119
Annual Savings	-	\$2,361

Optimization Rating = (72.3/83.5)100 = 86.6% Existing equipment is not bad


Existing pump & system head-capacity curves


Excessive frictional head losses occur when higher than necessary flow rates occur

The system curve tool can be used to determine head at alternate flow rates

The station processes 752 million gallons/yr; What if we pumped at lower flow rates?

Average running flow rate hours and associated head

Flow rate	Hours/year	Run fraction	Head (ft)
3350 gpm	3741	0.427	60.3
2500 gpm	5013	0.572	54.4
2000 gpm	6267	0.715	51.7
1500 gpm	8356	0.954	49.5

Optimized pump at 2500 gpm

Operating Hours	5013
Electricity Cost	0.082
Flow Rate	2500
Head	54.4
Calculate Head	
Load Estimation Method	Power
Motor Power	33.97
Measured Voltage	460

5013	hrs/yr
0.082	\$/kWh
2500	gpm
54.4	ft
Power	~
33.97	kW
460	V

Savings = \$17,481 - \$13,964 = \$3,517/yr

RESULTS	S A	NKEY	HELP
	Baseline	Op	otimized Pump at 2500 gpm
Percent Savings (%)			
Pump efficiency (%)	82	82	
Motor rated power (hp)	75	75	
Motor shaft power (hp)	41.9	41	.9
Pump shaft power (hp)	41.9	41	.9
Motor efficiency (%)	91.9	91	.9
Motor power factor (%)	74.7	74	.7
Percent Loaded (%)	56	56	
Drive efficiency (%)	100	10	0
Motor current (amps)	57	57	
Motor power (kW)	34	34	
Annual Energy (MWh)	170	17	0
Annual Energy Savings (MWh)	—		
Annual Cost	\$13,964	\$1	3,964
Annual Savings	_	\$0	0

Optimized pump at 2000 gpm

-		
\cap	porating	Loure
	perating	nouis
_		

Electricity Cost

Flow Rate

Head

Calculate Head

Load Estimation Method

Motor Power

Measured Voltage

6267	hrs/yr
0.082	\$/kWh
2000	gpm
51.7	ft
Power	~
26.1765	kW
460	V

Savings = \$17,481 - \$13,452 = \$4,029/yr

RESULTS		SANKEY	HELP
	Baseline	(Optimized Pump at 2000 gpm
Percent Savings (%)			
Pump efficiency (%)	82	1	82
Motor rated power (hp)	75		75
Motor shaft power (hp)	31.8	:	31.8
Pump shaft power (hp)	31.8	:	31.8
Motor efficiency (%)	90.7	!	90.7
Motor power factor (%)	67.5	(67.5
Percent Loaded (%)	42		42
Drive efficiency (%)	100		100
Motor current (amps)	49		49
Motor power (kW)	26.2	:	26.2
Annual Energy (MWh)	164		164
Annual Energy Savings (MWh)	_		
Annual Cost	\$13,452	:	\$13,452
Annual Savings	_	:	\$00

