Better Plants ${ }^{\circ}$

Pumping System Assessment

Week 4: Finding Data and Examples

Example System for Field Investigation and Analysis

Plants

A Flow Control System

Some systems operate continuously but need to have their flow regulated. The flow requirements are dictated by the process, and one would not attempt to maximize the pump efficiency by valve operation. However, operating pump efficiency could be deduced using system measurements. An example process pumping system with a flow control valve is shown below.

Measured data at the pump

Measured Conditions

Water at ambient temperature
P0: 4.3 psig, 7 ft . above floor level; pipe ID = 19.5 inches
P1: 81.2 psig, 12.4 ft above floor level; pipe ID $=12.25$ inches
Measured flow rate, using temporary ultrasonic flow meter: 6100 gpm
Motor nameplate data: 2300 volts, $1180 \mathrm{rpm}, 80 \mathrm{amps}($ rated load), 350 hp
Measured current and voltage: $77 \mathrm{amps}, 2320$ volts
Pump style: End suction
Observed rotational speed: 1190 rpm
Pump operates about 90% of the time; electricity cost is 13 cents/kWhr

Calculate pump head

K_{d} represents all discharge losses from the pump to the gauge P_{d}

Fluid Specific Gravity			1		
Flow Rate			6100		gpm
Suction			Discharge		
Pipe diameter (ID)	19.5	in	Pipe diameter (ID)	12.25	in
Gauge pressure (Pg_{g})	4.3	psi	Gauge pressure (P_{d})	81.2	psi
Gauge elevation (Z_{s})	7	f	Gauge elevation (Z_{d})	12.4	ft
Line loss coefficients (K_{s})	0.5		Line loss coefficients (K_{d})	1.5	

| Result Data | |
| :---: | :---: | :---: |
| Differential Elevation Head | 5.4 ft |
| Differential Pressure Head | 177.7 ft |
| Differential Velocity Head | 3.62 ft |
| Estimated Suction Friction Head | 0.33 ft |
| Discharge Friction Head | 6.43 ft |
| Pump Head | 193.48 ft |

Evaluate pump operating efficiency

As a first check of the pump operation, the hydraulic and electrical data were plugged into the MEASUR software. The results, shown below, indicate that the pump is very near the optimum commercially available equipment for the noted conditions. MEASUR estimates the pump efficiency to be 87.6%.

Evaluate pump operating efficiency

BASELINE

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head
Load Estimation Method
Motor Current
Measured Voltage

国 7884	hrs/yr
0.13	$\$ / \mathrm{kWh}$
6100	gpm
193	ft
Current	V
77	A
2320	V

OPTIMAL PUMP

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head

Implementation Costs

囲 7884	hrs/yr
0.13	$\$ / \mathrm{kWh}$
6100	gpm
193	ft

Evaluate pump operating efficiency

BASELINE

Pump Type
Pump Speed
Drive
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

OPTIMAL PUMP

Pump Efficiency

89.9

Optimize Pump
The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.
Pump Speed
Drive
Drive Efficiency
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages
Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps
Estimate Full-Load Amps

Evaluate pump operating efficiency

RESULTS

	Baseline	Optimal Pump	
Percent Savings (\%)	-		
Pump efficiency (\%)	87.6	89.9%	
Motor rated power (hp)	350	350	
Motor shaft power (hp)	339.2	330.6	
Pump shaft power (hp)	339.2	330.6	
Motor efficiency (\%)	95.6	95.6	
Motor power factor (\%)	85.6	84.2	
Percent Loaded (\%)	97	94	
Drive efficiency (\%)	100	100	
Motor current (amps)	77	76	
Motor power (kW)	264.7	258	
Annual Energy (MWh)	$\mathbf{2 , 0 8 7}$	$\mathbf{2 , 0 3 4}$	
Annual Energy Savings (MWh)	-	$\mathbf{5 3}$	
Annual Cost	$\mathbf{\$ 2 7 1 , 3 2 7}$	$\mathbf{\$ 2 6 4 , 4 2 9}$	
Annual Savings	$\mathbf{-}$	$\mathbf{\$ 6 , 8 9 9}$	

Plants ${ }^{\circ}$

Check the manufacturer's data

To provide an independent check on the measured data, the manufacturer's pump performance curves, adjusted for the observed speed (using the pump affinity laws) were consulted. The head-capacity curve is shown below.

