

Pumping System Assessment

Week 4: Finding Data and Examples

Example System for Field Investigation and Analysis

A Flow Control System

3

Some systems operate continuously but need to have their flow regulated. The flow requirements are dictated by the process, and one would not attempt to maximize the pump efficiency by valve operation. However, operating pump efficiency could be deduced using system measurements. An example process pumping system with a flow control valve is shown below.

Measured data at the pump

Measured Conditions

Water at ambient temperature

P0: 4.3 psig, 7 ft. above floor level; pipe ID = 19.5 inches

P1: 81.2 psig, 12.4 ft above floor level; pipe ID = 12.25 inches

Measured flow rate, using temporary ultrasonic flow meter: 6100 gpm Motor nameplate data: 2300 volts, 1180 rpm, 80 amps (rated load), 350 hp Measured current and voltage: 77 amps, 2320 volts

Pump style: End suction

Observed rotational speed: 1190 rpm

Pump operates about 90% of the time; electricity cost is 13 cents/kWhr

Calculate pump head

 K_{s} represents all suction losses from the tank to the pump

 K_d represents all discharge losses from the pump to the gauge P_d

Fluid Specific Gravity		1			
Flow Rate		6100			gpm
Suction		Dischar	ge		
Pipe diameter (ID)	19.5 in	Pipe dia	meter (ID)	12.25	in
Gauge pressure (P _g)	4.3 psi	Gauge p	oressure (P _d)	81.2	psi
Gauge elevation (Z _s)	7 ft	Gauge e	elevation (Z _d)	12.4	ft
Line loss coefficients (K_s)	0.5	Line los	s coefficients (K _d)	1.5	
Result Data					
D	ifferential Elevation Head			5.4 ft	
C	ifferential Pressure Head			177.7 ft	
1	Differential Velocity Head			3.62 ft	
Esti	mated Suction Friction Head			0.33 ft	
	Discharge Friction Head			6.43 ft	
	Pump Head			193.48 ft	

5 Better

rs

Pump head calculation from MEASUR

As a first check of the pump operation, the hydraulic and electrical data were plugged into the MEASUR software. The results, shown below, indicate that the pump is very near the optimum commercially available equipment for the noted conditions. MEASUR estimates the pump efficiency to be 87.6%.

Evaluate pump operating efficiency

ft

А

V

BASELINE

Operating Hours	7884	hrs/yr
Electricity Cost	0.13	\$/kWh
Flow Rate	6100	gpm
Head Calculate Head	193	ft
Load Estimation Method	Current	~
Motor Current	77	A
Measured Voltage	2320	V

OPTIMAL PUMP

Operating Hours	7884
Electricity Cost	0.13
Flow Rate	6100
Head Calculate Head	193
Implementation Costs	

7884	hrs/yr
0.13	\$ /kWh
6100	gpm
193	ft

|--|

Evaluate pump operating efficiency

BASELINE

Pump	Туре
Pump	Speed

Drive

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

API Double Suction	~
1190	rpm
Direct Drive	~
Water	~
68	۳
1	
1	cSt
- + 1	

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	A

OPTIMAL PUMP

Pump Efficiency Optimize Pump

89.9		%

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed	119
Drive	Sp
Drive Efficiency	100
Fluid Type	Wa
Fluid Temperature	68
Specific Gravity	1
Kinematic Viscosity	1
Stages	-
Line Frequency	60
Rated Motor Power	350
Motor RPM	118
Efficiency Class	En
Rated Voltage	230
Full-Load Amps Estimate Full-Load Amps	80

1 1 21	
1190	rpm
Specified Efficiency	~
100	%
Water	~
68	°F
1	
1	cSt
- + 1	
60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	Α

Evaluate pump operating efficiency

RESULTS	SANKEY	HELP
	Baseline	Optimal Pump
Percent Savings (%)		3.0%
Pump efficiency (%)	87.6	89.9
Motor rated power (hp)	350	350
Motor shaft power (hp)	339.2	330.6
Pump shaft power (hp)	339.2	330.6
Motor efficiency (%)	95.6	95.6
Motor power factor (%)	85.6	84.2
Percent Loaded (%)	97	94
Drive efficiency (%)	100	100
Motor current (amps)	77	76
Motor power (kW)	264.7	258
Annual Energy (MWh)	2,087	2,034
Annual Energy Savings (MWh)	_	53
Annual Cost	\$271,327	\$264,429
Annual Savings	-	\$6,899

Check the manufacturer's data

To provide an independent check on the measured data, the manufacturer's pump performance curves, adjusted for the observed speed (using the pump affinity laws) were consulted. The head-capacity curve is shown below.

