Better Plants ${ }^{\circ}$

Pumping System Assessment

Week 3: MEASUR and Field Measurements

Homework 2 review

\%is KEEP CALM AND DO YOUR HOMEWORK

Homework 2 review

1. Please do an investigation of one or two pump systems in your facility you wish to analyze and obtain the following data for each one of them.
a. Hours/year of operation
b. Cost of electricity, $\$ / k W h$
c. Pump type
d. Pump operating speed, RPM
e. Drive type (Direct, Std V-belt, Notched V-belt, Synchronous belt, VFD)
f. Fluid pumped
g. Fluid Temperature, F
h. Fluid specific gravity
i. Fluid kinematic viscosity, cSt
j. Number of pump stages
k. Motor horsepower rating
I. Motor rated RPM
m. Motor efficiency class (Standard, Energy Efficient, Premium Efficiency)
n. Motor rated voltage
o. Motor full load amps
p. Measured flow rate, GPM
q. Measured pump head, Feet
${ }^{3}$ r. Measured motor power (kW with Power Meter or Volts \& Current with clamp on meter)

Homework 2 review

2. Why do you think this pumping system has energy reduction potential?
3. List your questions about pumping systems in your facilities.

Homework 2 review

4. A pump operates under the following conditions: flow is 500 gpm ; suction pressure is 22.9 psig; discharge pressure is 127.4 psig; suction gauge elevation is 4 feet off the floor; discharge gauge elevation is 8 feet off of the floor; suction piping is 6 inch diameter; discharge piping is 5 inch diameter; the suction side loss coefficients total 1.75; the discharge side loss coefficients total 2.5 ; the fluid is corn oil with a specific gravity of 0.924 . Calculate the pump head with hand calculations and then use MEASUR to determine the pump head.

Suction pipe diameter $=\left(\operatorname{Pix}(6 / 12)^{2}\right) / 4=0.19635 \mathrm{ft}^{2}$
Discharge pipe diameter $=\left(\operatorname{Pix}(5 / 12)^{2} / 4=0.13636 \mathrm{ft}^{2}\right.$
Suction flow velocity $=(500 \mathrm{gal} / \mathrm{min}) /\left(7.4805 \mathrm{gal} / \mathrm{ft}^{3} \times 60 \mathrm{~s} / \mathrm{min} \times 0.19635 \mathrm{ft}^{2}\right)=5.6736 \mathrm{ft} / \mathrm{s}$
Suction pipe velocity head $=(5.6736 \mathrm{ft} / \mathrm{s})^{2} /\left(2 \times 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)=0.50024 \mathrm{ft}$
Discharge flow velocity $=(500 \mathrm{gal} / \mathrm{min}) /\left(7.4805 \mathrm{gal} / \mathrm{ft}^{3} \times 60 \mathrm{~s} / \mathrm{min} \times 0.13635 \mathrm{ft}^{2}\right)=8.1700 \mathrm{ft} / \mathrm{s}$
Discharge pipe velocity head $=(8.1700 \mathrm{ft} / \mathrm{s})^{2} /\left(2 \times 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)=1.03731 \mathrm{ft}$
Pump elevation head $=(8 \mathrm{ft}-4 \mathrm{ft})=4$ feet
Pump pressure head $=(127.4-22.9) \times 2.31 / 0.924=261.25$ feet
Differential velocity head $=1.03731-0.50024=0.53707$ feet
Suction line losses $=1.75 \times 0.50024 \mathrm{ft}=0.8754$ feet
Discharge line losses $=2.50 \times 1.03731 \mathrm{ft}=2.5933$ feet
Total Pump Head $=269.26$ feet

Homework 2 review

Fluid Specific Gravity			0.924		
Flow Rate			500		gpm
Suction			Discharge		
Pipe diameter (ID)	6	in	Pipe diameter (ID) Gauge pressure $\left(\mathrm{P}_{\mathrm{d}}\right)$ Gauge elevation $\left(Z_{d}\right)$ Line loss coefficients (K_{d})	5	in
Gauge pressure (P_{g})	22.9	psi		127.4	psi
Gauge elevation (Z_{5})	4	ft		8	f
Line loss coefficients (K_{3})	1.75			2.5	

Plants ${ }^{\circ}$

Homework 2 review

5. Calculate the static head for the system below. Standard water is being pumped.

Static Head $=75.0+2.31 \times(5.0-10.0)=63.45$ feet

Homework 2 review

6. Calculate the pump head for the figure below. The flow rate is 5000 gpm of standard water.

Homework 2 review

Pump Head = 197.94 feet

Plants ${ }^{\circ}$

Homework 2 review

7. Using the static head from Problem 5 and the pump head and flow from Problem 6, calculate the system curve this piping system by hand and using MEASUR. The equation should be of the form:

$$
H_{\text {total }}=H_{\text {static }}+k^{\prime} Q^{1.9}
$$

Static Head $=63.45 ; k^{\prime}=(197.94-63.45) / 5000^{1.9}=0.0000126$
System Curve Equation $=63.45+0.0000126 \times$ Q $^{1.9}$

System Curve Data

System Curve
Fluid Specific Gravity
System Loss Exponent, C
Point 1
Flow Rate
Head
Point 2
Flow Rate
Head

Homework 2 review

System Curve

Head $=63.5+\left(0.0000126 \times\right.$ flow $\left.^{1.9}\right)$

Homework 2 review

8. A plant has a VFD installed on a fully loaded 100 hp pump. The operators continue to run the pump at 60 Hz and the automatic control system is not connected to the VFD. The VFD efficiency is estimated to be 97%. How much has the operating cost for the pump increased per year if the VFD operates at 60 Hz continuously? The average net cost of electricity is $\$ 0.08 / \mathrm{kWh}$ and the electric motor efficiency is 95%.