Optimized pump at 1500 gpm

-		
()	perating	Houre
	Deraunu	1 IUUI 3

Electricity Cost

Flow Rate

Head

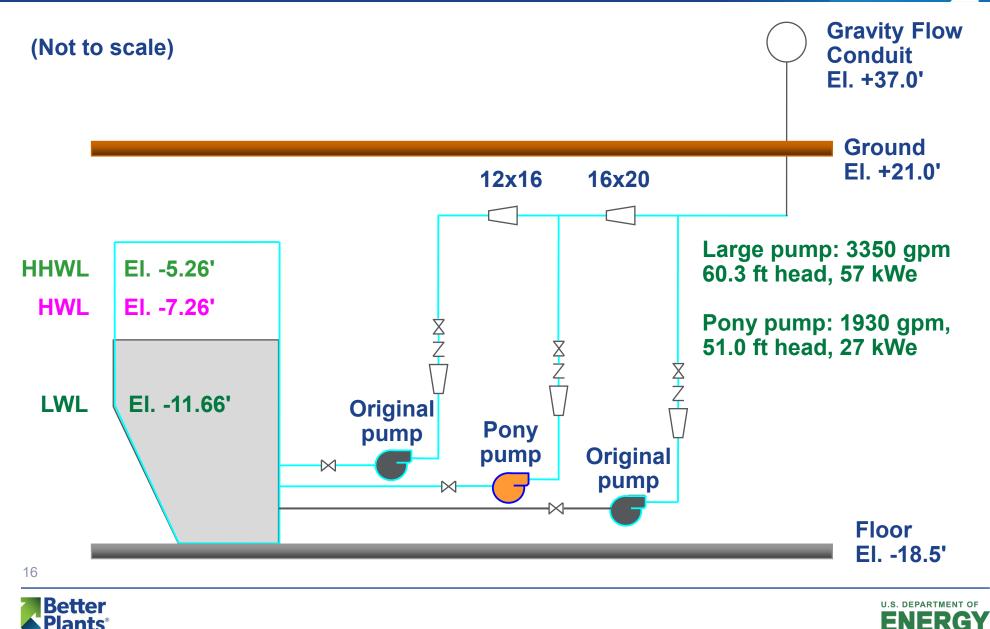
Calculate Head

Load Estimation Method

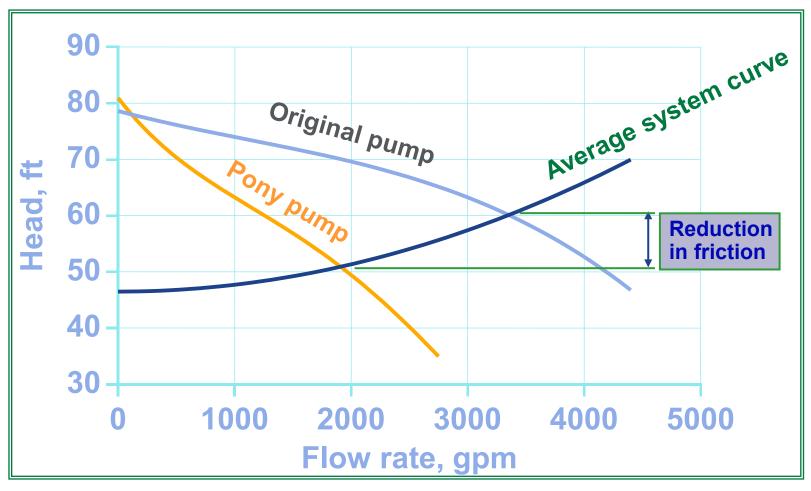
Motor Power

Measured Voltage

8356	hrs/yr
0.082	\$/kWh
1500	gpm
49.5	ft
Power	~
19.315	kW
460	V


Savings = \$17,481 - \$13,234 = \$4,247/yr

RESULTS		SANKEY	HELP
	Baseline	0	ptimized Pump at 1500 gpm
Percent Savings (%)			
Pump efficiency (%)	82	8:	2
Motor rated power (hp)	75	7	5
Motor shaft power (hp)	22.9	22	2.9
Pump shaft power (hp)	22.9	22	2.9
Motor efficiency (%)	88.3	8	8.3
Motor power factor (%)	57.8	5	7.8
Percent Loaded (%)	30	3(D
Drive efficiency (%)	100	1(00
Motor current (amps)	42	42	2
Motor power (kW)	19.3	19	9.3
Annual Energy (MWh)	161	1	61
Annual Energy Savings (MWh)	_	0	0
Annual Cost	\$13,234	\$	13,234
Annual Savings	_	\$	00



Lift station after replacing one large pump with smaller "pony" pump

The pony pump operates efficiently at lower flow rate, eliminating 2/3 of the frictional losses

Note: The sizing of the original pump, the availability of adequate spare capacity, and nature of the system made use of a variable speed drive less attractive for this particular system.

After making the design change:

Replacement pump comparison

BASELINE

Pump Type	End Suction Sewage
ump Speed	1170
Drive	Direct Drive
luid Type	Water
luid Temperature	68
pecific Gravity	1
inematic Viscosity	1
itages	- + 1

60 Hz	~	
75	hp	
1170	rpm	
Standard Efficiency	~	
460	V	
92.3	А	

REPLACE PUMP

Pump Efficiency	
Optimize Pump	

v

~

°F

cSt

rpm

79.6	%

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed Drive Drive Efficiency Fluid Type Fluid Temperature Specific Gravity Kinematic Viscosity Stages Line Frequency Rated Motor Power Motor RPM Efficiency Class Efficiency Rated Voltage Full-Load Amps

Estimate Full-Load Amps

880	rpm
Specified Efficiency	~
100	%
Water	~
68	°F
1	
1	cSt
- + 1	
60 Hz	~
35	hp
880	rpm
Specified	~
86	%
460	V
49.2	Α