Pump head-capacity curve

Check the manufacturer's data

The efficiency-capacity curve is shown below.

Pump efficiency-capacity curve

A happy pump!

The calculated head and flow rate match the manufacturer's curve; furthermore, the MEASUR-estimated efficiency is consistent with the manufacturer's curve.

In summary, the observed measurements and subsequent analysis suggests that the pump:

- is operating very near its BEP (best efficiency point)
- is operating consistent with the manufacturer's performance curves, indicating minimal wear along with the motor, is operating near the PSAT-calculated optimal condition (note that the Optimization Rating is 97.4.

The Optimization Rating is a measure of the combined motor and pump performance relative to the optimal commercially available equipment, expressed as a percentage (equivalent to a grade on an exam).

As will be shown, these observations, while true, are very misleading. They apply to the motor and pump *only*.

Moving downstream a little we find.....

As noted above, the pump and motor are operating very efficiently, as judged by the head and flow rate output compared with the electrical power input. But it should always be the goal to judge how well the system as a whole is functioning, not just the individual components. Below, a slightly broadened view of the system is shown. A portion of the flow handled by the pump is diverted and recirculated back to the suction tank. This recirculated flow represents wasted energy.

Process system, including recirculation line

The recirculation line control valve

Flow rate was not measured in the recirculation line, but valve V2 position was noted to be full open. A picture of a valve similar to the recirculation valve, and valve flow coefficient vs. position are shown below.

Control valve (similar design to recirculation valve) and flow coefficient vs. position

Pumping 2940 gpm around in a circle!

Using the valve performance data, pipe and component geometric data, and measured pressures, the flow rate through the recirculation line was estimated to be 2940 gpm. Thus, the net flow rate is 3160 gpm. The flow distributions are illustrated below.

Process system flow distribution

Could use Valve Tool to estimate flow

Ð	Valve head and energy calcs 2008 —		×
File	e		
			C,u
	Units gpm, ft, inches, psig 🗸	0.900	
	Average electrical cost rate, \$/kWh	0.1300	
	Pump efficiency, %	87.9	
	Available data selector Flow rate from delta-P, Cv 🔻 Motor efficiency, %	95.0	
	Head loss, ft	142.07	
	Frictional power loss, hp	105.5	
	Frictional electrical power, kW	94.2	
	Specific gravity 1.000 Annual cost of friction, \$	96553	
	Calculated flow rate 2940		
	Specified valve Cv		
	Upstream pressure, psig 65.5 Downstream pressure, psig 4.0		
	Upstream pipe ID, inches 6.00 Valve size, inches 6.00 Downstream pipe ID, inches 6.00		
	Upstream gauge elev, ft 5.0 Downstream gauge elev, ft 5.0		
	Upstream gauge velocity, ft/s 33.4 Valve velocity, ft/s 33.4 Downstream gauge velocity, ft/s 33.4		
	Create new log Retrieve log entry 0.000 K_reducer & expander 8.21 K_valve 0.001 K_reducer & expander		
	8.21 K_total Copyright notice	JOP	

Gaining A System Perspective

Recognizing that only a little more than half the pump flow rate (3160 gpm) is going to the intended target, a revised MEASUR analysis can be performed using this net flow value. The result is shown below.

MEASUR analysis continued,

BASELINE

Operating Hours	7884	hrs/yr
Electricity Cost	0.13	\$/kWh
Flow Rate	6100	gpm
Head Calculate Head	193	ft
Load Estimation Method	Current	~
Motor Current	77	A
Measured Voltage	2320	V

USEFUL FLOW IS 3160 GPM

Operating Hours
Electricity Cost
Flow Rate
Head Calculate Head
Implementation Costs

7884	hrs	s/yr
0.13	\$/k	Wh
3160	g	pm
193		ft

	\$
--	----

MEASUR analysis

BASELINE

Stages

Pump Type	
Pump Speed	
Drive	
Fluid Type	
Fluid Temperature	
Specific Gravity	
Kinematic Viscosity	

API Double Suction	`
1190	rpm
Direct Drive	~
Water	`
68	9
1	
1	cS
- + 1	

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

60 Hz	~
350	hp
1180	грт
Energy Efficient	~
2300	V
80	А

USEFUL FLOW IS 3160 GPM

Pump Efficiency Optimize Pump

45.3906

%

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed Drive Drive Efficiency Fluid Type Fluid Temperature Specific Gravity Kinematic Viscosity Stages Line Frequency Rated Motor Power Motor RPM Efficiency Class Rated Voltage Full-Load Amps Estimate Full-Load Amps

