

Pumping System Assessment

Week 2: Pump Curves and System Curves

ts

設え録范 3/10/11 TRACED METRIC ADDED PLD.

- 1. To save pumping energy we can reduce one or more of the following:
 - a. Flow
 - b. Head
 - c. Operating time
- 2. Is there flow control on the system? Does the required flow change? Do we sometimes over pressurize the header?
- 3. What in the motor voltage? Explore magnetic drives for 4160 volt systems.
- 4. Cooling tower fan control?
- 5. Are you paying sewer charges on cooling tower makeup water?

 If a plant's net cost of electricity is \$0.12/kWh and their pumps typically operate 60% of the time, what is the minimum motor size on a pump that will cost \$20,000/year to operate? Hint: see slide 21. Answer: 40 HP

3. The flow control valve on a boiler feedwater pump typically operates 50% open with a flow rate of 200 gpm of water going to the boiler at 250 F. Plant engineers measure a pressure drop of 115 psi across the valve. If the pump efficiency is 72% and the motor efficiency is 92%, how many kW in motor input energy is being dropped across the valve?

Answer:

Density of water at 250 F is 58.82 lb_m/ft^3 ; the density of water at 60 F is 62.36 lb_m/ft^3 ; so, the specific gravity is 58.82/62.36 = 0.9432.

The head loss across the valve is: HL = (115 psi x 2.31)/0.9432 = 281.65 feet

The kW of pump motor power lost across the valve is:

kW = (200 gpm x 281.65 feet x 0.9432 x 0.746 kW/hp)/(3960 x 0.72 x 0.92) = 15.11 kW

4. If the boiler feedwater pump in #3 above operates all the time and the cost of electrical energy is \$0.065/kWh and the demand charge is \$14.75/kW-mo, how much does the energy loss across the throttled valve cost the plant per year?

Answer:

Energy Cost = (15.11 kW x 8760 hy/yr x \$0.065/kWh) = \$8,604/yr

Demand Cost = (15.11 kW x \$14.75/kW x 12 mo/yr) = \$2,674/yr

Total Annual Cost = \$11,278/yr

Pump Curves & System Curves

Let's start with the system curve

Flow rate

Energy is required to overcome two types of resistance to flow in systems

- Static head (independent of flow rate)
- Friction head (dependent on the flow rate)

$$H_{total} = H_{static} + H_{friction}$$

- Static head refers to the change in elevation from the suction to the discharge
- Tank over-pressures must be included in calculations
- This is basically the change in potential energy of fluid as it moves from the suction tank to the discharge tank
- Closed systems typically do not have static head
- Static heads can be positive, negative or zero

System curves are made up of two fundamental components - static head and frictional head

Poll question

- Do closed systems typically have any static head?
 - A. Yes
 - B. No

Open and Closed Piping Systems

- Piping systems for water transmission can be considered in two general categories:
 - Open systems

17

etter

- Closed or sealed systems
- Open systems are piping circuits, pumped or gravity circulated, that are open to the atmosphere at some point
- Closed systems are designed and installed as hermetically sealed systems that offer several advantages

Poll question

- Based on the results of your prescreening efforts, are the pumping systems in your plant:
 - Open
 - Closed
 - Both
 - Don't know

System curves display the total head required to move different amounts of flow through the piping system

System curve equations:

$$H_{total} = H_{static} + k'Q^{1.9}$$

Closed piping systems have zero static head

Open piping systems generally have some static head

We'll use this system as an example: water is pumped from one tank to another

Nobody sells static or frictional head meters

Fortunately, there's a back door, and there are only two pieces of information needed to unlock it:

- 1) The static head, which we can estimate, and
- 2) The total head at a single flow rate, which we can measure

The static head is made up of elevation, and sometimes pressure components

The static head is made up of elevation, and sometimes pressure components

Now that we've got the static head estimated, we can go after the frictional head

Calculating the frictional head at one flow rate

$$H_{tot} = H_s + H_f$$
 or

$$H_f = H_{tot} - H_s$$

So, a single point measurement of flow and total head, along with knowledge of the static head, gives us the frictional head <u>at that flow rate</u>

Our example system - how can we get the total head (H_{tot})?

We take advantage of one inviolable fact for centrifugal pumping systems

The system operating point is at the intersection of the pump and system head-capacity curves

Flow rate

Answer: we take advantage of the fact that the system and pump total heads are equal at the operating flow rate

The system total head at any flow rate is the same thing as the pump total head - so we measure the pump head

Points to remember.....

- For this example, it was assumed that the suction and discharge pipe diameters were identical. In the majority of cases, the pump discharge flange is smaller than the suction flange, typically one standard pipe size down. For example, a pump with a 12-inch suction might have a 10-inch discharge.
- But it is also common to find expanders/reducers in pump suction & discharge lines. The bottom line is that when taking pressure measurements, pay attention to the physical dimensions. Also note whether there are components, such as a discharge check valve, between the pump and the measurement point that create head losses.
- It is particularly important in relatively low head pumps to pay attention to velocity and loss component considerations, since they may represent a significant part of the total pump head.