Answer:
kW with VFD $=(100 \mathrm{hp} \times 0.746 \mathrm{~kW} / \mathrm{hp}) /(0.95 \times 0.97)=80.95 \mathrm{~kW}$
kW without VFD $=(100 \mathrm{hp} \times 0.746 \mathrm{~kW} / \mathrm{hp}) / 0.95=78.53 \mathrm{~kW}$
Extra Annual Cost for VFD Losses $=(80.95-78.53) \times 8760 \mathrm{hr} / \mathrm{yr} \times \$ 0.08 / \mathrm{kWh}=\$ 1,696 / \mathrm{yr}$

Homework 2 review

9. A chilled water closed loop piping system has a 200-ton chiller with the evaporator flow at 480 gpm of water at 42 F . This piping loop has a straight pipe length of 3500 feet, 2 -gate valves (wide open), 10 -std 90 -degree elbows, 1 -check valve, and 1 -strainer ($K=2.0$). The chiller evaporator has a 20 -foot head loss and each of the 5 chilled water coils has a 12-foot head loss, all supplied by the chilled water circulating pump. Determine the following:
a. The size of the pipe is needed for the 480 gpm flow. (See slide 48 first presentation)
b. The total head loss for the system assuming schedule 40 black steel pipe.
c. Go to the following link and select a chilled water pump for this system. ESP Systemwize (esp-systemwize.com)

Homework 2 review

a. $6^{\prime \prime}$ diameter pipe from slide 48 first presentation

Homework 2 review

b. Pump Head: Straight pipe 1.8 feet loss $/ 100$ feet of pipe (from slide) $=1.8 \times 35=63$ feet Calculate velocity in the 6 -inch diameter pipe.
Cross sectional area $=\left(\operatorname{Pix}(0.5)^{2}\right) / 4=0.19635 \mathrm{ft}^{2}$.
Flow velocity $=(480 \mathrm{gal} / \mathrm{min}) /\left(7.48 \mathrm{gal} / \mathrm{ft}^{3} \times 0.19635 \mathrm{ft}^{2} \times 60 \mathrm{sec} / \mathrm{min}\right)=5.447 \mathrm{ft} / \mathrm{s}$
$\mathrm{V}^{2} / 2 \mathrm{~g}=(5.447 \mathrm{ft} / \mathrm{s})^{2} /\left(2 \times 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)=0.461 \mathrm{ft}$
90 -degree elbows $=10$ els $\times 0.3 \times 0.461 \mathrm{ft}=1.383 \mathrm{ft}$
Gate valves $=2$ valves $\times 0.2 \times 0.461 \mathrm{ft}=0.184 \mathrm{ft}$
Check valve $=1$ valve $\times 2.0 \times 0.461 \mathrm{ft}=0.922 \mathrm{ft}$
Strainer $=1$ strainer $\times 2.0 \times 0.461 \mathrm{ft}=0.922 \mathrm{ft}$
Cooling coils $=5$ coils $\times 12 \mathrm{ft} / \mathrm{coil}=60 \mathrm{ft}$
Total head loss = 146.41 feet
Select pump for 480 gpm @ 150 feet of head
Bell \& Gossett e1510 3AD 6.625 inch diameter impeller, $23.2 \mathrm{bhp}, 30 \mathrm{hp}$ motor, 3550 rpm

Homework 2 review

C.

Homework 2 review

C.

*The Bell \& Gossett Series e-1510 is available in 26 sizes and a variety of configuration options that enable customization and flexibility to fit a broad range of operating conditons.
ntp/ipoljposeetl.comypumpl-circulatan/end-ruction-purpu/e-1510/

Accessing pump head calculator in MEASUR

System Setup - Calculate Pump Head

System Setup - Pump Head Calculator

PUMP HEAD TOOL

K_{s} represents all suction losses from the tank to the pump

$$
\mathrm{K}_{\mathrm{d}} \text { represents all discharge losses from the pump to the gauge } \mathrm{P}_{\mathrm{d}}
$$

Input Field Data
Two Different Geometries: Suction Gauge

Plants ${ }^{\circ}$

System Setup - Pump Head Calculator

Input Field Data

uction gauge elevation

K_{s} represents all suction losses from the tank to the pump
K_{d} represents all discharge losses from the pump to the gauge P_{d}

Fluid Specific Gravity			1.002		
Flow Rate			2000 gpm		
Suction			Discharge		
Pipe diameter (ID)	12	in	Pipe diameter (ID)	12	in
Tank gas overpressure (P_{g})	0	psi	Gauge pressure (P_{d})	124	psi
Tank fluid surface elevation $\left(Z_{s}\right)$	10	ft	Gauge elevation $\left(Z_{d}\right)$	10	ft
Line loss coefficients (K_{s})	0.5				

Copy Table

Two Different Geometries: Suction Tank

Plants ${ }^{\circ}$

An important note on loss coefficients!

