

Industrial Steam Systems Virtual INPLT Training & Assessment

Session 6 Friday – November 18, 2022

10 am – 12:30 pm

1111/1/1

Agenda – Session SIX

- Safety and Housekeeping
- Today's Content:

Discussion of Homework

Review of Session 5

<u>Generation – Energy Efficiency & Savings Opportunities</u>

- Shell loss reduction
- Other areas for optimization

Cogeneration – Areas of interest

Steam System Energy Assessment Standard

- Kahoot Quiz Game
- Q&A

Better

Plants

Safety and Housekeeping

Safety Moment

- Ensure all contractors, visitors, etc. that you are hosting at your plant follow all safety protocols
- Break points after each sub-section where you can ask questions
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded

 $\,\circ\,$ A link to the recorded webinars will be provided, afterwards

Steam Virtual INPLT Agenda

- Week 1 (October 14) Industrial Steam Systems Fundamentals and Introduction to SSST
- Week 2 (October 21) Focus on Steam System Generation, Boiler Efficiency & Plant Efficiency
- Week 3 (October 28) Introduction to DOE's MEASUR Tool & Cogeneration (CHP)
- Week 4 (November 3) Steam System Distribution, End-Use & Condensate Recovery
- Week 5 (November 11) Energy Efficiency Opportunities in the Generation Area
- Week 6 (November 18) Energy Efficiency Opportunities in Generation & Cogeneration (CHP) Area
- Week 7 (December 2) EE Opportunities in Distribution, End-use and Condensate Recovery
- Week 8 (December 9) Industrial Steam System VINPLT Wrap-up Presentations

Homework 5 Discussion

Homework #5

- Evaluate the opportunities to improve your steam generation efficiency by:
 - Reducing stack loss heat recovery (in the absence of feedwater economizer)
 - Comparing stack temperature to design conditions
 - Evaluating flue gas oxygen content and the control mechanism
- Evaluate implementation of blowdown control & energy recovery
 - Reduction of blowdown w/control
 - Flash tank heat recovery
 - Blowdown/Make-up water HX
- Save the file w/different scenarios on your computer and send us the .json file

Session 5 – Review

Better Plants Diagnostic Equipment Program (DEP)

EXPLORE THE FULL SUITE OF DIAGNOSTIC EQUIPMENT AND SUBMIT AN APPLICATION:

Scan the QR Code above, or click here to download the DEP rental application.

Send this completed form to the Better Plants Diagnostic Equipment Program Manager, Daryl Cox at coxdf@ornl.gov.

HAVE QUESTIONS ABOUT **BORROWING EQUIPMENT?**

Scan the QR code above, or click here to email Daryl Cox, DEP

Daryl Cox has over 20 years of experience managing industrial technology and equipment and can help you find the right tool for your energy needs.

MEASUR – Pulp & Paper Mill Model

MEASUR – Pulp & Paper Mill Model

DST SUMMARY	
Pov	wer Balance
Generation	499.6 kW
Demand	5,499.6 kW
Import	5,000 kW
Unit Cost	\$0.05 /kWh
Total \$/yr	\$2,190,000
Fu	iel Balance
Boiler	147.05 MMBtu/hr
Unit Cost	\$5.00 /MMBtu
Total \$/yr	\$6,440,979
Ma	ke-Up Water
Flow	95.65 gpm 50,272,661.49 gal
Unit Cost	\$0.01 /gal
Total \$/yr	\$502,727
Total	Operating Cost
\$	69,133,705

MARGINAL STEAM COST	
High Pressure	\$9.04 /klb
Medium Pressure	\$9.04 /klb
Low Pressure	\$9.04 /klb

Common BestPractices - Generation

- Minimize excess air
- Install heat recovery equipment
- Clean boiler heat transfer surfaces
- Improve water treatment to reduce boiler blowdown
- Recover energy from boiler blowdown
- Add/restore boiler refractory
- Minimize the number of operating boilers
- Optimize deaerator vent rate

Feedwater Economizer (Simplest Configuration)

Condensing Economizers

- LARGE amount of LOW temperature heat available
- Condensing Economizer applications include:
 - Boiler make-up water heating, especially in cases where there is NO condensate return
 - Industrial process water heating
 - Pre-heating for feed streams in process industries
 - Clean-up/wash-down water heating
 - Laundry wash water
 - Domestic water heating
 - Space heating (HVAC)
 - Central plant and District heating systems
 - Absorption / Adsorption chiller systems

Feedwater & Make-up Water Economizer (Complex Configuration)