We have two points on the system curve; now we just have to figure out how to connect them

U.S. DEPARTMENT OF

A little algebra....

$$H_2 = H_s + KQ_2^2$$

 $H_1 = H_s + KQ_1^2$

Subtracting yields

$$H_2 - H_1 = K(Q_2^2 - Q_1^2)$$
, so

$$K = \frac{(H_2 - H_1)}{(Q_2^2 - Q_1^2)} \text{ and } H_s = H_1 - KQ_1^2$$

Although the static head is known in this case, any two flow and head combinations will suffice.

The resultant system curve

System head curves for three different systems

NOTE: These are three different systems

Where do system curves come from?

- New systems
 - Design calculations and/or hydraulic models
- Existing systems
 - Hydraulic models (lots of time and tolerance are handy assets for this)
 - Field measurements and basic layout information

NOTES:

- 1. If anything in the system changes including valve positions, flow paths, tank levels, etc., the system curve will change.
- 2. For systems with multiple suction sources and/or discharge receivers that have different amounts of static head, the system curve will have a more complex characteristic.

GPM

Poll question

Pump performance characteristics

Pump Cavitation – Boil water within the pump

NPSHR and NPSHA

- NPSHA stands for Net Positive Suction AVAILABLE and NPSHR stands for Net Positive Suction Head REQUIRED.
- What is the difference between NPSHA and NPSHR? Well, firstly NPSH is a measure of the pressure experienced by the fluid at the suction of the pump. This is always quoted in feet rather than as a pressure because head is a fluid independent property.
- NPSHA (available) is a property of the system and is calculated by the system designer giving a value of the pressure on the suction side of the pump.
- NPSHR (required) is a property of the pump. This is calculated by the manufacturer as the point where cavitation occurs. (Published curves represent a 3% reduction in pump performance.)

There are four types of performance curves that are used to characterize pumps

- Head
- Shaft power
- Efficiency
- Net positive suction head required (NPSHR)

The Bernoulli relationship is slightly modified to define the pump head

or

$$H_{\text{pump}} = \left(\frac{V_2^2}{2g} + \frac{2.31 P_2}{s. g.} + Z_2\right) - \left(\frac{V_1^2}{2g} + \frac{2.31 P_1}{s. g.} + Z_1\right)$$

 H_{pump} = Pump head at a given flow rate

MEASUR Pump Head Calculator

PUMP HEAD TOOL

 ${\sf K}_{{\sf s}}$ represents all suction losses from the tank to the pump

 K_d represents all discharge losses from the pump to the gauge P_d

Fluid Specific Gravity		1.002		
Flow Rate		3000		gpm
Suction		Discharge		
Pipe diameter (ID)	12 in	Pipe diameter (ID)	12	in
Tank gas overpressure (Pg)	0 psi	Gauge pressure (P _d)	124	psi
Tank fluid surface elevation	10 ft	Gauge elevation (Z _d)	10	ft
(Z _s)		Line loss coefficients (K _d)	1	
Line loss coefficients (K_s)	0.5]		

Generate Example

Reset Data

MEASUR Pump Head Calculator Results

RESULTS	HELP	
Result Data		
Differential Elevation Head	0.0 ft	
Differential Pressure Head	285.97 ft	
Differential Velocity Head	1.13 ft	
Estimated Suction Friction Head	0.56 ft	
Discharge Friction Head	1.13 ft	
Pump Head	288.78 ft	

Pump curve shapes vary: Head curves for three pump designs

Shaft power curves for the three pumps

U.S. DEPARTMENT OF

Efficiency curves for the three pumps

Pump efficiency = fluid power output / shaft power input

= gpm x ft x s.g. / (39.60 x shaft hp) for efficiency expressed in %

Pump manufacturers provide performance curves in a variety of ways (Following examples are from pump mfr. performance curve software programs or electronic curves)

References:

- 1. Flowserve Pros+ SE, v 3.3.1, <u>www.flowserve.com</u>
- 2. Goulds Pump Selection System, www.gouldspumps.com/pss.html
- 3. Grundfos WinCAPS, v. 7.80.16, <u>www.grundfos.com/web/homeus.nsf</u>
- 4. Floway, <u>www.weirclearliquid.com/</u>
- 5. Flygt FLYPS, v. 3.1, http://www.flygt.com/

Pump 1 line curves plus min/max impeller size head curves

Pump 2 line curves for head, efficiency, shaft power, NPSHR

Pump 2 line curves + head curve for max/min impeller diameters

Pump 2 range of impeller sizes, isoefficiency lines

Same as previous slide + shaft power curves

Curves with ISO tolerance bands

Vertical turbine pump catalog curves are commonly provided in individual stage (bowl) performance format

ENER

Vertical Turbine Pump

Vertical turbine pumps are commonly used in all types of applications, from moving process water in industrial plants to providing flow for cooling towers at power plants, from pumping raw water for irrigation, to boosting water pressure in municipal pumping systems, and for many other pumping applications.