Line Frequency

Efficiency Class

Rated Voltage

Full-Load Amps

Motor RPM

Rated Motor Power

BASELINE

REPLACE PUMP

Electricity Cost 0.082 SktWh Flow Rate 3350 gpm Head 60.3 T Catculate Head 60.3 T Load Estimation Method Power Implementation Costs Implementation Costs Motor Power 57 Implementation Costs Implementation Costs Implementation Costs Percent Savings (%) 18.0% Implementation Costs Implementation Costs Percent Savings (%) 72.3 79.6 Implementation Costs Implementation Costs Motor rated power (hp) 70.6 31.2 Imple								
Flow Rate 3350 gpm Flow Rate 1930 gpm Head Calculate Head 60.3 T Head 51 T Load Estimation Method Power Implementation Costs Impleme	Operating Hours		3741	hrs/yr	Operating Hours		6482	hrs/yr
Head Calculate Head Boo grm	Electricity Cost		0.082	\$/kWh	Electricity Cost		0.082	\$/kWh
Head Calculate Head 60.3 Itel Calculate Head 51 Itel Calculate Head Motor Power 57 WW Implementation Costs Implementation Costs	Flow Rate		3350	gpm	Flow Rate		1930	gpm
Motor Power F7 Implementation Costs Measured Voltage 600 V HE L P R E S U LT S S A N K E Y H E L P Percent Savings (%) 18.0% Pump efficiency (%) 72.3 79.6 Motor rated power (hp) 75 35 Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy (MWh) - 38 Annual Energy Savings (MWh) - 38			60.3				51	
Model okci SZ NV Measured Voltage 460 V R E S U LT S S A N K E Y H E L P Percent Savings (%) 18.0% Pump efficiency (%) 72.3 79.6 Motor rated power (hp) 75 35 Motor rated power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor refficiency (%) 92.4 86.3 Motor current (amps) 87 43 Motor current (amps) 87 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Energy Savings (MWh) - 38	Load Estimation M	lethod	Power	~				
RESULTS SANKEY HELP Baseline Replace Pump Percent Savings (%) 18.0% Pump efficiency (%) 72.3 79.6 Motor rated power (hp) 75 35 Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor reficiency (%) 92.4 86.3 Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) 38 Annual Cost \$17,485 \$14,338	Motor Power		57	kW	Implementation Cos	ts		\$
Baseline Replace Pump Percent Savings (%) Pump efficiency (%) 72.3 Pump efficiency (%) 72.3 Pump efficiency (%) 72.3 Pump efficiency (%) 72.3 Pump efficiency (%) 75 Motor rated power (hp) 75 Motor shaft power (hp) 70.6 Pump shaft power (hp) 70.6 Motor efficiency (%) 92.4 Motor efficiency (%) 82.2 Percent Loaded (%) 94 Porve efficiency (%) 100 Motor power (kW) 57 Motor power (kW) 57 Annual Energy (MWh) 213 Annual Energy Savings (MWh) - Annual Cost \$17,485	Measured Voltage		460	V				
Baseline Replace Pump Percent Savings (%) Pump efficiency (%) 72.3 Motor rated power (hp) 75 Motor shaft power (hp) 70.6 Pump shaft power (hp) 70.6 Motor efficiency (%) 92.4 Motor efficiency (%) 82.2 Percent Loaded (%) 94 Porive efficiency (%) 100 Motor power (kW) 57 Motor power (kW) 57 Annual Energy (MWh) 213 Annual Energy Savings (MWh) Annual Cost \$17,485		PE	с III Т С		SANKEY -		HELD	
Percent Savings (%) 18.0% Pump efficiency (%) 72.3 Pump efficiency (%) 72.3 Motor rated power (hp) 75 Motor shaft power (hp) 70.6 Pump shaft power (hp) 70.6 Motor efficiency (%) 92.4 Motor power factor (%) 82.2 Percent Loaded (%) 94 Drive efficiency (%) 100 Motor power (kW) 57 Annual Energy (MWh) 213 Annual Energy Savings (MWh) - 38 Superartment of the state of the st		RE	30213		SANKET			
20 18.0% 21 72.3 79.6 Motor rated power (hp) 75 35 Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor efficiency (%) 92.4 86.3 Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338				Baseline		Replace Pump	0	
Motor rated power (hp) 75 35 Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor efficiency (%) 92.4 86.3 Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338		Percent Savings	(%)				18.0%	
Motor shaft power (hp) 70.6 31.2 Pump shaft power (hp) 70.6 31.2 Motor efficiency (%) 92.4 86.3 Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338		Pump efficiency (%)	72.3		79.6		_
Pump shaft power (hp) 70.6 31.2 Motor efficiency (%) 92.4 86.3 Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338		Motor rated powe	r (hp)	75		35		_
Motor efficiency (%) 92.4 86.3 Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) – 38 Annual Cost \$17,485 \$14,338		Motor shaft powe	r (hp)	70.6		31.2		_
Motor power factor (%) 82.2 78.3 Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor current (amps) 87 43 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338		Pump shaft powe	r (hp)	70.6		31.2		_
Percent Loaded (%) 94 89 Drive efficiency (%) 100 100 Motor current (amps) 87 43 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Percent Loaded (%) \$17,485 \$14,338		Motor efficiency (%)	92.4		86.3		
Drive efficiency (%) 100 100 Motor current (amps) 87 43 Motor power (kW) 57 27 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) – 38 Annual Cost \$17,485 \$14,338		Motor power facto	or (%)	82.2		78.3		
20 Motor current (amps) 87 43 20 Motor power (kW) 57 27 20 Annual Energy (MWh) 213 175 20 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338		Percent Loaded (%)	94		89		
20 Motor power (kW) 57 27 20 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) - 38 Annual Cost \$17,485 \$14,338		Drive efficiency (%	%)	100		100		
20 Annual Energy (MWh) 213 175 Annual Energy Savings (MWh) — 38 Annual Cost \$17,485 \$14,338		Motor current (an	nps)	87		43		
Annual Energy Savings (MWh) – 38 Annual Cost \$17,485 \$14,338		Motor power (kW)	57		27		
Annual Energy Savings (MWh) – 38 Annual Cost \$17,485 \$14,338	20	Annual Energy (MWh)	213		175		
Better Plants* Us DEPARTMENT OF ENERGYAnnual Cost\$17,485\$14,338.s. DEPARTMENT OF ENERGYAnnual Savings—\$3,147		Annual Energy S	Savings (MWh)	_		38		
LIS DEPARTMENT OF ENERGY Annual Savings — \$3.147	Better	Annual Cost		\$17,485		\$14,338		
,*	U.S. DEPARTMENT OF ENERGY	Annual Savings		-		\$3,147		

What if you don't have room to ADD a pump?

- In this case, the excess redundancy allowed a pump to simply be replaced; in some systems, that option may not exist (e.g., space considerations)
- In such situations, a <u>properly selected</u> variable speed driven pump can provide nearly the same benefits (although with a higher capital cost) while maintaining required redundancy
- Replacing a functional pump may not be cost effective; but replacing a failed pump with a new design may

Y-12 Plant (Oak Ridge, TN) Demineralized water system

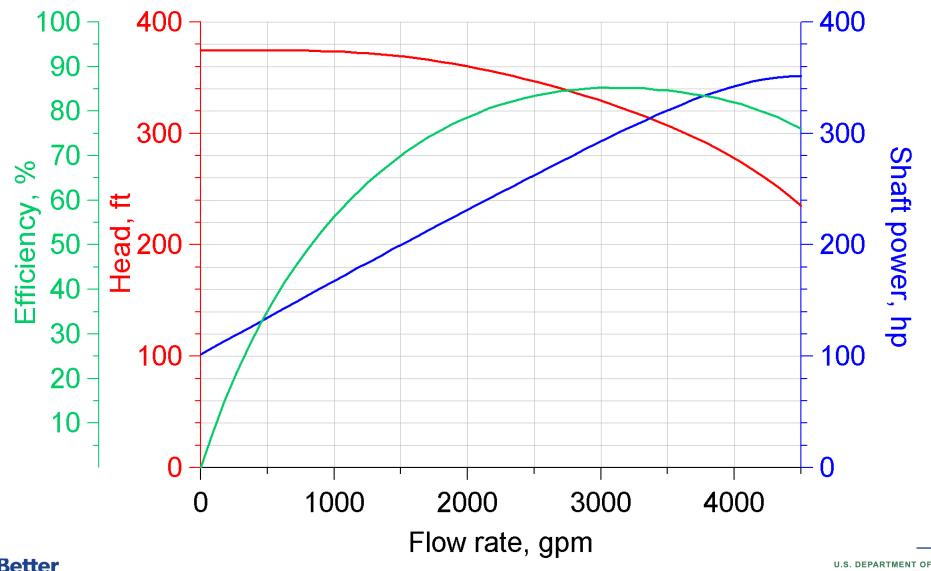
- This case study is based on work done by the Y-12 plant in Oak Ridge, Tennessee, a DOE defense facility.
- Case study technical contact:
- Don Casada—Qualified PSAT Instructor
- Diagnostic Solutions, LLC
- Email:doncasada@diagsol.com