1190	rpm
Specified Efficiency	~
100	%
Water	~
68	°F
1	
1	cSt
- + 1	
60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	А

Gaining A System Perspective

RESULTS	SANKEY	HELP
E	Baseline	Useful Flow is 3160 gpm
Percent Savings (%) -		
Pump efficiency (%) 8	37.6	45.4
Motor rated power (hp) 3	350	350
Motor shaft power (hp) 3	339.2	339.2
Pump shaft power (hp) 3	339.2	339.2
Motor efficiency (%)	95.6	95.6
Motor power factor (%) 8	35.6	84.4
Percent Loaded (%) 9	97	97
Drive efficiency (%) 1	100	100
Motor current (amps) 7	77	78
Motor power (kW) 2	264.7	264.7
Annual Energy (MWh) 2	2,087	2,087
Annual Energy Savings (MWh) -	-	
Annual Cost \$	\$271,327	\$271,327
Annual Savings -	_	\$00

Optimum pump is 88.5% efficient

RESULTS		SANKEY	HELP
	Baseline	O	ptimized Pump at 3160 gpm
Percent Savings (%)			48.0%
Pump efficiency (%)	87.6	88	3.5
Motor rated power (hp)	350	35	50
Motor shaft power (hp)	339.2	17	74
Pump shaft power (hp)	339.2	17	74
Motor efficiency (%)	95.6	94	1.7
Motor power factor (%)	85.6	74	1.9
Percent Loaded (%)	97	50)
Drive efficiency (%)	100	10	00
Motor current (amps)	77	45	5
Motor power (kW)	264.7	13	37
Annual Energy (MWh)	2,087	1,	080
Annual Energy Savings (MWh)	_	1,	007
Annual Cost	\$271,327	\$1	40,397
Annual Savings	_	\$1	30,930

Better

nts

There is a dramatic effect on the outcome; the Optimization Rating dropped from 97.4 to 51.3. Significantly, the annual cost, estimated to be \$271,300, could be reduced by \$131,000 with a pump selected to deliver the net flow only (i.e., with the bypass or recirculation valve closed).

Going further downstream.....

Expanding the view to include the entire system shows that the flow rate to the receiver, or discharge tank, is controlled by another valve, V1, whose position is controlled by a signal from an in-line magnetic flow meter.

Complete process system diagram

There is this pinched flow control valve

A picture of the flow meter and control valve is provided below.

24

Magnetic flow meter and control valve (valve labeled V1), close-up of valve position, and valve flow coefficient vs. position plot

Using the valve equation

Based on the calculated valve flow coefficient of 476 from the valve indicator and valve flow coefficient plot, the pressure drop across the control valve can be estimated. The fundamental equation relating the valve flow coefficient, flow rate, and pressure drop is:

$$Q = C_v \sqrt{\frac{\Delta P}{s.g.}}$$
 or $\Delta P = \frac{s.g. \times Q^2}{C_v^2} \rightarrow \Delta P = \frac{1.0 \times 3160^2}{476^2} = 44 \text{ psig}$

where Q is the flow rate in gpm, Cv is the valve flow coefficient, DP is the pressure drop across the valve in psig, and s.g. is the specific gravity. The pressure drop across the valve was actually measured to be 39 psig.

The pressure drop across the valve represents head developed by the pump that exceeds that necessary to deliver the required flow rate to the discharge tank. This pressure drop can be subtracted from the pump head to calculate the head actually required. The MEASUR analysis was re-run after subtracting the measured head loss (39 psig * 2.31 ft/psig = 90 ft) from the calculated pump head (193.5 ft) previously used.

Downsize pump and motor

BASELINE

Operating H	ours
-------------	------

Electricity Cost

Flow Rate

Head

Calculate Head

Load Estimation Method

Motor Current

Measured Voltage

7884	hrs/yr
0.13	\$/kWh
6100	gpm
193	ft
Current	~
77	А
2320	V

OPTIMIZED PUMP AT 3160 GPM @ 103 FT

Operating Hours Electricity Cost

Flow Rate

Head

Calculate Head

Implementation Costs

7884	hrs/yr
0.13	\$/kWh
3160	gpm
103	ft

\$	
----	--

Downsize pump and motor

BASELINE

Pump	Туре
Pump	Speed

Drive

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

API Double Suction	~
1190	rpm
Direct Drive	~
Water	~
68	°F
1	
1	cSt
- + 1	

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	А

OPTIMIZED PUMP AT 3160 GPM @ 103 FT

Pump Efficiency Optimize Pump

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed	1190
Drive	Specified Efficier
Drive Efficiency	100
Fluid Type	Water
Fluid Temperature	68
Specific Gravity	1
Kinematic Viscosity	1
Stages	- + 1
Line Frequency	60 Hz
Rated Motor Power	100
Motor RPM	1180
Efficiency Class	Energy Efficient
Rated Voltage	2300
Full-Load Amps Estimate Full-Load Amps	23.79