Air Preheaters

Temperature Loss Management - Summary

- Monitor and record flue gas temperature with respect to:
 - Boiler load
 - Ambient temperature
 - Flue gas oxygen content
- Compare flue gas temperature to previous, similar operating conditions
- Maintain appropriate fire-side cleaning
- Maintain appropriate water chemistry
- Evaluate heat recovery component savings potential

Typical Flue Gas Oxygen Content Control Parameters

Typical Flue Gas Oxygen Content Control Parameters								
Freed		c Control D ₂ Content		ng Control D ₂ Content	Automatio Exces			ng Control ss Air
Fuel	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Natural Gas	1.5	3.0	3.0	7.0	9	18	18	55
Numb. 2 Fuel Oil	2.0	3.0	3.0	7.0	11	18	18	55
Numb. 6 Fuel Oil	2.5	3.5	3.5	8.0	14	21	21	65
Pulverized Coal	2.5	4.0	4.0	7.0	14	25	25	50
Stoker Coal	3.5	5.0	5.0	8.0	20	32	32	65

Positioning Control

 <u>Positioning control</u> maintains a <u>position</u> relationship between the fuel and air flows
Exhaust Gases

Trim Control

Trim or <u>automatic control</u> continuously monitors oxygen and adjusts airflow **Exhaust Gases**

Combustion Management - Summary

- Combustion management principles:
 - Add enough oxygen to react all of the fuel
 - Minimize the amount of extra air to limit the energy loss
 - Monitor combustibles to identify problems

- 1. Measure the oxygen content of boiler exhaust gas
 - a. Continuously
 - b. Periodically
- 2. Control oxygen content within a minimum and maximum range
 - a. Continuous-automatic control
 - b. Positioning control
- 3. Challenge the control range
 - a. Combustibles measurement
 - b. Burner repair
 - c. Control upgrade

Blowdown Management

Blowdown amount is primarily dependent on:

- Water quality
- Boiler operating pressure
- Blowdown management typically takes two forms:
 - Water quality improvement
 - Improved blowdown control
 - Heat recovery
- Blowdown management begins with measurement
 - Typically, blowdown amount is estimated from boiler water chemical analysis

Example Steam System – Pulp & Paper Mill

Example Steam System – Pulp & Paper Mill

Executive Summary En	nergy Summary Losses Diagram	Report Graphs Input Summary	Facility Info Sankey				
<mark>(</mark> \$/yr)	Baseline	Economizer	Trim Control	Econ + Trim	Blowdown Control	Blowdown Flash + HX	BD Flash + HX + Control
Percent Savings (%)	_	4.0%	2.0%	5.0%	2.0%	2.0%	2.0%
Power Cost	\$2,190,000	\$2,190,000	\$2,190,000	\$2,190,000	\$2,190,000	\$2,190,000	\$2,190,000
Savings	_	\$0	\$0	\$0	\$0	\$0	\$0
Fuel Cost	\$6,440,979	\$6,085,294	\$6,234,994	\$5,970,613	\$6,346,116	\$6,306,916	\$6,303,558
Savings	_	\$355,684	\$205,985	\$470,366	\$94,863	\$134,062	\$137,421
Make-up Water Cost	\$502,727	\$502,727	\$502,727	\$502,727	\$457,368	\$489,292	\$453,344
Savings	_	\$0	\$0	\$0	\$45,358	\$13,434	\$49,383
Annual Cost	\$9,133,705	\$8,778,021	\$8,927,721	\$8,663,339	\$8,993,484	\$8,986,209	\$8,946,902
Annual Savings	_	\$355,684	\$205,985	\$470,366	\$140,221	\$147,497	\$186,804
Implementation Cost	_	_	_	-	-	_	_
Payback Period (months)	_	—	_	-	-	_	_
Selected Energy Projects	. —	Adjust Boiler Operations	Adjust Boiler Operations	Adjust Boiler Operations	Adjust Boiler Operations	Adjust Boiler Operations	Adjust Boiler Operations
Modifications	—	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler

Energy Efficiency Opportunities (Generation)

Shell Loss Reduction

- The exterior surface of the boiler is not perfectly insulated resulting in shell loss
 - Radiation and convection heat transfer from the boiler surface result in the loss
- Shell loss is related to the integrity of the boiler insulation
- Shell loss is difficult to measure definitively
 - The loss is typically estimated

- Full-load radiation and convection losses are typically:
 - Less than 1.0%_{fuel} for water-tube boilers
 - Less than 0.5%_{fuel} for fire-tube boilers
- Shell loss <u>percentage</u> increases as boiler load decreases because shell loss magnitude is essentially constant
 - Shell loss of ~0.5%_{fuel} at full-load will become ~2.0%_{fuel} at quarterload
 - The primary opportunity in this area is to reduce the number of boilers in operation to reduce the total site shell loss
 - Stack loss impacts must be considered