Demineralized and tower water pumping station for the Fusion Energy complex

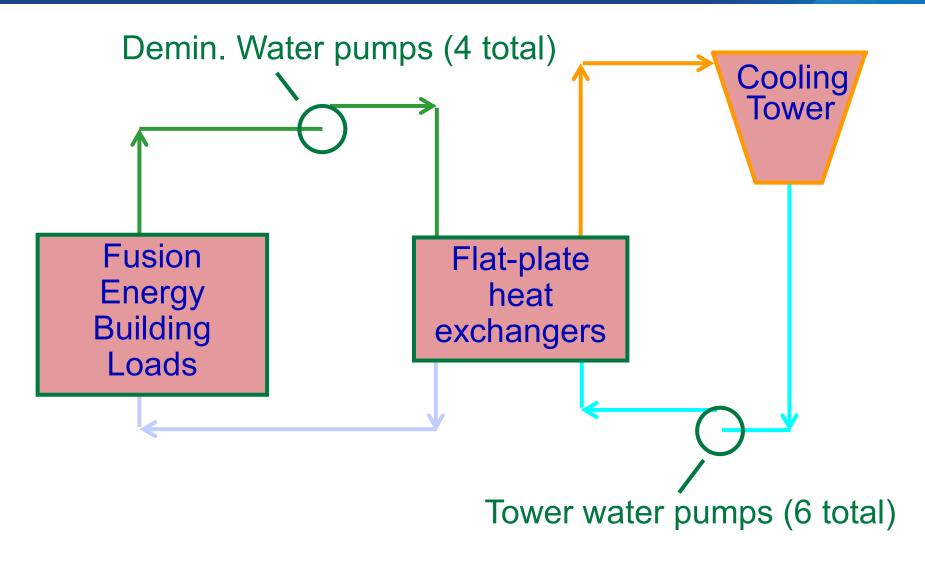
Let's investigate a really oversized pump – system operations have changed

Application:

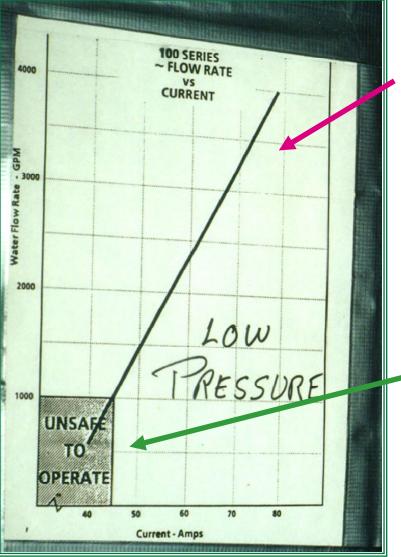
Demineralized water pumps (for process cooling)


Original pump and motor design (4 parallel pumps): 3700 gpm @ 292 ft head, 1785 rpm pump 350 hp, 2300 V, 1785 rpm motor

Current system requirements: 1200 gpm @ 140 ft head (conservatively high)


Installed pump performance curves

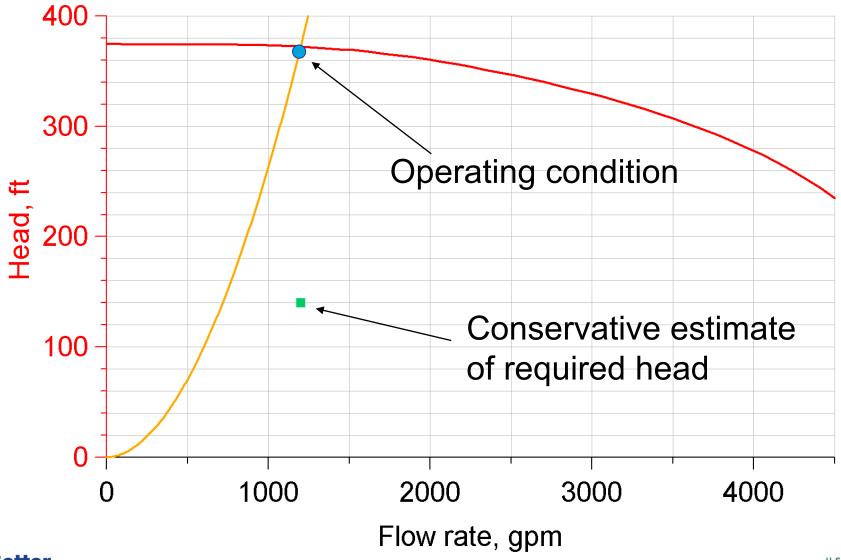
Bet

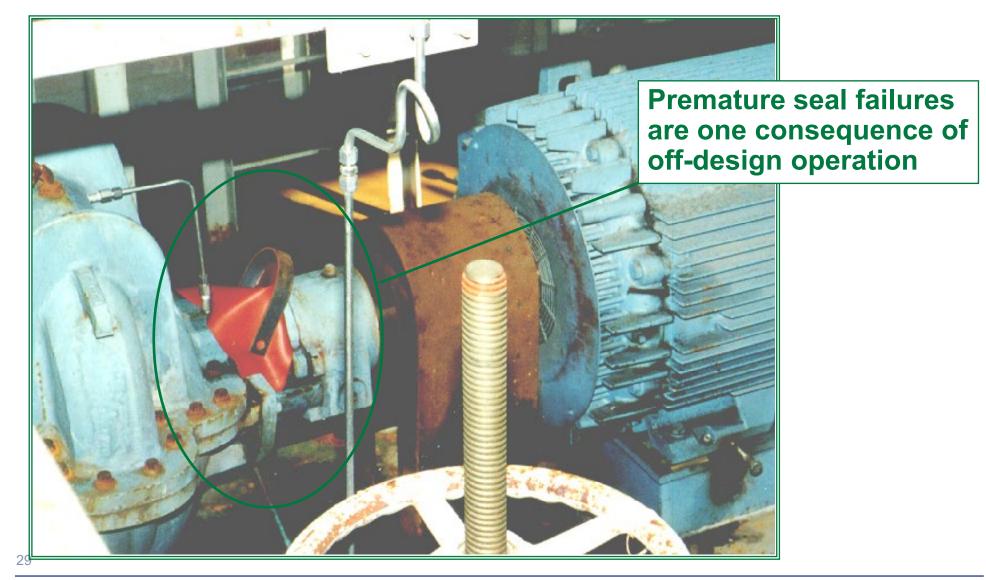

Simplified flow diagram

Operators can't always accommodate outdated engineering (i.e., changed facility demands).