Submersible pump and combined pump & motor (sometimes called wire-to-water) efficiency curves

Break

Pump affinity laws and parallel or series pump operation

Pump affinity laws can be used to predict pump curves for different speeds and impeller diameters

The affinity laws aren't perfect for diameter changes: head curves

The affinity laws aren't perfect for diameter changes: power curves

The affinity laws aren't perfect for diameter changes: efficiency curves

Considering a trim in impeller diameter?

Recommendations:

- 1. Get actual performance curves from the manufacturer, especially if the trim change being considered is large
- 2. Do a field performance test of the existing pump

But the affinity laws generally hold up very well with speed changes

Note: same pump as previous slides, impeller size = 17.9 inches

U.S. DEPARTMENT OF

FR

Shaft power curves at four speeds

Efficiency curves at four speeds

Parallel and series pumping "laws", like the pump affinity laws apply to the pump curves **only**

- Parallel pumps sum the flow rates at a given head
- Series pumps sum the heads at a given flow rate

Parallel pumps can help adapt to changing system requirements <u>and</u> provide redundancy

Unlike pumps can also be used in parallel, but with caution

Poll question

What increase in flow would you expect from adding an additional parallel pump?

A. 100%
B. 80%
C. 60%
D. 40%
E. 20%

More pumps does not necessarily mean much more flow

Pumps operating	Flow rate, gpm	Head, ft	% increase in flow
1	3500	176.1	0
2	4185	206.8	19.6%
3	4325	213.8	23.6%

Identical pumps in series; add head at a given flow rate to estimate overall performance

Typical motor performance characteristics (200 hp energy-efficient, 4-pole)

First, let's review what kind of load the pump puts on the motor (at rated speed conditions)

Typical motor efficiencies for 200 hp, 4-pole motors over the normal pump load range

What would be the effect of an oversized motor on motor efficiency?

For this size equipment, the efficiency difference is miniscule – an order of magnitude less than the errors of high quality field measurements

The difference in electric power consumption from oversized motors is trivial

NOTE: The effect of oversizing the pump can be tremendously important, so never
 attempt to apply this pattern to the other side of the coupling.

Variable speed drive performance characteristics

Combined motor & adjustable frequency drive results demonstrate high drive efficiencies

79 Source: Tests conducted at Y-12 plant motor test facility by Don Casada, Oak Ridge National Laboratory

Comparison of motor + drive efficiencies: AFD and mechanical-side drives

Source:Product Testing: Northwest Energy Efficiency Alliance, Report 00-048, by ⁸⁰ Oregon State University, March 2000.

But drive efficiency can be misleading - what is more important is the effect on power

What happens if we reduce pump speed in the three systems types mentioned earlier?

Change in speed for the all frictional system results in maintenance of constant pump efficiency (Pump 2)

Change in speed for the all frictional system results in maintenance of constant pump efficiency (Pump 3)

Change in speed for the 100-ft static system with Pump 2 results in loss of flow at ~78% speed

The steeper head-capacity curve for pump 3 makes for improved turndown and controllability

All three system curves with P2, variable speed

All three system curves with P3, variable speed

How about parallel pump operation with different system types?

Parallel pump response also depends on the nature of the system and pump curves (P2)

Parallel pump response also depends on the nature of the system and pump curves (P3)

An Introduction to the Pumping Assessment Tool in MEASUR

- Goal: to assist pump users in quantifying potential energy and cost savings
- Relies on process or field-measured fluid and electrical data
- Hydraulic Institute pump efficiency-estimating algorithms used to estimate achievable pump efficiency
- Published motor manufacturer data (motors in the Motormaster database plus other published motor data) were used to develop curve fitbased performance predictions

Open the MEASUR Software

0

Home

TCO Boiler

💧 TCO Steam

Nashville Stratas

💇 Blower ADM Utilities

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators. Get started with one of the following options. If you need help at any point along the way, click on a 🖉 User Manual icon. **Equipment Calculators** View Assessments 0 Pump Compressed Air **Process Heating** Fan Steam Treasure Assessment Assessment Assessment Assessment Assessment Hunt Energy Efficiency & Renewable Energy

Click on Pump Assessment

Create New Pump Assessment

System Setup – Assessment Settings

MEASUR		- 0 ×
Demo 2020 Last modified: Jul 6, 2023	System Setup Assessment Diagram	Report Sankey Calculators
1 Assessment Settings 2 Operations	3 Pump & Fluid 4 Motor	5 Field Data
DEMO 2020 SETTINGS		HELP
Language Currency Units of Measure Head Measurement Flow Measurement Power Measurement Pressure Measurement Temperature Measurement	Translate Application Using Google Translate \$ Imperial OMetric Ocustom Feet (ft) Gallons per minute (gpm) Horse Power (hp) Pounds per Square Inch (psi) Degrees Fahrenheit (°F)	 System basics Your system basics helps define the units of measure and other information related to the system you are modeling for this assessment. Units of Measure are inherited by default from your Application Settings. Units of Measure can be customized for this assessment. Start here
Then here		Select the language and units you want to work with