%

Downsize pump and motor

RESULTS	SANKEY	HELP
	Baseline	Optimized Pump at 3160 gpm @ 103 ft
Percent Savings (%)	<u> </u>	72.0%
Pump efficiency (%)	87.6	88.5
Motor rated power (hp)	350	100
Motor shaft power (hp)	339.2	92.8
Pump shaft power (hp)	339.2	92.8
Motor efficiency (%)	95.6	94.8
Motor power factor (%)	85.6	82.7
Percent Loaded (%)	97	93
Drive efficiency (%)	100	100
Motor current (amps)	77	22
Motor power (kW)	264.7	73.1
Annual Energy (MWh)	2,087	576
Annual Energy Savings (MWh)	_	1,511
Annual Cost	\$271,327	\$74,888
Annual Savings	-	\$196,439

Gaining A System Perspective

Thus, when viewed from a component perspective, the pump and motor operate very efficiently; however, when viewed from a system perspective, the pump is significantly oversized for the job at hand. Note that in the MEASUR analysis, the optimal pump could be powered by a 100 hp motor instead of the 350 hp motor required for the existing pump. Also note that the annual energy cost could be reduced by almost \$200,000 if the optimal pump and motor were employed.

This article has demonstrated two important perspectives related to valve control of pumping systems:

Throttling values to achieve improved pump efficiency in systems whose function is to deliver a given volume is almost never a good idea,

Efficient pump and/or motor operation is decidedly not an indication of effective or efficient system operation.

Cavitation

Water Boils at:

- 212 F when the pressure is 14.70 psia
- 203 F when the pressure is 12.27 psia
- 60 F when the pressure is 0.26 psia
- 250 F when the pressure is 28.84 psia

Net Positive Suction Head

Net Positive Suction Head

NPSHA = *Total suction head (absolute)* – *fluid vapor pressure (absolute)*

$$NPSHA = \frac{V_s^2}{2g} + \frac{2.31(P_s + P_a)}{s.g.} + Z_s - \frac{2.31P_v}{s.g.}$$

NPSHA =
$$\frac{V_s^2}{2g} + \frac{2.31(P_s + P_a - P_v)}{s.g.} + Z_s$$

- V_s = pump suction velocity (ft/s)
- P_s = suction gauge pressure (psig)
- P_a = atmospheric pressure (psia)
- P_v = fluid vapor pressure (psia)
- g = gravitational constant (32.174 ft/s^2)
- s.g. = fluid specific gravity (dimensionless)
- Z_s = suction gauge elevation above pump suction datum (ft)

Net Positive Suction Head Required

- NPSHR is, by long-term accepted practice, the available suction head at which the developed pump head has dropped by 3% from the head that it produced with bountiful available suction head
- By definition, then, the pump performance is already degraded due to cavitation-related flow disturbance
- The actual point when cavitation actually begins can be with significantly greater available head than the pump supplier's NPSHR curve
- Two accepted approaches for developing the NPSHR curve:
 - Establish a fixed suction head, then increase flow rate until a 3% reduction in head at a particular flow rate is observed
 - Maintain a constant flow rate and gradually decrease the suction head until the developed head drops by 3%

NPSHR: Available suction head with 3% degradation in developed head

Finish water pump layout

NPSHR Curve for pump on previous slide

At what flow rate would NPSHR exceed NPSHA? (Assume $P_s = 14.7$ psia and water temperature = 60 degrees F)

Calculate NPSHA

Water saturation vapor pressure at 60 F= 0.26 psia

Reference location for suction head determination is the water surface

NPSHA =
$$\frac{V_s^2}{2g} + \frac{2.31 (P_s + P_a - P_v)}{s.g.} + Z_s$$

NPSHA = $\frac{0^2}{64.352} + \frac{2.31 (0 + 14.7 - 0.26)}{1.00} + 10.5 = 43.9 \text{ ft}$