Better

Sign on motor control center cabinet based on maintenance experience


Ammeter on the same cabinet (typical operating condition)


Even a conservative estimate clearly showed the effects of throttling/bypass losses

Off-design operation of pumps will result in increased operating AND maintenance costs

Applying the MEASUR tool to the measured conditions showed significant potential savings

Pump Type	API Double Suction	~
Pump Speed	1785 rpn	n
Drive	Direct Drive	~
Fluid Type	Water	~
Fluid Temperature	68 9	F
Specific Gravity	1	
Kinematic Viscosity	1 cs	st
Stages	- + 1	
Line Frequency	60 Hz	~
Rated Motor Power	350 hj	р
Motor RPM	1785 rpn	n
Efficiency Class	Standard Efficiency	~
Rated Voltage	2300	V
Full-Load Amps Estimate Full-Load Amps	79	Ą

30

Applying the MEASUR tool to the measured conditions showed significant potential savings

Operating Hours	8760	hrs/yr
Electricity Cost	0.054	\$/kWh
Flow Rate	1200	gpm
Head Calculate Head	367	ft
Load Estimation Method	Power	~
Motor Power	154	kW
Measured Voltage	2370	V

Applying the MEASUR tool to the measured conditions showed significant potential savings

RESULTS		SANKEY		HELP
	Baseline		Optin	nal Pump
Percent Savings (%)				29.0%
Pump efficiency (%)	57.3		80.5	
Motor rated power (hp)	350		350	
Motor shaft power (hp)	194.2		138.2)
Pump shaft power (hp)	194.2		138.2)
Motor efficiency (%)	94.1		94.5	
Motor power factor (%)	80.1		72.3	
Percent Loaded (%)	55		39	
Drive efficiency (%)	100		100	
Motor current (amps)	47		37	
Motor power (kW)	154		109.1	
Annual Energy (MWh)	1,349		955	
Annual Energy Savings (MWh)	_		394	
Annual Cost	\$72,848		\$51,5	i83
Annual Savings	_		\$21,2	.65

Ultimate goal

Conservative estimate of required head – 140 Feet

BASELINE

Pump Type

Pump Speed

Drive

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

API Double Suction	~
1785	rpm
Direct Drive	~
Water	~
68	°F
1	
1	cSt
- + 1	

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

60 Hz	~
350	hp
1785	rpm
Standard Efficiency	~
2300	V
79	A

OPTIMAL PUMP - 140 FEET HD

Pump Type
Pump Efficiency
Known Efficiency

API Double Suction

80.45 %

¥

The efficiency of your pump has been calculated based on your flow rate and selected pump type. Click "Known Efficiency" to use the efficiency calculated by your system setup.

Pump Speed	1785
Drive	Spec
Drive Efficiency	100
Fluid Type	Wate
Fluid Temperature	68
Specific Gravity	1
Kinematic Viscosity	1
Stages	- +
Line Frequency	60 H
Rated Motor Power	75
Motor RPM	1785
Efficiency Class	Stan
Rated Voltage	2300
Full-Load Amps Estimate Full-Load Amps	17.7

1785	rpm
Specified Efficiency	~
100	%
Water	~
68	°F
1	
1	cSt
- + 1	
60 Hz	~
75	hp
1785	rpm
Standard Efficiency	~
2300	V
17.7	А

Conservative estimate of required head – 140 Feet

BASELINE

Operating Hours	8760
Electricity Cost	0.054
Flow Rate	1200
Head Calculate Head	367
Load Estimation Method	Power
Motor Power	154
Measured Voltage	2370

8760	hrs/yi
0.054	\$/kWh
1200	gpm
367	ft
Power	~
154	kW
2370	V

OPTIMAL PUMP - 140 FEET HD

Operating Hours
Electricity Cost
Flow Rate
Head Calculate Head
Implementation Costs

8760	I	hrs/yr
0.054	\$	/kWh
1200		gpm
140		ft

4

Conservative estimate of required head – 140 Feet

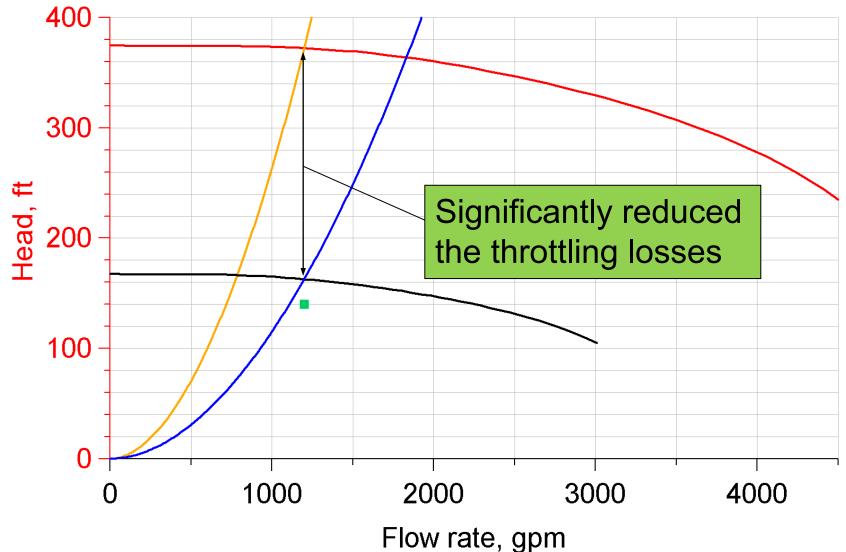
RESULTS	SA	NKEY HELP
	Baseline	Optimal Pump - 140 Feet Hd
Percent Savings (%)		72.0%
Pump efficiency (%)	57.3	80.5
Motor rated power (hp)	350	75
Motor shaft power (hp)	194.2	52.7
Pump shaft power (hp)	194.2	52.7
Motor efficiency (%)	94.1	92.2
Motor power factor (%)	80.1	81.6
Percent Loaded (%)	55	70
Drive efficiency (%)	100	100
Motor current (amps)	47	13
Motor power (kW)	154	42.6
Annual Energy (MWh)	1,349	373
Annual Energy Savings (MWh)	_	976
Annual Cost	\$72,848	\$20,168
Annual Savings	-	\$52,680