Finally, Click on Operations to continue

System Setup – Assessment Settings

MEASUR			- 0 X
Demo 2020 Last modified: Jul 6, 2023	System Setup Assessment Diagram Repo	ort Sankey Calculators	🔒 🖉 🌣 🕿 🕋
1 Assessment Settings 2 Operations	3 Pump & Fluid 4 Motor	5 Field Data	
OPERATIONS		HELP	
Operating Hours Electricity Cost CARBON EMISSIONS	7884 hrs/yr 0.13 \$/kWh	Operations Help Enter measured data to calculate your sys Operating Hours Annual operating hours of the pump.	tem's annual savings potential. Still here
Zip code eGRID Subregion Total Emission Output Rate	38501 SRTV 430.78 kg CO ₂ /MWh	Minimum 0 hrs/yr	Maximum 8760 hrs/yr
Now here		Enter Hour Operation, E Cost & Zip (rs of lectric Code

Finally, Pump & Fluid to continue

System Setup – Pump & Fluid

Finally, Click on Motor to continue

System Setup – Motor

MEASUR Demo 2020 Last modified: Jul 6, 2023	System Setup	Assessment Diagram Repo	ort Sankey Calculators	Now here	- • ×
1 Assessment Settings 2 Operations	3 Pump & Fluid	4 Motor	5 Field Data		
MOTOR			HELP		
Line Frequency Rated Motor Power Motor RPM Efficiency Class Rated Voltage Full-Load Amps Estimate Full-Load Amps	60 Hz 350 1180 Energy Efficient 2300 81.13	 ✓ hp rpm ✓ ✓ V A 	Motor Help Enter measured data to calcula Line Frequency Line Frequency is the mains supply fre often the standard. The only use of this input is to determine	ential. ency is 60 HZ. Elsewhere, 50 HZ is d motor speed.	
			Inpu infor	t Motor mation	

Still here

Finally, Click on Field Data to continue

System Setup – Estimate Full Load Amps

I MEASUR	
Last modified: Jul 6, 2023	System Setup Assessment Diagram Repo
1 Assessment Settings 2 Operations	3 Pump & Fluid 4 Motor
MOTOR	
Line Frequency Rated Motor Power Motor RPM Efficiency Class Rated Voltage Full-Load Amps Estimate Full-Load Amps	60 Hz ✓ 350 hp 1180 rpm Energy Efficient ✓ 2300 V 81.13 A
Ca mo	In estimate full load tor amps by clicking here

System Setup – Field Data

MEASUR							127	– a ×
Demo 202 Last modified	D : Jul 6, 2023	System Setup	Assessment Diagram F	Report Sankey C	calculators	Now	here	₽ \$ \$ \$
1 Assessment Set	ings 2 Operations	3 Pump & Fluid	4 Motor	5 Field Da	ata			
FIELD DATA					RESULTS		н	ELP
						Base	line	
Flow Rate		4500	gpm	Percent Saving	gs (%)			
Head		193.2	().	Pump efficience	:y (%)	66		
Calculate Head		130.2		Motor rated por	wer (hp)	350		
Load Estimation Met	hod	Current	~	Motor shaft pov	wer (hp)	334.1		
Motor Current		77	Α	Pump shaft pov	wer (hp)	334.1		
Moscured Veltage		2220	/	Motor efficiency	y (%)	95.6		
measured voltage		2320	v	Motor power fa	actor (%)	84.3		
				Percent Loade	d (%)	95		
				Drive efficiency	y (%)	100		
				Motor current (A)	//		
				Notor power (k	(VV)	260.8	5	
				Annual CO2 E	missions (tonne CO_2)	1,477	.0	
				Annual CO2 E	missions Savings (tonne C	U ₂) —		
				Annual Energy	y (IVIVVII) V Sevinge (MIM/b)	2,000		
				Annual Energy	e)	267.2	56	
				Annual Saving	v) ns (\$)		50	
				Annual Outing	9- (*)			
г				1				
	Input	t Field Da	ata		Base	eline F	Result	S
				Let a let				