Answer: NPSHR would exceed NPSHA at just over 2500 gpm

Actual Pump Data for VSD Operation

Variable Speed Pumping

Plants
 U.S. DEPARTMENT OF ENE

RTMENT OF

Parallel Pumps

Flow (GPM)

Parallel Pumps

ENERC

- Production only requires 4 pumps the 5th is insurance in case one pump fails
- The opportunity is to add automatic start up controls and operate 4 pumps instead of 5
- Operating 5 pumps produces 1100 gpm of additional flow and pump head increases from 78 feet to 92 feet
- Pump efficiency is 70% and the cost of electricity is \$0.08/kWh, saves 63.9 kW

Savings:

 $kW_{init} = (10000 \text{ gpm x } 92 \text{ feet x } 0.746)/(3960 \times 0.7 \times 0.95) = 260.6 \text{ kW}$ $kW_{final} = (8900 \text{ gpm x } 78 \text{ feet x } 0.746)/(3960 \times 0.7 \times 0.95) = 196.7 \text{ kW}$ Saved = (260.6 - 196.7) kW x 8760 hr/yr x 0.08 kWh = 44,781/yrEstimated project cost = \$30,000 Payback = \$30,000 / \$44,781 = 0.7 years

- A coolant circulating system has five 100 HP vertical turbine pumps
- Three of the five are operated 24/7
- Many of the machining processes shut down over night
- The header pressure was logged over night and from 11 pm until 5 am the pressure was a flat 96 psig
- The typical pressure during the rest of the day is 65 psig
- The plan agreed with by the plant engineers was to turn off one pump for 6 hours/day

Parallel Pumps: Header Pressure

V8 B2 Coolant Header Pressure North Side

Savings

kW = 100 HP x 0.6 loaded x 0.746 = 44.8 kW Pump down time = 6 hr/day x 360 days/yr = 2160 hr/yr Cost savings = 44.8 kW x 2160 hr/yr x 0.08 \$/kWh = \$7,741/yr

The pump will be manually started/stopped Project cost = \$0 Payback = Immediate

- Juruti Bauxite Mine
- Have 3 800 HP wash pump in parallel
- 2 pumps normally operate
- Pumps are oversized
- 50 meters of head is dropped across the control valves
- Electricity costs
 \$0.265/kWh
- Recommended replacing one pump with one correctly sized

New Pump Operation

FR

IFR

- Condenser Tower Pump #2
- One 100 HP end suction centrifugal pump
- Pump is oversized
- Butterfly valve at discharge is 30% open
- With VFD pump speed can be reduced from 1789 rpm to 1290 rpm and valve opened
- Motor input power falls from 54.9 kW to 24.7 kW
- Saves 241,667 kWh worth \$17,400/year
- Cost \$15,000 Payback 0.9 yrs

Condenser Tower Pump #2

MENT OF

Throttled Pump Example 1 System Setup Assessment Diagram Report Sankey Calculators					
Explore Opportunities Novice View	Modify All Conditions Expert View				Install VFD Open Valve Selected Scenario
SELECT POTENT	FIAL ADJUSTMEN	NT PROJECTS	RESULTS	S /	ANKEY HELP
Select potential adjustme	ent projects to explore opportu	unities to increase efficiency and the effectiveness of your system.		Baseline	Install VFD Open Valve
Modification Name	Add	I New Scenario	Percent Savings (%)		54.0%
☑ Install VFD			Pump officiency (%)	74.1	74.4
Ва	aseline	Modifications	Motor rated power (hp)	100	100
			Motor shaft power (hp)	70.1	31.8
Flo	w Rate	Flow Rate	Pump shaft power (hp)	70.1	30.8
17	771 apm	1771 (apm)	Motor efficiency (%)	95.1	93.1
.,.	, spin	gpm	Motor power factor (%)	83.7	66.5
I	Head	Head	Percent Loaded (%)	70	32
	116 ft	Calculate Head	Drive efficiency (%)	100	97
		51 II	Motor current (A)	83	48
Mot	tor Drive	Drive Efficiency	Motor power (kW)	55	25.5
Dire	ect Drive	97 %	Annual CO2 Emissions (tonne CO ₂)	189.6	87.7
End Suc	tion ANSI/API	Optimize Pump	Annual CO2 Emissions Savings (tonne CO ₂)	_	101.9
		74.1 70	Annual Energy (MWh)	440	204
The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click		Annual Energy Savings (MWh)	_	236	
"Optimize Pump" to estimate your pump efficiency based on a different pump type.		Annual Cost (\$)	31,685	14,660	
🗆 Adjust Operational Data		Annual Savings (\$)	-	17,025	

The End for Session 4