We considered some options

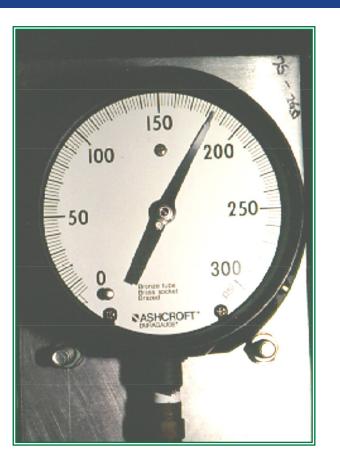
- Trim the pump impeller
- Get a new, smaller pump
- Add a variable speed drive

But what we finally decided was a little unconventional

A 125 hp, 6-pole (1190 rpm) motor was installed on an existing demineralized water pump


 $n_s = \frac{120 \text{ x Frequency}}{\text{No of Poles}}$

A motor with a broken foot was replaced


Operation of the pump at reduced speed eliminated much of the throttling losses

By slowing the motor down, the operating head was dramatically reduced, even at the same flow rate

Discharge gauges on identical parallel pumps; left gauge is for a pump driven by a 4-pole motor, right gauge is for the pump with a 6-pole motor. Note: suction is ~ 25 psig.

Before and After the Motor Change

BASELINE

Pump Type	End Suction ANSI/AF	
Pump Speed	1785	
Drive	Direct Drive	
Fluid Type	Water	
Fluid Temperature	68	
Specific Gravity	1	
Kinematic Viscosity	1	
Stages	- + 1	

~
rpm
~
~
°F
cSt

Line Frequency Rated Motor Power Motor RPM Efficiency Class Rated Voltage Full-Load Amps

~
hp
rpm
~
V
А

REPLACE MOTOR (6-POLES)

Pump Efficiency Optimize Pump

Estimate Full-Load Amps

62.3

%

% ~

cSt

hp rpm

A

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed	1190
Drive	Specified Efficiency
Drive Efficiency	100
Fluid Type	Water
Fluid Temperature	68
Specific Gravity	1
Kinematic Viscosity	1
Stages	- + 1
Line Frequency	60 Hz
Rated Motor Power	125
Motor RPM	1190
Efficiency Class	Energy Efficient
Rated Voltage	478
Full-Load Amps	142.72

Before and After the Motor Change

BASELINE

Operating Hours	8760
Electricity Cost	0.054
Flow Rate	1200
Head	367
Calculate Head	
Load Estimation Method	Power
Motor Power	154
Measured Voltage	2370

8760	hrs/yr
0.054	\$/kWh
1200	gpm
367	ft
Power	~
154	kW
2370	V

REPLACE MOTOR (6-POLES)

Operating Hours	8760
Electricity Cost	0.054
Flow Rate	1200
Head	162
Calculate Head	
Implementation Costs	

hrs/yr

\$/kWh

gpm

ft

\$

Before and After the Motor Change

RESULTS		SANKEY	HELP
	Baseline	F	Replace Motor (6-Poles)
Percent Savings (%)			60.0%
Pump efficiency (%)	57.3	6	2.3
Motor rated power (hp)	350	1	25
Motor shaft power (hp)	194.2	7	8.8
Pump shaft power (hp)	194.2	7	8.8
Motor efficiency (%)	94.1	g)4.7
Motor power factor (%)	80.1	-	518.8
Percent Loaded (%)	55	6	3
Drive efficiency (%)	100	1	00
Motor current (amps)	47	_	03
Motor power (kW)	154	6	2
Annual Energy (MWh)	1,349	5	j43
Annual Energy Savings (MWh)	_	8	06
Annual Cost	\$72,848	Ş	29,349
Annual Savings	_	S	43,500

Dollar and energy savings:

- Annual electricity cost reduction from this change are almost \$50,000 (other changes made to the system)
- Reduction in annual electrical energy is > 900,000 kWhr
- The motor/starter/cable capital cost was \$12,000
- Capital cost repaid in about 3 months

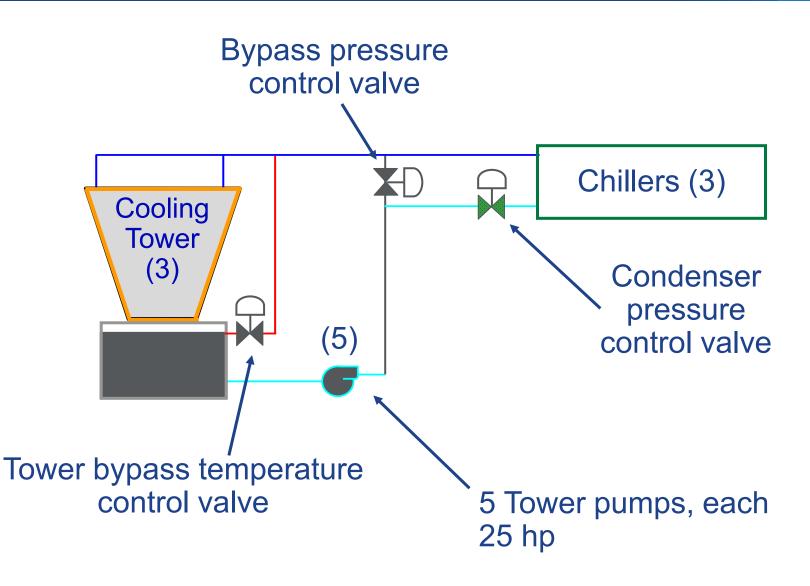
There were some important tangential benefits

- Seal face speed is reduced, seal life thereby extended
- Pump is more hydraulically stable, which means fewer maintenance problems are expected
- Noise levels are reduced both in the pump house and in the main Fusion building (hearing protection is no longer required)