Suction gauge elevation

K_{s} represents all suction losses from the tank to the pump
K_{d} represents all discharge losses from the pump to the gauge P_{d}

Fluid Specific Gravity			1		
Flow Rate			2000		gpm
Suction			Discharge		
Pipe diameter (ID) Gauge pressure $\left(\mathrm{P}_{\mathrm{g}}\right)$ Gauge elevation (Z_{s})	0	in	Pipe diameter (ID) Gauge pressure $\left(\mathrm{P}_{\mathrm{d}}\right)$ Gauge elevation $\left(Z_{d}\right)$	0	in
	0	psi		0	psi
	0	f		0	f
Line loss coefficients (K_{s})	0		Line loss coefficients (K_{d})	0	

Important note about loss coefficients

The loss coefficients used here apply to the velocity head in the line size represented by the suction and discharge pipe diameters at the points of pressure measurement.

If the loss elements are in different size lines than the points of pressure measurement, they need to be appropriately scaled. It is generally suggested that the losses be scaled in proportion to the 4 th power of the diameter ratio. For example, if the discharge pressure is measured in a 12 -inch header, and there is a 6 -inch check valve with a nominal loss coefficient of 2 (applied to the 6 -inch valve size), the K factor to use for the valve would be 2 $x(12 / 6)$ to the 4 th power, or 32 . The reason for this 4 th power scaling is that the velocity varies with the square of the pipe diameter, and the velocity head (to which the loss coefficients apply) is proportional to the velocity squared.

Accessing system curve calculator

\section*{MEASL}
 C) ENERGY

Energy Efficiency \& Renewable Energy

Add New -

Home

All Assessments
6 Demo 202
Huntington Plant TH
Huntington Plant 2 TH
RTH Test
E Bendix Huntington
Huntington
AIST Event
ADM Mexico MO
TVA Workshop Boiler 2
6 Session 4 Example

- CA Test

Q ADM Boiler Fan
Boiler 4 - ADM Mexico

- Cedar Rapids Cogen
- TCO Boiler
- TCO Boiler
- TCO Steam

Nashville Stratas
Q Blower ADM Utilities

MEASUR

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators.
Get started with one of the following options.
If you need help at any point along the way, click on a User Manual icon

View Assessments

the
1 Renewabie Energy lurve will be stored

Accessing system curve calculator

Pump Calculators

Pump Head Tool
Calculate pump head using inlet and out pressures, elevation and pipe diameter

Specific Speed

Calculate the optimal specific speed for a pump and the penalty due to non-optimal operation

Pump Achievable Efficiency
Estimate the achievable pump efficiency for various pump styles based on ANSI/HI 13-2000

Pump Curve
Develop arpurnpure and explore the effects of changes in head, flow, pump speed and impeller diameter N
Select the Pump Curve Tool

Accessing system curve calculator

```
PUMP CURVE
```


Click the " + " beside the System Curve Data

Pump Curve Data
By Equation By Data
Head Equation Coefficients
Max Flow
Order
Constant
flow
flow ${ }^{2}$
flow ${ }^{3}$

0	gpm
3	\checkmark
0	
0	
0	
0	

Power Equation Coefficients
Order

System Curve Data

Accessing system curve calculator

System Curve Data

System Curve

Fluid Specific Gravity
System Loss Exponent, C

1.0
1.9

Point 1
Flow Rate
Head

0	gpm

65
Point 2
Flow Rate
Head

2000	gpm
277	ft

Fill in the required information

Accessing system curve calculator

System Curve
Head $=65.0+\left(0.000113 \times\right.$ flow $\left.^{1.9}\right)$

Get the System Curve Equation \& Graph

Pumping tool before MEASUR was PSAT (Pumping System Assessment Tool)

- The first Pumping System Analysis Tool developed by US DOE was PSAT
- PSAT download comes with another program, Valve Tool, that is very useful
- Valve Tool has not been added to MEASUR yet
- PSAT and Valve Tool can be downloaded from the following website
- https://www.energy.gov/eer e/amo/downloads/pumping-system-assessment-toolpsat

A valve tool is included in the PSAT2008 package

The valve tool works from the fundamental valve relationships

Valve Equation

$$
Q=F_{p} C_{v} \sqrt{\frac{\Delta P}{s . g}}
$$

In U.S. units:
Q = Flow rate (gpm)
$F_{p}=$ Geometry factor
$\mathrm{C}_{\mathrm{v}}=$ Valve flow coefficient
$\Delta \mathrm{P}=$ pressure drop, psi
s.g. = specific gravity
\qquad