After Field Data, move on to the Assessment

100

Still here

System Setup – Calculate Pump Head

System Setup – Pump Head Calculator

ENER

System Setup – Pump Head Calculator

Assessment View – Novice

Evaluate Potential Project

Assessment View – Novice

MEASUR				– 0 ×			
Demo 2020 Last modified: Jul 7, 2023	System Setup Assessment Diagram Repo	rt Sankey Calculators					
Explore Opportunities Modify All Condition Novice View Expert View	15			Trim Impeller Selected Scenarios			
SELECT POTENTIAL ADJUSTM	IENT PROJECTS	RESULTS	SANKEY	HELP			
Select potential adjustment projects to explore o	pportunities to increase efficiency and the effectiveness of your system.		Baseline	Trim Impeller			
	Add New Scenario	Percent Sovings (%)					
Modification Name	Trim Impeller	Percent Savings (%)		12.0%			
□ Install VED				12.0%			
		Pump efficiency (%)	66	62			
Install More Efficient Drive		Motor rated power (hp)	350	350			
Z Install Moro Efficient Pump		Motor shaft power (hp)	334.1	294.6			
		Pump shaft power (hp)	334.1	294.6			
Baseline Pump Type	Modification	Motor efficiency (%)	95.6	95.5			
End Suction ANSI/API	Pump Efficiency	Motor power factor (%)	84.3	83.3			
	Optimize Pump	Percent Loaded (%)	95	84			
	62 %	Drive efficiency (%)	100	100			
The officiency of your pump has been calculated h	need on your overteen acture. Either directly medify your officiency or click	Motor current (A)	77	69			
"Optimize Pump" to estimate	our pump efficiency based on a different pump type.	Motor power (kW)	260.8	230.1			
		Annual CO2 Emissions (tonne CO ₂)	1,477.5	1,303.5			
☑ Reduce System Flow Rate ✓ Reduce System Head Requirement		Annual CO2 Emissions Savings (tonne CO ₂)	-	174			
		Annual Energy (MWh)	2,056	1,814			
Baseline Head	Modification Head	Annual Energy Savings (MWh)	_	242			
193 ft	160 ft	Annual Cost (\$)	267,256	235,782			
	Calculate Head	Annual Savings (\$)	-	31,474			
□ Adjust Operational Data							
□ Install More Efficient Motor		Select	the				
Back				View Report			
		type of p	project				
106			•				
Better Have throttled pump with constant flow U.S. DEPARTMENT OF ENERGY							

Assessment View – Novice

MEASUR			<u>, 1997, 1997, 1997</u>			A		- 0	×
Demo 2020 Last modified: Jul 7	7, 2023	System Setup	Assessment Diagram	Report Sankey Calculato	rs			* =	
Explore Opportunities M Novice View	Iodify All Conditions						Trim Impeller Selected Scenario	View / Add S	cenarios
SELECT POTENTI	AL ADJUSTMENT PR	OJECTS		RESUL	. т s	SANKEY		HELP	
Select potential adjustmen	nt projects to explore opportunities to	increase efficiency and the	effectiveness of your system.		Baseline		Trim Impeller		
Modification Name	Add New S	cenario		Percent Savings (%)				2.0%	
□ Install VFD									
	D :			Pump efficiency (%)	66		62		
□ Install More Efficient	Drive			Motor rated power (hp)	350		350		
Install More Efficient	Pump			Motor shaft power (hp)	334.1		294.6		
				Pump shaft power (hp)	334.1		294.6		
Baseline F	Pump Type	Mod	lification	Motor efficiency (%)	95.6		95.5		
End Suction	on ANSI/API	Pump	Efficiency	Motor power factor (%)	84.3		83.3		
		Optin	nize Pump	Percent Loaded (%)	95		84		
		62	%	Drive efficiency (%)	100		100		
The effected of your property	has been coloulated based on view	austan astur. Filher dise sti	u medife une effeteren er eliele	Motor current (A)	77		69		
The eniciency of your pump	ize Pump" to estimate your nump of	ficiency based on a different	pump type	Motor power (kW)	260.8		230.1		
			pump gpo.	Annual CO2 Emission	ns (tonne CO ₂) 1,477.5		1,303.5		
Reduce System Flow	d Requirement			Annual CO2 Emission (tonne CO ₂)	ns Savings		174		
	a Roquitonione			Annual Energy (MWh)) 2,056		1,814		
Baselir	ne Head	Modific	ation Head	Annual Energy Saving	gs (MWh) —		242		
19	93 ft	160	ft	Annual Cost (\$)	267,256		235,782		
			late Head	Annual Savings (\$)	_		31,474		

Reduce Pump Head by 33 Feet by Trimming the Impeller and Opening the Throttled Valve. Pump efficiency falls by 4%.

Assessment View – Expert

MEASUR				- a ×
Last modified	Jul 7, 2023	System Se	tup Assessment Diagram Report Sankey Calculators	
Explore Opportunities Novice View	Modify All Conditions Expert View			Selected Scenarios
Operations •	Pump Pluid	Motor •	Field Data	
BASELINE			MODIFICATION	HELP
Pump Type Pump Speed Drive Fluid Type Fluid Temperature Specific Gravity Kinematic Viscosity Stages	End Suction ANS 1190 Direct Drive Water 60 1.005 1.21 - + 1	SI/API	Now that you have setup your system and have baseline information, create duplicate baseline conditions to find efficiency opportunities. Add Modified Condition Data will be copied from your current baseline condition.	Use a ter opportun determin vorrect for your system needs. If they are not, consider the effects of changing your pump's operating conditions to meet demand, using your manufacturers pump curve. Your pumping system can also be modified by improving pump or motor efficiency, or drive type.
		V		
			Click Modified evaluate a pot	Condition to ential project
108				