Flow rate, gpm
Pump head-capacity curve

Check the manufacturer's data

The efficiency-capacity curve is shown below.

A happy pump!

The calculated head and flow rate match the manufacturer's curve; furthermore, the MEASUR-estimated efficiency is consistent with the manufacturer's curve.
In summary, the observed measurements and subsequent analysis suggests that the pump:

- is operating very near its BEP (best efficiency point)
- is operating consistent with the manufacturer's performance curves, indicating minimal wear along with the motor, is operating near the PSAT-calculated optimal condition (note that the Optimization Rating is 97.4.
The Optimization Rating is a measure of the combined motor and pump performance relative to the optimal commercially available equipment, expressed as a percentage (equivalent to a grade on an exam).

As will be shown, these observations, while true, are very misleading. They apply to the motor and pump only.

Moving downstream a little we find.....

As noted above, the pump and motor are operating very efficiently, as judged by the head and flow rate output compared with the electrical power input. But it should always be the goal to judge how well the system as a whole is functioning, not just the individual
components. Below, a slightly broadened view of the system is shown. A portion of the flow handled by the pump is diverted and recirculated back to the suction tank. This recirculated flow represents wasted energy.

The recirculation line control valve

Flow rate was not measured in the recirculation line, but valve V2 position was noted to be full open. A picture of a valve similar to the recirculation valve, and valve flow coefficient vs. position are shown below.

Control valve (similar design to recirculation valve) and flow coefficient vs. position

Pumping 2940 gpm around in a circle!

Using the valve performance data, pipe and component geometric data, and measured pressures, the flow rate through the recirculation line was estimated to be 2940 gpm . Thus, the net flow rate is 3160 gpm . The flow distributions are illustrated below.

Could use Valve Tool to estimate flow

Ralve head and energy calcs 2008
$-\quad \times$
File

$$
\text { Units } \quad \text { gpm, } \mathrm{ft} \text {, inches, psig }
$$

Available data selector \qquad
$\begin{array}{r}\text { Specific gravity } \div 1.000 \\ \text { Calculated flow rate } \quad 2940 \\ \hline\end{array}$
Operating fraction $\frac{\bullet}{*} 0.900$
Average electrical cost rate, $\$ / \mathrm{kWh} \geqslant 0.1300$
Pump efficiency, \% * 87.9
Motor efficiency, \% $\stackrel{*}{95.0}$
Head loss, ft $\longdiv { 1 4 2 . 0 7 }$
Frictional power loss, hp 105.5
Frictional electrical power, kW 94.2
Annual cost of friction, \$ 96553

Create new log

Retrieve log entry
0.000 K_reducer \& expander
8.21 K_valve 8.21 K_total

Gaining A System Perspective

Recognizing that only a little more than half the pump flow rate (3160 gpm) is going to the intended target, a revised MEASUR analysis can be performed using this net flow value. The result is shown below.

MEASUR analysis continued,

B ASELINE		
		hrs/yr
Operating Hours	囲 7884	$\$ / \mathrm{kWh}$
Electricity Cost	0.13	gpm
Flow Rate	6100	ft
Head Calculate Head Load Estimation Method Motor Current	193	
Measured Voltage	Current	V

USEFUL FLOW IS 3160 GPM

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head

囲 7884	$\mathrm{hrs} / \mathrm{yr}$
0.13	$\$ / \mathrm{kWh}$
3160	gpm
193	ft

Implementation Costs

MEASUR analysis

BASELINE

Pump Type
Pump Speed
Drive
Fluid Type
Fluid Temperature Specific Gravity Kinematic Viscosity Stages