Available data selector \qquad Cv from flow rate, pressures Com

Head loss, ft 14.55 Frictional power loss, hp 18.4 Frictional electrical power, KW 17.0 Annual cost of friction, $\$$ 7433

Create
new log

Retrieve
log entry
1.296 K_reducer \& expander
13.42 K_valve
14.71 K_total

Valve Tool has four possible modes of operation

- There are four parameters that control the analysis
- Valve upstream pressure, $\mathrm{P}_{\text {up }}$
- Valve downstream pressure, $\mathrm{P}_{\text {down }}$
- Valve C
- Flow rate, Q
- Four modes of operation
- Know: $P_{\text {up }} P_{\text {down }}$ and Q. Solve for C_{v}
- Know: $P_{\text {up }} P_{\text {down }}$ and C_{v}. Solve for Q
- Know: $P_{\text {up }} C_{v}$ and Q. Solve for $P_{\text {down }}$
- Know: $P_{\text {down }} C_{v}$ and Q. Solve for $P_{\text {up }}$

Frictional electrical power, kW $\quad 17.0$
Annual cost of friction, $\$ 7433$

Operating fraction $\sqrt[*]{*} 1.000$
trical cost rate, $\$ / \mathrm{kWh} \div 0.00$
Pump efficiency, \%
Motor efficiency, \% $\ddagger 95$
Head loss, ft $\quad 14.55$

-
\square

Operating fraction*	1.000
trical cost rate, $\$ / \mathrm{kWh} *$	0.0500
Pump efficiency, \% *	85.0
Motor efficiency, \%	95.0
Head loss, ft	14.55
Frictional power loss, hp	18.4
onal electrical power, kW	17.0
Annual cost of friction, \$	7433

Upstream pressure, psig :	50.0			Downstream pressure, psig	45.0
Upstream pipe ID, inches :	16.00	Valve size, inches	12.00	Downstream pipe ID, inches *	16.00
Upstream gauge elev, ft *	5.0			Downstream gauge elev, ft *	2.0
Upstream gauge velocity, ft/s	8.0	Valve velocity, ft/s	14.2	wnstream gauge velocity, ft/s	8.0

Example exercises, using Valve Tool and MEASUR's pump head, and system curve tools

Valve Tool example 1

Measured flow rate $=2700 \mathrm{gpm}$
P1 = 85 psig
P2 = 72 psig
Fluid = Water, $70^{\circ} \mathrm{F}$
Electricity cost rate $=0.05 \$ / \mathrm{kWh}$
System operates continuously
Find: Valve flow coefficient, loss K, power loss, annual energy cost

Valve Tool example 1 results

Create
newlog
:---
log entry

36

Plants ${ }^{\circ}$

The calculated loss K values apply to the upstream pipe diameter (12 inches in this case), not the valve size

Valve Tool example 2

$$
10 \text { " line } \quad 6 " \text { valve } \quad 10 " \text { line }
$$

P1 = 93 psig
P2 $=75 \mathrm{psig}$
Fluid = Water, $70^{\circ} \mathrm{F}$
Electricity cost rate $=5$ cents/kWh
System operates continuously
Valve position indication $=60 \%$ open
Valve generic flow coefficient curve is available
Find: Estimated flow rate, power loss, annual energy cost

Valve flow coefficient curve

6-inch butterfly valve flow coefficient vs. position

Valve Tool example 2 results

Better
 Plants ${ }^{\circ}$

An important applicability caveat

Developing system performance curves from field measurements

But first things first : Develop a simplified flow diagram

- Capture the critical elements of the system
- How do you do that?
-Review P\&ID and piping isometrics
-Talk with operators
-Walk the system down (nice to have a P\&ID with you)
- Note 1: one of the reasons for talking with operators and walking the system down is to correct outdated P\&ID's
- Note 2: Complex systems with multiple sources and/or delivery points cannot be modeled with a simple system curve (but field data is still invaluable)

Simple type of system curve basics

- Requires a pair of head and flow conditions
- One of the pair can be static head (flow rate $=0$)

Point 1
Flow Rate
Head
Point 2
Flow Rate
Head

2000
gpm
277

The static head is made up of elevation, and sometimes pressure components

Static head $\left(H_{s}\right)=\frac{2.31\left(P_{4}-P_{1}\right)}{\text { s.g. }}+Z_{4}-Z_{1}$
H_{s} in ft
P in psig
Z in ft

Sources of static head data

- Pressure gauges
- Elevation:
- Level (or pressure) gauges
- Drawings

Elevation head estimating example: counting steps

Another quick and simple method: count ladder rungs (standard ladder rung spacing = 1 ft)

Which to use?

Tanks, chests, etc. often use steel sheets or tiles that can be individually measured and counted; marks on concrete from plywood forms may also be useful

Example static head calculation

Example static head calculation

Or.... use the MEASUR pump head calculator

The head calculator determines the head difference between two points, so it can do a static head calculation for you.