Assessment View – Expert

Derive 2020 Lext modified: Jr. 7023 System Selue Assessment Diagram Report Sankey Calculators Image: Calculators	MEASUR										- ć) ×
Explore Operations Modely All Conditions Expert View This in Impellar Sector Sector Sect	Demo 2020 Last modified:) Jul 7, 2023		System Se	tup Assessment Diagram	Report Sankey Calculators	5				🤊 🔷 🛌	
Operations Pump Fluid Motor Field Data BASELINE TRIM IMPELLER RESULTS HELP NOTES Pump Speed Drive Imit Suction ANSIAPPI Direct Drive Imit PEfficiency Operations of the operation of	Explore Opportunities Novice View	Modify All Expert View	Conditions							Trim Impeller Selected Scenar	View / Add S	Scenarios
BASELINE TRIM IMPELLER RESULTS HELP NOTES Pump Type Pump Speed Drive Impellicient of our pump has been calculated action your system seles. Calculated action yo	Operations	Pump	Fluid •	Motor •	Field Data							
Pump Type Pump Speed Drive Pump Efficiency Stages Pump Efficiency Pump Speed Drive Pump Speed Drive Tim Impeller Fluid Type Fluid Temperature Speeric Gravity Kinematic Viscosity Water 1000 1000 350 350 Fluid Type Fluid Temperature Speeric Gravity Kinematic Viscosity 121 C33 Fluid Type Fluid Temperature Speeric Gravity Nater Control 956 955 955 Adjust pump efficiency here! Fluid Type Fluid Temperature Speeric Gravity 121 C33 84.6 96 102 Motor current (A) 77 82 96.5 102 100 100 100 Motor current (A) 77 82. 86.5 102 100 <th>BASELINE</th> <th></th> <th>f in the second s</th> <th></th> <th>TRIM IMPELLER</th> <th></th> <th></th> <th>RESULTS</th> <th></th> <th>HELP</th> <th>NOTE</th> <th>S</th>	BASELINE		f in the second s		TRIM IMPELLER			RESULTS		HELP	NOTE	S
Pump Speed Specific Gravity Specific Gravity Specific Gravity 1.005 Specific Gravity 1.005 Specific Gravity Specific Gravity 1.005 Specific Gravity Specific Gravity 1.005 Specific Gravity 1.005 Notor raticel power factor (%) 94.4.6 84.6 Pump Speed 1.005 Specific Gravity 1.005 Pump Speed Pump Speed<									Baseline		Trim Impeller	
Fluid Type Water Diric Diric Diric Diric Diric Motor rated power (hp) 350 350 Specific Gravity 1.005 1.21 CSI Fluid Type Water Motor shaft power (hp) 34.1 355.8 Fluid Type Fluid Type Fluid Type Water Motor shaft power (hp) 34.1 355.8 Stages - + 1 Specific Gravity 1.005 Stages Motor efficiency (%) 95.6 95.5 Motor efficiency (%) 95.6 0.02 Diric Motor opwer (hp) 34.1 355.8 Motor opwer (hp) 34.1 355.8 Motor opwer (hp) 34.1 355.8 Motor opwer (hp) 34.1 355.8 Motor opwer (hp) 34.1 355.8 Motor opwer (hp) 34.1 355.8 Motor opwer (hp) 34.1 35.8 Stages - + 1 1.005 1.005 Motor opwer (hc) 95.6 100 Motor opwer (h) 30.0 30.0 30.0 30.0 30.0 30.0 Motor opwer (h) 30.0 30.0 30.0 30	Pump Type Pump Speed Drive		End Suction ANSI/AI 1190 Direct Drive	PI v rpm	Pump Efficiency Optimize Pump The efficiency of your pump has directly modify your efficiency efficiency b	62 been calculated based on your system a or click "Optimize Pump" to estimate y assed on a different pump type.	% setup. Either your pump	Percent Savings (%)			0.0%	
Fluid Type Drive	Fluid Type		Water		Pump Speed	1190	rpm	Pump efficiency (%)	66		62	
Indefinite of a direction of a state of the state of	Fluid Temperature		water		Drive	Direct Drive	*	Motor rated power (hp)	350		350	
Specific Gravity 1.005 9ump shaft power (hp) 334.1 355.8 Stages 1.21 0.05 95.6 95.5 Fluid Temperature Specific Gravity 1.005 Percent Loaded (%) 95.6 0.02 Stages 0.05 1.005 Percent Loaded (%) 95.6 0.02 Adjust pump efficiency here! 1.21 0.05 Percent Loaded (%) 95.6 0.02 Annual CO2 Emissions Annual CO2 Emissions 1.477.5 1.573.9 Monuel Energy (MWh) 2.056 2.190 Annual CO2 (\$) 267.256 284.705 Annual Savings (\$) - -134			60	Т				Motor shaft power (hp)	334.1		355.8	
Knematic Viscosity 1.21 ctsi Priod Type Water Motor efficiency (%) 95.6 95.5 Stages -+1 60 F Motor power factor (%) 84.3 84.6 Percent Loaded (%) 95.6 95.5 102 00 100 100 Stages 1.21 Cst 1.21 Cst Motor power factor (%) 84.3 84.6 Motor current (%) 95.6 95.5 102 100 100 100 Motor power factor (%) 95.6 102 100	Specific Gravity		1.005		Eluid Tupo	14/-4		Pump shaft power (hp)	334.1		355.8	
Stages - + 1 Huid lemperature Specific Gravity Kinematic Viscosity Stages 60 Image: Divertige of the sector (%) 84.3 84.6 Percent Loaded (%) 95 102 Drive efficiency (%) 100 100 Motor power (kV) 260.8 277.8 Annual CO2 Emissions (tonne CO2) 1,477.5 1,573.9 Annual CO2 Emissions (MWh) 2,056 2,190 Annual Energy Savings (MWh) - - Annual Cost (\$) 267,256 284,705 Annual Savings (\$) - -	Kinematic Viscosity		1.21	cSt	Fluid Type	vvater	~	Motor efficiency (%)	95.6		95.5	
Specific Gravity Kinematic Viscosity stages 1.005 Percent Loaded (%) 95 102 Drive efficiency (%) 100 100 100 Motor current (A) 77 82 Adjust pump efficiency here! -+1 Motor power (kW) 260.8 277.8 Annual CO2 Emissions savings (tonne CO2) 1,477.5 1,573.9 - Annual Energy (MWh) 2,056 2,190 Annual Energy Savings (MWh) - -134 Annual Cost (\$) 267,256 284,705 Annual Savings (\$) - -17,450	Stages		- + 1		Fluid Temperature	60	۴	Motor power factor (%)	84.3		84.6	
Kinematic Viscosity Stages 1.21 cSt Drive efficiency (%) 100 100 Adjust pump efficiency here! -+1 Motor current (A) 77 82 Annual CO2 Emissions Savings (tonne CO2) 1,477.5 1,573.9 Annual CO2 Emissions Savings (tonne CO2) -96.5 Annual Energy (MWh) 2,056 2,190 Annual Cost (\$) 267,256 284,705 Annual Savings (\$) -17,450					Specific Gravity	1.005		Percent Loaded (%)	95		102	
Stages - + 1 Motor current (A) 77 82 Motor power (kW) 260.8 277.8 Annual CO2 Emissions (tonne CO2) 1,477.5 1,573.9 Annual CO2 Emissions savings (tonne CO2) -96.5 Annual Energy (MWh) 2,056 2,190 Annual Cost (\$) 267,256 284,705 Annual Savings (\$) - -17,450					Kinematic Viscosity	1.21	cSt	Drive efficiency (%)	100		100	
Motor power (kW) 260.8 277.8 Annual CO2 Emissions (tonne CO2) 1,477.5 1,573.9 Annual CO2 Emissions savings (tonne CO2) - -96.5 Annual Energy (MWh) 2,056 2,190 Annual Cost (\$) 267.256 284,705 Annual Savings (\$) - -17,450		1			Stages	- + 1		Motor current (A)	77		82	
Annual CO2 Emissions Savings (tonne CO2)-96.5Annual Energy (MWh)2,0562,190Annual Energy Savings (MWh)-134Annual Cost (\$)267,256284,705Annual Savings (\$)17,450	Adj	just p	ump effic	<mark>iency he</mark>	ere!			Motor power (kW) Annual CO2 Emissions (tonne CO ₂)	260.8 1,477.5		277.8 1,573.9	
Annual Energy (MWh) 2,056 2,190 Annual Energy Savings (MWh) -134 -134 (MWh) 267,256 284,705 Annual Savings (\$) - -17,450								Annual CO2 Emissions Savings (tonne CO ₂)	_		-96.5	
Annual Energy Savings (MWh) -134 Annual Cost (\$) 267,256 284,705 Annual Savings (\$) - -17,450								Annual Energy (MWh)	2,056		2,190	
Annual Cost (\$) 267,256 284,705 Annual Savings (\$) - -17,450								Annual Energy Savings (MWh)	_		-134	
Annual Savings (\$) — -17,450								Annual Cost (\$)	267,256		284,705	
								Annual Savings (\$)	_		-17,450	_