Shell Loss

Depends on:

- Type of Boiler
- Insulation
- Needed measurements
 - Outer surface area of boiler
 - ΔT (Boiler Surface Temperature Ambient Air Temperature)
 - Velocity of air around the boiler
- Improvement in insulation can reduce shell loss
- Minimal impact

Shell Loss

- Boiler shell temperature
- Hot surfaces lose heat due to radiation and convection
- Shell loss is small (0.2 2%) and fixed in magnitude depending on size of the boiler

Shell Loss Reduction - Summary

- Search for "hot spots"
- Measure boiler surface temperatures
 - Infrared
- Typical surface temperature should range between 120°F and 140°F
 - Personnel safety
- Repair refractory
- Monitor surface cladding integrity
- Reduced boiler load can present an opportunity

Energy Efficiency Opportunities (Generation)

Fuel Selection

Fuel Selection

- Fuel selection can provide significant reductions in operating costs due to differences in energy costs
 - Sometimes energy costs and maintenance expenditures are offsetting
 - Interruptible fuel pricing can provide great economic benefits
 - Environmental issues are a significant concern associated with fuel selection
 - Fuel efficiency will generally be an influencing factor when changing fuel

Fuel Selection – Example System – Pulp & Paper Mill

The Example Boiler (equipped with an economizer)

Fuel: Green Wood Fuel cost: \$2.00/10⁶Btu Steam production: 80,000 lbm/hr Efficiency: ~71.3% Fuel: Natural gas Fuel cost: \$5/10⁶Btu Steam production: 100,000 lbm/hr Efficiency: ~84.2% Fuel: Number 6 oil *HS* Fuel cost: \$5/10⁶Btu Steam production: 80,000 lbm/hr Efficiency: ~87.4%

 Modifications should be investigated to increase steam production from the wood boiler

Fuel Selection Calculation

What is the economic incentive associated with increasing steam production from the wood boiler by 1 klb/hr and decreasing steam production from the natural gas boiler by 1 klb/hr?

Polling Question 1

1) Do you believe there will be an economic incentive to switching fuel from natural gas to wood?

- A. Yes
- B. No
- C. Do not know

Fuel Selection Calculation

MEASUR				- 6
VINPLT_0421 Last modified: May 8, 2021	System Setup Assessment Diagra	am Report Sankey Calculators		2
Explore Opportunities Modify All Conditions lovice View Expert View				Fuel Switch Selected Scenario
SELECT POTENTIAL ADJUSTMENT PRO	JECTS	RESULTS	SANKEY	HELP
Select potential adjustment projects to explore oppo	ortunities to increase efficiency and the effectiveness of your system.		Baseline	Fuel Switch
A	Add New Scenario			
Modification Name	Fuel Switch	Percent Savings (%)		
Adjust General Operations		_		36.0%
		Fuel Usage (MMBtu/yr)	1,204,049.9	1,421,893.4
Adjust Unit Costs		Fuel Cost (\$/yr)	\$6,020,250	\$2,843,787
		Electricity Usage (kW/yr)	43,800,000	43,800,000
Modify Electricity Unit Cost		Electricity Cost (\$/yr)	\$2,190,000	\$2,190,000
Modify Fuel Cost		Water Usage (gal/yr)	50,272,661.5	50,272,661.5
	5.4 LTC - C	Water Cost (\$/yr)	\$502,727	\$502,727
Baseline	Modifications	Power Generated (kW/yr)	499.6	499.6
Fuel Cost	Fuel Cost	Process Use (MMBtu/yr)	89.5	89.5
5 \$/MMBtu	2 \$/MMBtu	Stack Loss (MMBtu/yr)	21.7	46.6
		Vent Losses (MMBtu/yr)	0	0
Modify Make-up Water Cost		Unrecycled Condensate Losses (MMBtu/yr)	11.8	11.8
		Turbine Losses (MMBtu/yr)	0.1	0.1
Adjust Boiler Operations		Other Losses (MMBtu/yr)	9.6	9.6
		Annual Cost (\$/yr)	\$8,712,976	\$5,536,514
Adjust Boiler Combustion Efficiency		Annual Savings (\$/yr)	-	\$3,176,463
Baseline	Modifications			
Combustion Efficiency	Combustion Efficiency			
84.2%	71.3 %			
✓ Change Fuel Type				
Baseline	Modifications			
Fuel Type	Fuel Type			
Gas	Solid/Liquid			
Fuel	Fuel			
Typical Natural Gas - US	Typical Wood			
/1	Typical Wood			