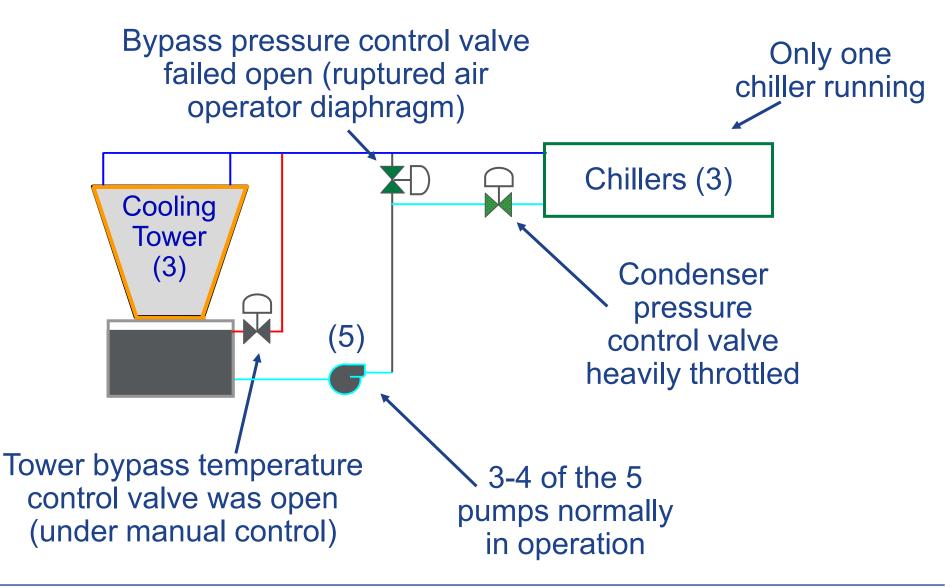
Y-12 Plant: 9767-12 tower water pumps Multiple parallel pumps: A good idea.....

WHEN PROPERLY CONTROLLED

The temptation is to run more pumps than are needed, defeating the very reason for having multiple pumps.



This case study is based on work done by the Y-12 plant in Oak Ridge, Tennessee, a DOE defense facility. Case study technical contact: Don Casada—Qualified PSAT Instructor Diagnostic Solutions, LLC Email:doncasada@diagsol.com


Simplified flow diagram of the tower water portion of the chilled water system

As found conditions: One chiller in operation, but 3 or 4 tower pumps running

Initial corrective actions were simple

- Closed manual isolation valve
- Repaired diaphragm in failed open bypass valve, eliminating bypass flow
- Turned off all but one or two tower pumps (depending on time of the year)
- Savings: about 30 kWe (\$14,000 per year)

A further look revealed additional energy reduction opportunities

Measured performance with only one original pump running (box around the pump & motor)

BASELINE

Pump Type
Pump Speed
Drive
Fluid Type
Fluid Temperature
Specific Gravity

Kinematic Viscosity

Stages

End Suction ANSI/API	~
1750	rpm
Direct Drive	~
Water	~
68	°F
1	
1	cSt
- + 2	

Line Frequency
Rated Motor Powe
Motor RPM
Efficiency Class
Rated Voltage

Full-Load Amps

60 Hz	~
25	hp
1775	rpm
Energy Efficient	~
460	V
28.8	А

OPTIMAL PUMP

Motor RPM

Efficiency Class

Rated Voltage

Full-Load Amps

Estimate Full-Load Amps

Pump Type	End Suction ANSI/API	~
Pump Efficiency Known Efficiency	83.49 %	
The efficiency of your pump has been of selected pump type. Click "Known Effic	-	
Pump Speed	1750	rpm
Drive	Specified Efficiency	~
Drive Efficiency	100	%
Fluid Type	Water	~
Fluid Temperature	68	°F
Specific Gravity	1	
Kinematic Viscosity	1	cSt
Stages	- + 2	
Line Frequency	60 Hz	~
Rated Motor Power	15	hn

✓
%
✓
°F
St ~ hp 15 1775 rpm Energy Efficient ¥ 460 V 18.39 А

Measured performance with only one original pump running (box around the pump & motor)

BASELINE

Operating Hours

Electricity Cost

Flow Rate

Head

Calculate Head

Load Estimation Method

Motor Current

Measured Voltage

s/yr
Wh
pm
ft
~
Α
V

OPTIMAL PUMP

Operating Hours

Electricity Cost

Flow Rate

Head

Calculate Head

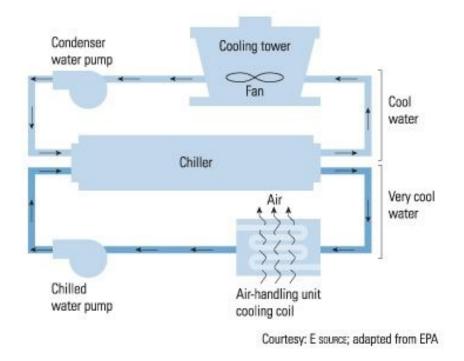
Implementation Costs

8760	hrs/yr
0.054	\$/kWh
820	gpm
53.4	ft

	\$
--	----

Measured performance with only one original pump running (box around the pump & motor)

RESULTS	SAN	KEY	HELP
	Baseline	Optir	nal Pump
Percent Savings (%)			35.0%
Pump efficiency (%)	55.3	85.7	
Motor rated power (hp)	25	25	
Motor shaft power (hp)	20	12.9	
Pump shaft power (hp)	20	12.9	
Motor efficiency (%)	93.2	92.8	
Motor power factor (%)	84.1	71	
Percent Loaded (%)	80	52	
Drive efficiency (%)	100	100	
Motor current (amps)	23	18	
Motor power (kW)	16	10.4	
Annual Energy (MWh)	140	91	
Annual Energy Savings (MWh)	—	49	
Annual Cost	\$7,572	\$4,91	10
Annual Savings	_	\$2,66	32
Ð	Potentia Savings ~\$2.7k		U.


53

ette

Stepping back to consider what is really required (the *Ultimate goal*)

A general rule of thumb for chillers: 3 gpm tower water flow per ton of cooling

(10° F rise in tower water for an 80% efficient chiller)

Reduce flow to 600 gpm @ 40 feet

BASELINE

Pump Type	
oump Speed	
Drive	

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

Vertical Turbine	~
1750	rpm
Direct Drive	~
Water	~
68	۴
1	
1	cSt
- + 2	

REDUCE FLOW TO 600 GPM

Pump Type

Vertical Turbine

85.66 %

Pump Efficiency Known Efficiency

The efficiency of your pump has been calculated based on your flow rate and selected pump type. Click "Known Efficiency" to use the efficiency calculated by your system setup.