Pump efficiency dropped to 62%

109

Assessment View – Expert

MEASUR								ll.	- 0	×
Demo 2020 Last modified:) Jul 7, 2023	System Se	etup Assessment Diagram	Report Sankey Calculators					/ 🌣 📂	
Explore Opportunities Novice View	Modify All Condition Expert View	S						Trim Impeller Selected Scenario	View / Add So	cenarios
Operations ●	Pump Fluid 📍	Motor •	Field Data 📍							
BASELINE			TRIN IMPELLER			RESULTS		HELP	NOTES	3
Elen Dete							Baseline	Т	rim Impeller	
Flow Rate Head Calculate Head Load Estimation Metho	4500 193.2 od Current	gpm रा 	Flov Rate Head Cliculate Head Measured Voltage	4500 160 2320	gpm ft V	Percent Savings (%)			12.0%	
Measured Voltage	2320	V	Implementation Costs		\$	Pump efficiency (%)	66	62	2	
medodred voltage	2020					Motor rated power (hp)	350	3	50	
						Motor shaft power (hp)	334.1	29	94.6	
						Pump shaft power (hp)	334.1	29	94.6	
						Motor efficiency (%)	95.6	9	5.5	
						Motor power factor (%)	84.3	8	3.3	
						Percent Loaded (%)	95	84	4	
						Drive efficiency (%)	100	10	00	
						Motor current (A)	77	6	9	
						Motor power (kW)	260.8	2	30.1	
	Adjust pun	n <mark>p head here</mark>	1			Annual CO2 Emissions (tonne CO ₂)	1,477.5	1,	303.5	
						Annual CO2 Emissions Savings (tonne CO ₂)	_	1	74	
						Annual Energy (MWh)	2,056	1,	814	
						Annual Energy Savings (MWh)	_	24	42	
						Annual Cost (\$)	267,256	23	35,782	
						Annual Savings (\$)	-	3	1,474	