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

USEFUL FLOW IS 3160 GPM

Pump Efficiency

Optimize Pump
45.3906

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.
Pump Speed
Drive
Drive Efficiency
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages
Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps
Estimate Full-Load Amps

1190	rpm
Specified Efficiency	\checkmark
100	\%
Water	\checkmark
68	${ }^{\circ} \mathrm{F}$
1	
1	cSt
- + 1	
60 Hz	\checkmark
350	hp
1180	rpm
Energy Efficient	\checkmark
2300	V
80	A

Gaining A System Perspective

RESULTS
SANKEY
HELP

	Baseline	Useful Flow is $\mathbf{3 1 6 0} \mathbf{~ g p m}$
Percent Savings (\%)	--	
Pump efficiency (\%)	87.6	45.4
Motor rated power (hp)	350	350
Motor shaft power (hp)	339.2	339.2
Pump shaft power (hp)	339.2	339.2
Motor efficiency (\%)	95.6	95.6
Motor power factor (\%)	85.6	84.4
Percent Loaded (\%)	97	97
Drive efficiency (\%)	100	100
Motor current (amps)	77	$\mathbf{7 8}$
Motor power (kW)	264.7	264.7
Annual Energy (MWh)	$\mathbf{2 , 0 8 7}$	$\mathbf{2 , 0 8 7}$
Annual Energy Savings (MWh)	$\mathbf{-}$	$\mathbf{\$ 2 7 1 , 3 2 7}$
Annual Cost	$\mathbf{\$ 2 7 1 , 3 2 7}$	$\mathbf{\$ 0 0}$
Annual Savings	$\mathbf{-}$	

Optimum pump is 88.5% efficient

Gaining A System Perspective

There is a dramatic effect on the outcome; the Optimization Rating dropped from 97.4 to 51.3. Significantly, the annual cost, estimated to be $\$ 271,300$, could be reduced by $\$ 131,000$ with a pump selected to deliver the net flow only (i.e., with the bypass or recirculation valve closed).

Going further downstream.....

Expanding the view to include the entire system shows that the flow rate to the receiver, or discharge tank, is controlled by another valve, V 1 , whose position is controlled by a signal from an in-line magnetic flow meter.

Complete process system diagram

There is this pinched flow control valve

A picture of the flow meter and control valve is provided below.

Magnetic flow meter and control valve (valve labeled V1), close-up of valve position, and valve flow coefficient vs. position plot

Using the valve equation

Based on the calculated valve flow coefficient of 476 from the valve indicator and valve flow coefficient plot, the pressure drop across the control valve can be estimated. The fundamental equation relating the valve flow coefficient, flow rate, and pressure drop is:
$\mathrm{Q}=\mathrm{C}_{\mathrm{v}} \sqrt{\frac{\Delta \mathrm{P}}{\text { s.g. }}}$ or $\Delta \mathrm{P}=\frac{\text { s.g. } \times \mathrm{Q}^{2}}{\mathrm{C}_{\mathrm{v}}^{2}} \rightarrow \Delta \mathrm{P}=\frac{1.0 \times 3160^{2}}{476^{2}}=44 \mathrm{psig}$
where Q is the flow rate in gpm, $C v$ is the valve flow coefficient, DP is the pressure drop across the valve in psig, and s.g. is the specific gravity. The pressure drop across the valve was actually measured to be 39 psig.

Gaining A System Perspective

The pressure drop across the valve represents head developed by the pump that exceeds that necessary to deliver the required flow rate to the discharge tank. This pressure drop can be subtracted from the pump head to calculate the head actually required. The MEASUR analysis was re-run after subtracting the measured head loss (39 psig * $2.31 \mathrm{ft} / \mathrm{psig}=90 \mathrm{ft}$) from the calculated pump head (193.5 ft) previously used.