PUMP HEAD TOOL

Result Data				
Differential Elevation Head Differential Pressure Head	40.0 ft			
Differential Velocity Head	23.11 ft			
Estimated Suction Friction Head	0.0 ft			
Discharge Friction Head	0.0 ft			
Pump Head	0.0 ft			

Copy Table

For a second system head/capacity point, we can always use the pump head

- Simplest approach: measure pump head at the operating flow rate and let MEASUR do the rest of the work for you
- Why does this work on a system curve? Because pump head and system head at the operating condition are, by
 definition, equal

Measured data in the example system

MEASUR-calculated pump head $=94.7 \mathrm{ft}$

Result Data	
Differential Elevation Head	1.0 ft
Differential Pressure Head	
Differential Velocity Head	93.36 ft
Estimated Suction Friction Head	0.33 ft
Discharge Friction Head	0.0 ft
Pump Head	94.68 ft

Copy Table

Plants ${ }^{\circ}$

Final step - plug the two values into the MEASUR system curve calculator

System Curve Data

System Curve

Fluid Specific Gravity
System Loss Exponent, C
Point 1
Flow Rate
Head
Point2
Flow Rate
Head

System Curve
Head $=63.1+\left(0.00000782 \times\right.$ flow $\left.^{1.9}\right)$

Resulting system curve and table from an Excel spreadsheet

This is very easy to program in Excel!

Plants ${ }^{\circ}$

System curve with pump curve added

System Curve with Pump Curve Added

The system loss exponent can have a small impact; use care if extrapolating

Remember that there are process factors that can affect the system curve - some examples

- Static head variables

Gas overpressure
Level
Density

- Dynamic loss coefficient variables

Valve position
Viscosity
Age (corrosion, scale)
Filter or strainer cleanliness

- The system itself

Changes in process flow path(s)

Why is development of a field measurementbased system curve important?

- The system curve is fundamental to everything we do in pumping systems
- The first thing we should do in ANY pumping system optimization is to ask whether we can either change the system curve or change where we're operating on it
- The real world is often SIGNIFICANTLY different than the picture painted by designers using generic loss characteristics

An example: comparing design-based head calculations with field data

- What the designer expected vs.
- How the system actually operates!

Small section of a system - from pump flange through expander

Design organization loss calculation:
Element Loss K
18" 90 degree elbow: 0.103
18" check valve: 2.000
18-24" expander: 0.400
Knife gate valve: 0.228
????
Total K:
2.731
$\mathrm{Q}=11,400 \mathrm{gpm}\left(15.7 \mathrm{ft} / \mathrm{s}\right.$ in $17.25^{\prime \prime} \mathrm{ID}$ line), for a velocity head of 3.81 ft
 rate for the system)

Measured data provide a better perspective (or we would hope it would)

Actual head loss at 12,000 gpm:

$$
\begin{array}{rlr}
\Delta \mathrm{P}:(54.3-51.6) \times(2.31 / 0.985) & =6.3 \mathrm{ft} \\
+\Delta \mathrm{Z}:(4.5-8.5) & =-4.0 \mathrm{ft} \\
+\Delta \frac{\mathrm{V}^{2}}{2 \mathrm{~g}}:(4.3-1.3) & =3.0 \mathrm{ft} \\
\cline { 2 - 4 } & =5.3 \mathrm{ft}
\end{array}
$$

$$
\frac{\mathrm{V}_{1}{ }^{2}}{2 \mathrm{~g}}+\frac{2.31 \mathrm{P}_{1}}{\mathrm{s.g} .}+\mathrm{Z}_{1}=\frac{\mathrm{V}_{2}{ }^{2}}{2 \mathrm{~g}}+\frac{2.31 \mathrm{P}_{2}}{\mathrm{s.g} .}+\mathrm{Z}_{2}+\mathrm{H}_{\mathrm{ff}-2}
$$

System curves: design-based, normal operating, and unthrottled

Let's talk about getting the data needed by MEASUR

O measur

Plants ${ }^{\circ}$

A motor nameplate

Another motor nameplate

488 amps $\times 460$ volts $\times 3 \times 0.905 \times 0.954$

$$
746 \text { watts/hp }
$$

$$
=450 \mathrm{hp}
$$

Note: some published motor data is internally inconsistent

Pump nameplate data (goes with first motor)

Nameplate speed here (1800 rpm) is the nominal synchronous speed

Another pump nameplate (goes with 2nd motor)

semal No

Rotation

Hdesie or
MPELLER SFIVHIG, OFF OF THE BOTTOM. (HE THIS NFEOMMATION IS NOT PROVIDED. CONTACT THE* FAOTORY FORUMPELLER SETTING INSTRUCTIONS.I

Again, the nameplate shows nominal synchronous speed

Pressure and flow measurements:

Instruments and miscellaneous considerations

There are several types of pressure transducers

Bourdon tube (most common for gauges)

Bellows

Diaphragm

Piezoresistive

The C-type Bourdon tube is by far the most common industrial pressure gauge

Some practical considerations

- Service environment, history
- Water hammer
- Calibration
- Instrument range
- Accuracy
- Overpressure capability
- Physical location, setup
- Process connection point
- Accounting for sensing element elevation
- Proper instrument line fill \& vent

What do you think the system pressure is? (Note the angle from which the picture is taken)

Would a little larger picture change your mind?