MEASUR – Pulp & Paper Mill Model

Fuel Switching Calculations - MEASUR

- Can be modeled very easily but exercise caution and be very careful
- MEASUR calculates Fuel Switching energy and cost savings based on the FULL STEAM FLOW
- Real energy and cost savings are obtained by taking the results from MEASUR and dividing them by the steam flow rate to obtain results for 1 klb/hr
 - Annual savings for switching 1 klb/hr of steam from natural gas fired boiler to wood fired boiler = 3,176,463 / 99.06 = \$32,000

Fuel Switching

- Many issues limit fuel switching capabilities
 - Environmental regulations
 - Fuel storage and handling issues
 - Boiler capabilities
- How should multi-fuel sites be operated and modeled?
 - Impact fuel cost should be utilized
 - The *impact fuel* is the fuel that will change consumption if steam demand changes
 - Typically the highest cost fuel in use is desired to be the impact fuel
 - "Blended costs" generally <u>do not</u> reflect actual system changes

Energy Efficiency Opportunities (Generation)

Optimizing Boiler Plant Operations

Case Study – Chrysler Corporation

- Plant: St. Louis Assembly Plant, St. Louis, MO, USA
- Steam System Assessment & Optimization
- Boiler Plant Specifications
 - 4 Boilers
 - Total capacity: 415 klb/hr
 - Fuel: Natural gas & Land fill gas (originally coal)
 - Pressure: 150 psig
 - Saturated steam production
 - 3 Condensing Turbines driving centrifugal chillers (4,300 RT each)

Optimizing Boiler Plant Operations

- Develop an optimized boiler operation and load management strategy
 - Minimize number of boilers that operate
 - Without sacrificing reliability
 - Part-load vs. full load efficiency
 - Optimize use of landfill gas (fuel switching)
 - Tasks
 - Data analysis 2.5 years
 - Development of load scenarios and how to manage the loads
 - Risk assessment
 - Management and business case study
 - Transition Oversight
 - Training for operators
 - Monitoring and Verification protocol

Load Profile

Load Profile

Overall Boiler Plant Efficiency

Optimization Strategy

- Load management
 - Use all the landfill gas that is available
 - Use the most efficient boilers
 - Mainly applies to low load conditions <70 klb/hr</p>
 - Ensure that operational reliability exists in all scenarios
 - Level of redundancy (n+1)
- Maintain a warm standby boiler at all times
 - Eliminates boiler operation at low loads
 - Similar to a "spinning reserve"
 - Maintain at least 250°F in flue gas chamber
 - Operate standby boiler for a short period (15-20 minutes) to regain temperatures in boiler

Optimization Strategy

Steam Load (kpph)	Boiler #1	Boiler #2	Boiler #3*	Boiler #4
0 - 50	STB	OFF	OFF	ON
50 - 70	ON	OFF	OFF	STB
70 - 120	ON	STB	OFF	ON (NG)**
120 - 150	ON	ON	STB	OFF
150 -	ON	ON	ON	STB

* Boiler #2 and #3 can be substituted for one another

** Indicates operation with natural gas only

Save Energy Now Assessment Implementations

ENERGY SAVINGS SUMMARY INFORMATION								
	Savings/yr							
Implemented Opportunities	\$	kWh	MMBtu	Fuel Type				
Optimized boiler operation and load management strategy	430,000	0	48,000	Natural gas				
Reduced flue gas oxygen in Boiler #1	84,000	0	9,400	Natural gas				
Reduced boiler blowdown	24,000	0	3,000	Natural gas				
Implemented a steam trap management program	89,000	0	10,000	Natural gas				
Implemented a steam trap management program	89,000		10,000					

Case Study – Success Story

to both the north and south plants.

Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly Complex to Achieve Significant Natural Gas Savings

Benefits

 Achieves annual energy savings of \$627,000
 Achieves annual natural gas savings of more than 70,000 MMBtu

Yields a simple payback of just over 2 months

Summary

In July 2006, a Save Energy Now plant energy assessment was conducted for Chrysler at the company's truck and minivan assembly complex in St. Louis, Missouri. The main purpose of the assessment was to analyze the complex's steam system and identify opportunities for

Plant Energy Champion: Ken Peebles

Energy Efficiency Opportunities (Generation)

Thermal Energy Storage (Steam Accumulators)

Polling Question 2

2) Do you have one (or multiple) boiler(s) which short-cycle or frequently turn ON/OFF?