Downsize pump and motor

BASELINE

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head
Load Estimation Method
Motor Current
Measured Voltage

OPTIMIZED PUMP AT 3160 GPM @ 103 FT

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head
Implementation Costs

Downsize pump and motor

28

OPTIMIZED PUMP AT 3160 GPM @ 103 FT

Pump Efficiency
88.5

Optimize Pump
The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.
Pump Speed
Drive
Drive Efficiency
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages
Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps
Estimate Full-Load Amps

Downsize pump and motor

Gaining A System Perspective

Thus, when viewed from a component perspective, the pump and motor operate very efficiently; however, when viewed from a system perspective, the pump is significantly oversized for the job at hand. Note that in the MEASUR analysis, the optimal pump could be powered by a 100 hp motor instead of the 350 hp motor required for the existing pump. Also note that the annual energy cost could be reduced by almost $\$ 200,000$ if the optimal pump and motor were employed.

Concluding Remarks

This article has demonstrated two important perspectives related to valve control of pumping systems:

Throttling valves to achieve improved pump efficiency in systems whose function is to deliver a given volume is almost never a good idea,

Efficient pump and/or motor operation is decidedly not an indication of effective or efficient system operation.

Cavitation

Water Boils at:

- 212 F when the pressure is 14.70 psia
- 203 F when the pressure is 12.27 psia
- 60 F when the pressure is 0.26 psia
- 250 F when the pressure is 28.84 psia

Plants ${ }^{\circ}$

Net Positive Suction Head

Net Positive Suction Head

NPSHA $=$ Total suction head (absolute) - fluid vapor pressure (absolute)

$$
\begin{array}{r}
N P S H A=\frac{V_{s}^{2}}{2 g}+\frac{2.31\left(P_{s}+P_{a}\right)}{s . g .}+Z_{s}-\frac{2.31 P_{v}}{s . g .} \\
\text { NPSHA }=\frac{V_{s}^{2}}{2 g}+\frac{2.31\left(P_{s}+P_{a}-P_{v}\right)}{s . g .}+Z_{s}
\end{array}
$$

$\mathrm{V}_{\mathrm{s}} \quad=$ pump suction velocity (ft/s)
$P_{s}=$ suction gauge pressure (psig)
$\mathrm{P}_{\mathrm{a}}=$ atmospheric pressure (psia)
$P_{v} \quad=$ fluid vapor pressure (psia)
$\mathrm{g}=$ gravitational constant ($32.174 \mathrm{ft} / \mathrm{s}^{2}$)
s.g. = fluid specific gravity (dimensionless)

$Z_{s} \quad=$ suction gauge elevation above pump suction datum (ft)

Net Positive Suction Head Required

- NPSHR is, by long-term accepted practice, the available suction head at which the developed pump head has dropped by 3% from the head that it produced with bountiful available suction head
- By definition, then, the pump performance is already degraded due to cavitation-related flow disturbance
- The actual point when cavitation actually begins can be with significantly greater available head than the pump supplier's NPSHR curve
- Two accepted approaches for developing the NPSHR curve:
- Establish a fixed suction head, then increase flow rate until a 3\% reduction in head at a particular flow rate is observed
- Maintain a constant flow rate and gradually decrease the suction head until the developed head drops by 3\%

NPSHR: Available suction head with 3\% degradation in developed head

Finish water pump layout

NPSHR Curve for pump on previous slide

At what flow rate would NPSHR exceed NPSHA?
(Assume $P_{s}=14.7$ psia and water temperature $=60$ degrees F)

Calculate NPSHA

Water saturation vapor pressure at $60 \mathrm{~F}=0.26 \mathrm{psia}$

Reference location for suction head determination is the water surface

$$
\begin{aligned}
& \text { NPSHA }=\frac{V_{s}^{2}}{2 g}+\frac{2.31\left(P_{s}+P_{a}-P_{v}\right)}{\text { s.g. }}+Z_{s} \\
& \text { NPSHA }=\frac{0^{2}}{64.352}+\frac{2.31(0+14.7-0.26)}{1.00}+10.5=43.9 \mathrm{ft}
\end{aligned}
$$