Calibrated, but. . .maybe not quite accurate

Note: this gauge was removed from system to install a test gauge.
(poor camera work by a yokel from Diagnostic Solutions failed to show the end of the threads)

Picture taken on 10/15/2004; note the calibration sticker was applied only three months before.

The use of portable test instrumentation is advisable when accurate data is needed

Break

There are a host of flow meter types

- Differential pressure orifice, venturi, nozzle, elbow
- Velocity - magnetic, ultrasonic, turbine, vortex shedding, variable area (rotameter), pitot tube
- Open flow - Weir
- Positive displacement gear, nutating disc
- Mass

Some important flow meter considerations

- Proper flow profile and installation
- Range
- Calibration
- Wear
- Corrosion, scale, foreign material
- Sensing line issues (similar to pressure)

Some all too often found field configurations...

Another less-than desirable arrangement

venturi flow meter

Plants ${ }^{\circ}$

A good configuration

Magnetic flow meter

Another good arrangement

Flow nozzle with upstream flow straightener (compressed air service)

Electrical measurements: Instruments and considerations

The most important consideration in electrical measurements:

Strongly recommended reading for those planning to make electrical measurements

- NFPA* 70E, Standard for Electrical Safety in the Workplace
- 29CFR 1910.335, Safeguards for personnel protection (OSHA)

* NFPA - National Fire Protection Association, which also publishes the National Electrical Code

Fundamental electrical power relationships: Single phase power

$$
P_{\mathrm{avg}}=I_{\mathrm{rms}} \cdot \mathrm{~V}_{\mathrm{rms}} \cdot \text { power factor }
$$

note: the $\mathrm{V}_{\text {rms }}$ above is line to neutral voltage

$$
\underline{\text { or }} P_{\text {avg }}=\text { Average }\left(I_{\text {inst }} \cdot V_{\text {inst }}\right)
$$

Three phase portable power meters have become common in recent years

Three phase portable power meter in application

Estimating things you can't measure

Reviewing: Important parameters to be read, measured, or estimated for pumping system analysis

- Flow rate
- Head
- Motor input power
- Rotating speed
- Nameplate information:
- Motor rated speed, hp, full load amps, nominal efficiency
- Pump gpm, head, speed

But in many cases, it isn't feasible to measure one or more of these parameters - for example, the flow rate, and for voltages above 600 V , the power.

What do we do then?

Estimating flow rate when it isn't permanently metered

- Portable flow meter
- Special test
- From pump head measurement and pump curve
- From other process parameters (sanity check)
- From component(s) pressure drop

Portable ultrasonic flow meter

Special test example - tank drain or fill (also a standard way to calibrate flow meters)

Estimating flow rate from pump head measurements and the pump curve

Step 1: Estimate head from test gauges at the P_{2} and P_{3} gauge locations

Suction pipe diameter (ID), inches $\sqrt[\pm]{10.020}$	Discharge pipe diameter (ID), inches $\frac{\nu}{v} 1$	10.020
Suction gauge pressuge (Ps), psig $\frac{ \pm}{24.20}$	Discharge gauge pressure (Pd), psig $\frac{*}{*}$	95.30
Suction gauge elevation (Zs), feet $\frac{*}{*} 0.00$	Discharge gauge elevation (Zd), feet $\frac{2}{V}$	1.75
Suction line loss coefficients, Ks 0.00	Discharge line loss coefficients, Kd	0.00
Fluid specific gravity ${ }_{\text {* }}$	1.000 Flow rate, gpm	
	Differential elevation head, ft 1.75	
	Differential pressure head, ft 164.24	
	Differential velocity head, ft 00.00	
	Estimated suction friction head, ft 0.00	
	timated discharge friction head, ft 0.00	
	Pump head, ft 165.99	

$$
\begin{aligned}
& P_{3}=95.3 \mathrm{psig} \\
& P_{2}=24.2 \mathrm{psig}
\end{aligned}
$$

Both gauges in 10-inch pipe

Step 2: retrieve the manufacturer's generic pump head curve and make initial flow estimate

$0 \quad 500100015002000250030003500$ Flow rate, gpm

Calculate pump head and use pump curve to predict flow rate

If suction and discharge line sizes are different or loss elements are present, it is necessary to iterate between the pump head curve and the head calculation, since the pump head is affected by flow rate. Guess a reasonable flow rate and calculate the pump head. Then check the pump curve for agreement.