Pump Speed	1750	rpm
Drive	Specified Efficiency	~
Drive Efficiency	100	%
Fluid Type	Water	~
Fluid Temperature	68	°F
Specific Gravity	1	
Kinematic Viscosity	1	cSt
Stages	- + 2	

REDUCE FLOW TO 600 GPM

BASELINE

Line Frequency	60 Hz
Rated Motor Power	25
Motor RPM	1775
Efficiency Class	Energ
Rated Voltage	460
Full-Load Amps	28.8

60 Hz	~
25	hp
1775	rpm
Energy Efficient	~
460	V
28.8	А

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

60 Hz	~
7.5	hp
1775	rpm
Energy Efficient	~
460	V
9.39	А

Reduce flow to 600 gpm @ 40 feet

BASELINE

Operating Hours

Electricity Cost

Flow Rate

Head

Calculate Head

Load Estimation Method

Motor Current

Measured Voltage

8760	hrs/y
0.054	\$/kWh
820	gpm
53.4	ft
Current	~
22.9	A
480	V

REDUCE FLOW TO 600 GPM

Operating Hours

Electricity Cost

Flow Rate

Head Calculate Head

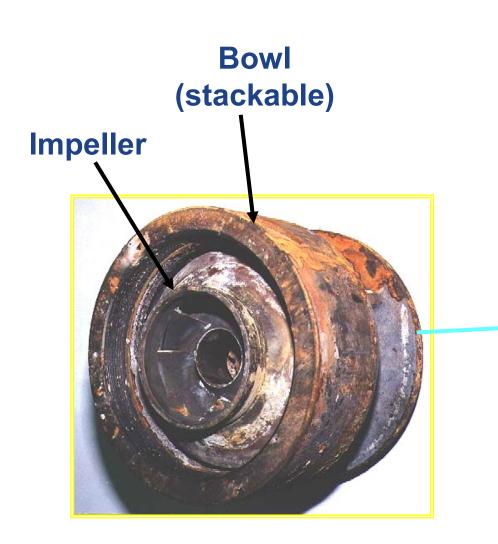
Implementation Costs

8760	hrs/yr
0.054	\$/kWh
600	gpm
40	ft

\$	

Reduce flow to 600 gpm @ 40 feet Replace with optimal pump

RESULTS		SANKEY	HELP
	Baseline	F	Reduce Flow to 600 GPM
Percent Savings (%)			63.0%
Pump efficiency (%)	55.3	8	85.7
Motor rated power (hp)	25	(08
Motor shaft power (hp)	20	(07.1
Pump shaft power (hp)	20	(07.1
Motor efficiency (%)	93.2	Ę	90
Motor power factor (%)	84.1	8	32.3
Percent Loaded (%)	80	Ę	94
Drive efficiency (%)	100	ŕ	100
Motor current (amps)	23	(09
Motor power (kW)	16	(05.9
Annual Energy (MWh)	140	(51
Annual Energy Savings (MWh)	_	8	89
Annual Cost	\$7,572	(\$2,773
Annual Savings	-	ę	\$4,799


A great opportunity, but a familiar story....

NO CAPITAL FUNDS

Turning maintenance problems into energy savings....

Next slide:

Baseline: 2-stage pump (600 gpm @ 40 ft) Modification: 1-stage pump (600 gpm @ 45.6 ft) (saves about \$3,900/year)

Convert 2-stage pump to 1-stage pump

BASELINE

Pump Type	End Suction ANSI/API
Pump Speed	1750
Drive	Direct Drive
Fluid Type	Water
Fluid Temperature	68
Specific Gravity	1
Kinematic Viscosity	1
Stages	- + 2

End Suction ANSI/API	~
1750	rpm
Direct Drive	~
Water	~
68	°F
1	
1	cSt
- + 2	

1-STAGE PUMP

Pump Efficiency
Optimize Pump

%

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

73

Pump Speed
Drive
Drive Efficiency
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages

1750	rpm
Specified Efficiency	~
100	%
Water	~
68	°F
1	
1	cSt
- + 1	

BASELINE

60 Hz	~
25	hp
1775 г	pm
Energy Efficient	~
460	V
28.8	Α
	25 1775 r Energy Efficient 460

1-STAGE PUMP

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps Estimate Full-Load Amps

60 Hz	~
25	hp
1775	rpm
Energy Efficient	~
460	V
28.8	А

ENERGY

Convert 2-stage pump to 1-stage pump

BASELINE

Operating Hours Electricity Cost

Flow Rate

Head

Calculate Head

Load Estimation Method

Motor Current

Measured Voltage

8760	hrs/yr
0.054	\$/kWh
600	gpm
40	ft
Current	~
22.9	A
480	V

1-STAGE PUMP

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head

Implementation Costs

8760	hrs/yr
0.054	\$/kWh
600	gpm
45.6	ft

	\$
--	----

Convert 2-stage pump to 1-stage pump

RESULTS		SANKEY	HELP
	Baseline		1-Stage Pump
Percent Savings (%)			52.0%
Pump efficiency (%)	30.3		73
Motor rated power (hp)	25		25
Motor shaft power (hp)	20		09.5
Pump shaft power (hp)	20		09.5
Motor efficiency (%)	93.2		91.7
Motor power factor (%)	84.1		62.4
Percent Loaded (%)	80		38
Drive efficiency (%)	100		100
Motor current (amps)	23		15
Motor power (kW)	16		07.7
Annual Energy (MWh)	140		67
Annual Energy Savings (MWh)	_		73
Annual Cost	\$7,572		\$3,643
Annual Savings	_		\$3,930

Pump system management

- Motor management programs have become relatively common
- Include repair/replace decision processes
- Opportunities with pumps are an order of magnitude greater than motors
- Consider a pump management program with contingency maintenance plans

The End for Case Studies