Answer: NPSHR would exceed NPSHA at just over 2500 gpm

Actual Pump Data for VSD Operation

Variable Speed Pumping

Plants ${ }^{\circ}$

Parallel Pumping Example 1

Parallel Pumping Example

Parallel Pumps

Parallel Pumping Example

Parallel Pumps

Parallel Pumping Example

- Production only requires 4 pumps - the $5^{\text {th }}$ is insurance in case one pump fails
- The opportunity is to add automatic start up controls and operate 4 pumps instead of 5
- Operating 5 pumps produces 1100 gpm of additional flow and pump head increases from 78 feet to 92 feet
- Pump efficiency is 70% and the cost of electricity is $\$ 0.08 / \mathrm{kWh}$, saves 63.9 kW
Savings:
$\mathrm{kW}_{\text {init }}=(10000 \mathrm{gpm} \times 92$ feet $\times 0.746) /(3960 \times 0.7 \times 0.95)=260.6 \mathrm{~kW}$ $\mathrm{kW}_{\text {final }}=(8900 \mathrm{gpm} \times 78$ feet $\times 0.746) /(3960 \times 0.7 \times 0.95)=196.7 \mathrm{~kW}$ $\$$ Saved $=(260.6-196.7) \mathrm{kW} \times 8760 \mathrm{hr} / \mathrm{yr} \times 0.08 \$ / \mathrm{kWh}=\$ 44,781 / \mathrm{yr}$ Estimated project cost $=\$ 30,000$
${ }_{45}$ Payback $=\$ 30,000 / \$ 44,781=0.7$ years

Parallel Pumping Example 2

Parallel Pumping Example 2

- A coolant circulating system has five 100 HP vertical turbine pumps
- Three of the five are operated $24 / 7$
- Many of the machining processes shut down over night
- The header pressure was logged over night and from 11 pm until 5 am the pressure was a flat 96 psig
- The typical pressure during the rest of the day is 65 psig
- The plan agreed with by the plant engineers was to turn off one pump for 6 hours/day

Parallel Pumps: Header Pressure

V8 B2 Coolant Header Pressure North Side

11/19/20103.18.99.5
Downloaded Data - Friday, November 19, 2010

Parallel Pumping Example 2

Savings

$$
\text { kW }=100 \mathrm{HP} \times 0.6 \text { loaded } \times 0.746=44.8 \mathrm{~kW}
$$

Pump down time $=6 \mathrm{hr} /$ day $\times 360$ days $/ \mathrm{yr}=2160 \mathrm{hr} / \mathrm{yr}$ Cost savings $=44.8 \mathrm{~kW} \times 2160 \mathrm{hr} / \mathrm{yr} \times 0.08 \$ / \mathrm{kWh}=\$ 7,741 / \mathrm{yr}$

The pump will be manually started/stopped
Project cost = \$0
Payback = Immediate

Parallel Pumping Example 3

- Juruti Bauxite Mine
- Have 3-800 HP wash pump in parallel
- 2 pumps normally operate
- Pumps are oversized
- 50 meters of head is dropped across the control valves
- Electricity costs \$0.265/kWh
- Recommended replacing one pump with one correctly sized

New Pump Operation

\longrightarrow System Curve Parallel Pumps: 100% Speed \longrightarrow Pump at 100% Speed \longrightarrow New Pump \longrightarrow New System Curve

Parallel Pumping Example 3

Throttled Pump Example 1

- Condenser Tower Pump \#2
- One 100 HP end suction centrifugal pump
- Pump is oversized
- Butterfly valve at discharge is 30% open
- With VFD pump speed can be reduced from 1789 rpm to 1290 rpm and valve opened
- Motor input power falls from 54.9 kW to 24.7 kW
- Saves 241,667 kWh worth \$17,400/year
- Cost \$15,000 Payback 0.9 yrs

Throttled Pump Example 1

Condenser Tower Pump \#2

Throttled Pump Example 1

Throttled Pump Example 1

Throttled Pump Example 1
Last modified: Aug 2, 2023

The End for Session 4