Result Data	
	Differential Elevation Head
Differential Pressure Head	-4.0 ft
Differential Velocity Head	93.36 ft
Estimated Suction Friction Head	5.21 ft
Discharge Friction Head	0.0 ft
106	Pump Head

A few possible gotcha's

- Pump head-capacity curve was developed at a different speed
- Pump performs differently in the field than at the test facility
- Inaccurate pressure gauges
- Pump specific curve \neq pump generic curve
- Impeller, other pump parts have worn
- We don't know the impeller diameter
- The manufacturer exaggerated (nah, couldn't be)

Pump rotational speed can usually be easily and accurately measured with a strobe light

It is very common to find pumps operating at greater than the speeds at which they were rated

Accounting for actual vs. rated speed IS important (using the measured head of 166 ft)

$0 \quad 500100015002000250030003500$
Flow rate, gpm
Measured speed is 1780 rpm . The difference is 8% in this case

Calculations from previous slide

- To make a one-point estimate of flow rate when the pump is operating at a different speed than that at which the performance curve was developed, it isn't necessary to develop an entirely new curve. Instead, you can simply use the affinity laws for the single measured point.
- In this case, the 1750 rpm head corresponding to 166 ft at 1780 rpm , per the affinity laws, is:
- $166 \mathrm{ft} \times(1750 \div 1780)^{2}=160.5 \mathrm{ft}$
- Now find the flow rate at 160.5 ft on the 1750 rpm curve - it is about 2390 gpm.
- Finally, the 2390 gpm at 1750 rpm converts to, by the affinity laws is:
- $2390 \mathrm{gpm} \times(1780 \div 1750)=2430 \mathrm{gpm}$ at 1780 rpm

What if you have manufacturer's generic curve set, and aren't sure of the impeller diameter?

Flow rate, gpm

A couple of options

- Measure shutoff head (for low energy pumps and quickly at that)
- What if wear ring clearance has opened?
- Does speed change when dead-headed?
- For pumps with rising power curves:
- Measure electrical power
- Use MEASUR to estimate shaft power
- Compare the estimated shaft power with the manufacturer's power curve

Use the measured power to estimate the flow rate

Some related good general practices*

- Request (pay for) a certified test curve for the specific pump
- When possible, have tested with the motor that will be used in actual service
- After installation, benchmark field performance against test facility data
- Do regular hydraulic performance tests
* For pumps that are important energy users; you wouldn't want to do this for 5-hp pumps unless there were other reasons for doing so.

A case study to illustrate flow estimation from pressure measurements

Head-capacity curve, building 9767-12 primary chilled water pumps

Pump discharge: permanently installed gauge reads 2.5 psig low

Pump suction: permanently installed gauge reads 1.3 psig high

Comparing permanent and test pressure gauge-indicated flow rates

As a sanity check - use other process parameters

Using valve differential pressure to estimate flow rate

Important: valve characteristic must be known; this is not a precision flow measurement

Maximum	490.4	Allowable, \% nominal:	13.3\%		
Nominal	433.0				
Minimum	375.6				

An effective way to measure flow rate in parallel pumping applications: use Bernoulli

Parallel Pump System - Flow Estimating

- A very common pump configuration is to have several parallel pumps fed from a large common header, tank or reservoir. In most cases, one or more of the parallel pumps is normally idle.
- The total hydraulic head, including pressure, elevation, and velocity should be the same in the suction pipes of running and idle pumps. But since there is no velocity in the idle pumps, the pressure would be higher than in those that are running. By measuring the differences in pressures, the velocity head in the suction of a running pump can be deduced.

Parallel Pump System - Flow Estimating

- Of course, a difficulty with this approach is the fact that there are frictional effects. In the example shown above, there are losses across the suction valves, as well as other pipe fittings (elbows/tees). But using nothing other than typical values for these components, it is often possible to estimate velocity to within an accuracy of a few percent. In some cases, this may be the best estimate that can be made. It also provides an independent means of estimation that can either corroborate or bring into question other flow measurements or estimates.

How about power estimating?

- MEASUR estimates of power from current have proven to be reasonably accurate
- Linear current ratio (measured amps divided by full load amps = fraction of rated load) is a very poor second choice
- MotorMaster algorithms
- Speed - not recommended unless a speed-power calibration curve for the specific motor and for the
 specific power supply conditions is in hand (i.e., almost never)

Plants ${ }^{\circ}$

MEASUR - example 1

Application: >40 years old, 200-hp, 4-pole motor, unknown repair history

Comparison of electric power estimated from current and voltage and actual electric power

Measure motor current \& power \& compare

FIELD DATA

RESULTS

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head
Load Estimation Method
Motor Current
Measured Voltage

囲 8760	$\mathrm{hrs} / \mathrm{yr}$
0.08	\$/kWh
2000	gpm
277	ft
Current	V
215.5	A
472	V

	Baseline
Percent Savings (\%)	--
Pump efficiency (\%)	73.1
Motor rated power (hp)	200
Motor shaft power (hp)	191.8
Pump shaft power (hp)	191.8
Motor efficiency (\%)	94
Motor power factor (\%)	86.4
Percent Loaded (\%)	96
Drive efficiency (\%)	100
Motor current (amps)	216
Motor power (kW)	152.2
Annual Enargy (mandh)	$\mathbf{1 , 3 3 4}$
Annual Energy Savings (MWh)	$\mathbf{-}$
Annual Cost	$\mathbf{\$ 1 0 6 , 6 8 7}$
Annual Savings	$\mathbf{-}$

FIELD DATA

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head
Load Estimation Method
Motor Power
Measured Voltage