Pump head dropped to 160 feet

Compare Existing Pump to Optimal Pump

Demo 2020 Last modified:) Jul 7, 2023	System S	Setup Assessment Diagram	Report Sankey Calcula	ators			 	- \$ 2	• ×
Explore Opportunities Novice View	Modify All Conditions Expert View							Optimal Pump Selected Scenario	View / Add	Scenarios
Operations •	Pump Fluid •	Motor •	Field Data 🕈							
BASELINE			OPTIMAL PUMP			RESULTS		HELP	ΝΟΤ	ES
Pump Type Pump Speed Drive	End Suction AN 1190 Direct Drive	SI/API	Pump Efficiency Optimize Pump The efficiency of your pump has directly modify your efficiency efficiency b	66.02 been calculated based on your sys or click "Optimize Pump" to estim ased on a different pump type.	stem setup. Either nate your pump	Percent Savings (%) Pump efficiency (%) Motor rated power (hp) Motor shaft power (hp) Pump shaft power (hp)	Baseline 66 350 334.1 334.1	0 66 34 33	ptimal Pum 5 50 34.1 34.1	p
Fluid Type Fluid Temperature Specific Gravity	Water 60 1.005	♥ F	Pump Speed Drive	1190 Direct Drive	rpm V	Motor efficiency (%) Motor power factor (%) Percent Loaded (%)	95.6 84.3 95	95 82 95	5.6 4.3 5	
Kinematic Viscosity Stages	1.21	cSt	Fluid Type Fluid Temperature Specific Gravity	Water 60 1.005	► F	Motor current (A) Motor power (kW) Annual CO2 Emissions	77 260.8 1,477.5	77 26	7 60.7 477.4	
			Kinematic Viscosity Stages	1.21 - + 1	cSt	Annual CO2 Emissions Savings (tonne CO ₂)	_	0.	1	
						Annual Energy (MWh) Annual Energy Savings (MWh)	2,056	2,	056)	
	To eval base a	uate an d on Hy Igorithr	"optimized /draulic Ins ns click her	" pump titute e		Annual Cost (\$) Annual Savings (\$)	267,256 —	26	57,240 5	

111

Optimize Pump w/ Hydraulic Institute Algorithms

b MEASUR								- 6	
Demo 2020 Last modified:) Jul 7, 2023	System Se	etup Assessment Diagram	Report Sankey Calculators				*	
Explore Opportunities Modify All Conditions Novice View Expert View						Optimal Pump Selected Scenario	View / Add S	Scenarios	
Operations •	Pump Fluid 📍	Motor •	Field Data 🔍						
BASELINE			OPTIMAL PUMP		RESULTS		HELP	NOTE	s
Pump Type	End Suction ANS	SI/API 🗸	Pump Type	End Suction ANSI/API		Baseline	Op	otimal Pump	
Pump Speed Drive	1190 Direct Drive	rpm V	Pump Efficiency Known Efficiency The efficiency of your pump ha selected pump type. Click "Know	88.69 % s been calculated based on your flow rate and wn Efficiency" to use the efficiency calculated by	Percent Savings (%)			25.0%	
Fluid Type	Water	~	y Pump Spood	bur system setup.	Pump efficiency (%)	66	88	.7	
Fluid Temperature	60	۴	Pump Speed	Tigo Ipin	Motor rated power (hp)	350	35	0	
Specific Gravity 1.005			Drive	Direct Drive V	Motor shaft power (hp)	334.1	24	8.7	
Kinematic Viscosity	1.21	cSt			Pump shaft power (np)	334.1	24	8.7	
Stages	- + 1		Fluid Type	Water 🗸	Motor power factor (%)	84.3	90	5	
			Fluid Temperature	60 °F	Percent Loaded (%)	95	71	.0	
			Specific Gravity	1 005	Drive efficiency (%)	100	10	0	
			Kinematic Viscosity	1 21 cSt	Motor current (A)	77	59		
			Stages		Motor power (kW)	260.8	19	4.6	
			Citageo	• 1	Annual CO2 Emissions (tonne CO ₂)	1,477.5	1,1	102.6	
	Somo flo		deama	hood	Annual CO2 Emissions Savings (tonne CO ₂)	_	37	4.8	
	bame nu	Annual Energy (MWh)	2,056	1,	534				
		Annual Energy Savings (MWh)	_	52	2				
	inai Pu		mcienc\	/ IS 00.U%	Annual Cost (\$)	267,256	19	9,457	
				Annual Savings (\$)	-	67	,799		

Optimal Pump is 88.7%

112

The End for Session 2