眉 8760	hrs/yr
0.08	\$/kWh
2000	gpm
277	ft
Power	\checkmark
156.3	kW
472	V

RESULTS

	Baseline
Percent Savings (\%)	--
Pump efficiency (\%)	71.2
Motor rated power (hp)	200
Motor shaft power (hp)	196.8
Pump shaft power (hp)	196.8
Motor efficiency (\%)	93.9
Motor power factor (\%)	86.6
Percent Loaded (\%)	98
Drive efficiency (\%)	100
Motor current (amps)	221
Motor power (kW)	156.3
Annual Energy (MWh)	$\mathbf{1 , 3 6 9}$
Annual Energy Savings (MWh)	$\mathbf{-}$
Annual Cost	$\mathbf{\$ 1 0 9 , 5 3 5}$
Annual Savings	$\mathbf{-}$

A caution about clamp-on current measurements: CT jaw closure is critical

Piece of tie wrap < 0.05 in thick

Jaws fully closed - 114.2 amps

<0.05 inch gap: 78.5 amps

Note: CT scaling is $1 \mathrm{mV} / \mathrm{amp}$

If possible, measure all three phases

Currents

$<0.9 \%$ voltage unbalance $=>3.3 \%$ current unbalance

Plants ${ }^{\circ}$

A final, most important consideration:
Demand and Supply - in the engineering domain

- There is often a difference between what the pump is providing the system and what the system really needs
- Try to think in terms of demand, not supply

To illustrate, let's consider a real-world chilled water pumping application

We're only going to look at a part of the system: the part surrounding secondary pump J106

Nameplate data

PUMP \& FLUID		
Pump Type	End Suction ANSI/API \sim	
Pump Speed	1750	rpm
Drive	Direct Drive	\checkmark
Fluid Type	Water	\checkmark
Fluid Temperature	68	${ }^{\circ} \mathrm{F}$
Specific Gravity	1	
Kinematic Viscosity	1	cSt
Stages	- + 1	
MOTOR		
Line Frequency Rated Motor Power	60 Hz	\checkmark
	20	hp
The Field Data Motor he Rated Motor Power, please adjust the input values.		
Motor RPM	1760	rpm
Efficiency Class	Standard Efficiency	\checkmark
Rated Voltage	460	V
Full-Load Amps	25.2	A

Plants ${ }^{\circ}$

Pump data: 115.5 feet head, 450 gpm

Plants ${ }^{\circ}$

The combined pump and motor are good: about 87% of optimal for this size, class of equipment

But supply and demand are unbalanced

There is >23 psig pressure drop across the throttled valve; the downstream pressure was measured to be 55 psig (10 feet above floor)

Type of measurement configuration
Suction and discharge line pressures ∇

K_{s} represents all suction losses from gauge P_{s} to the pump K_{d} represents all discharge losses from the pump to gauge P_{d}

Suction pipe diameter (ID)	6.000	inches
Suction gauge pressure (Ps)	31.40	ps
Suction gauge elevation (Zs)	3.30	f
Suction line loss coefficients,	0.00	

Discharge pipe diameter (ID)	6.000
Discharge gauge pressure (Pd) $\stackrel{1}{\mid} \mid$	55.00
Discharge gauge elevation (Zd)	10.00
Discharge line loss coefficients, Kd	0.00

$$
\text { Fluid specific gravity } \frac{1.000}{} \quad \text { Flow rate } \frac{450.00}{} \mathrm{gpm}
$$

Differential elevation head $\quad 6.70 \mid \mathrm{ft}$ Differential pressure head 54.53 ft Differential velocity head 0.00 ft Estimated suction friction head 0.00 ft

Pump head	61.23	ft

Applying MEASUR to the REQUIREMENTS the picture of opportunity is quite different

```
TRIM IMPELLER & OPEN PINCHED VALVE
```

Operating Hours
Electricity Cost
Flow Rate
Head
Calculate Head

Implementation Costs

囲 8760	$\mathrm{hrs} / \mathrm{yr}$			
0.054	$\$ / \mathrm{kWh}$			
450	gpm			
61.2	ft		2000	$\$$
:---	:---			

This analysis assumes the pump efficiency stays constant at 68.4%. If this is not true, must estimate the new pump efficiency and rerun.

Pump efficiency (\%)	68.4	68.4
Motor rated power (hp)	20	20
Motor shaft power (hp)	19.2	10.2
Pump shaft power (hp)	19.2	10.2
Motor efficiency (\%)	88.9	88.3
Motor power factor (\%)	83.2	69.8
Percent Loaded (\%)	96	51
Drive efficiency (\%)	100	100
Motor current (amps)	24	15
Motor power (kW)	16.1	08.6
Annual Energy (MWh)	$\mathbf{1 4 1}$	$\mathbf{7 5}$
Annual Energy	$\mathbf{-}$	$\mathbf{6 6}$
Savings (MWh)	$\mathbf{\$ 7 , 6 1 4}$	$\mathbf{\$ 4 , 0 6 0}$
Annual Cost	$\mathbf{A n n u a l}$ Savings	
Annus		

The End for Session 3