A. Yes

- B. No
- C. Do not know

- Primary purpose Thermal Energy Storage
- Significant impact on operations
 - Boiler plant capacity
 - Energy efficiency
 - Water savings
 - Environmental issues
- Classic applications
 - Batch operations
 - Intermittent high and low steam demands
 - Periods of very small high peaks of steam demand

- Typical examples in industry
 - Food and Beverage
 - Specialty chemical plants
 - Pharmaceutical industry
 - Textile plants
 - Rubber Tire manufacturing
 - Others.....
- Look for periodic short-cycling of steam demand
 - Longer periods (12 hours or more) may not be cost-effective

Batch Operation

Venting – Difficult Boiler Control

Accumulate Excess Steam

Steam Load Profile: Cycle time

- Current Boiler Operation
 - Ramp up for 15 minutes
 - Slow down for 25 minutes
 - Low-fire or vent steam for 20 minutes
 - Pressure swings
 - Level control issues
 - Fuel / Air ratio issues
 - Manual versus automatic
 - Problems magnified with solid / biomass fuels

- Add a properly sized steam accumulator
- Maintain boiler at steady state operations
- Ramp up time for 15 minutes
 - Steam from boiler and accumulator
- Slow down for 25 minutes
 - Steam from boiler and/or accumulator
 - Steam supply to accumulator
- Next 20 minutes
 - Steam from boiler
 - Steam supply to accumulator

- Boiler runs a steady load of 4.6 klb/hr
- Total steam supplied in an hour = 4.6 klb
- Area under the profiles is the same
- Plant benefits
 - Energy savings due to better boiler efficiency
 - Zero purging since continuous boiler operation
 - Operating minimum number of boilers
 - No steam venting
 - Higher reliability of operations
 - Other system optimization opportunities may become options to consider

Energy Efficiency Opportunities (CoGeneration)

Back Pressure Turbines

Classic Cogeneration Analysis

The classic cogeneration analysis answers the following questions:

- What is the true economic impact of cogeneration?
- When is it viable?
 - To operate or shut down
 - To install
- What changes, if any, will be required on the steam system?
- What changes, if any, will be required for the electrical utility system and grid interconnects?

Backpressure Turbine Evaluations

- It is important to understand the impact of turbines on the steam system
 - The following investigation is designed to emphasize the physical interactions within the steam system
 - The interactions are modeled in MEASUR
- The primary factors impacting the analysis are:
 - Impact electrical cost
 - Impact fuel cost
 - Boiler efficiency
 - Steam turbine efficiency
 - Steam demand

Backpressure Turbine Economics

- Most industrial systems require <u>thermal energy</u> (not mass flow of steam)
- The turbine will extract energy from the steam and convert it into shaft energy
 - The steam will exit the turbine with a reduced temperature
- The result will be an increased mass flow of steam required to satisfy the thermal demand

Example Turbine-PRV Evaluation

- A process unit is equipped with 6 identical pumps (100 hp) that are installed in parallel
 - Only 3 of the 6 pumps are required to operate continuously
 - The remaining pumps are spare (backup) units
 - Electric motors drive 4 of the pumps and steam turbines drive 2 of the pumps
 - None of the steam turbine-driven pumps is being used at this time
- Identify the economic incentive associated with operating a steam turbine-driven pump
 - Compared to operating an electric motor driven pump and passing steam through a Pressure reducing Valve (PRV) to satisfy the low pressure demands

Example – Pulp & Paper Mill Steam System

Example – Pulp & Paper Mill Steam System

MEASUR VINPLT_0421 Last modified: May 8, 2021	- • · · · · · · · · · · · · · · · · · ·				
xplore Opportunities Modify All Conditions ovice View Expert View				BackPressure Turbine Selected Scenario	
		RESULTS	SANKEY	HELP	
Adjust General Operations			Baseline	BackPressure Turbine	
Adjust Unit Costs		Percent Savings (%)	——		
		Fuel Usage (MMBtu/yr)	1,204,049.9	1,207,105.7	
Adjust Boiler Operations Adjust Condensate Handling		Fuel Cost (\$/yr)	\$6,020,250	\$6,035,528	
		Electricity Usage (kW/yr)	43,800,000	43,143,000	
		Electricity Cost (\$/yr)	\$2,190,000	\$2,157,150	
Adjust Heat Loss Percentages		Water Usage (gal/yr)	50,272,661.5	50,387,971.6	
		Water Cost (\$/yr)	\$502,727	\$503,880 574.6	
□Adjust Steam Demand/Usage		Power Generated (kW/yr)	499.6 89.5	89.5	
□ Modify High Pressure to Condensing Steam Turbine		Process Use (MMBtu/yr) Stack Loss (MMBtu/yr)	21.7	21.8	
		Vent Losses (MMBtu/yr)	0	0	
Modify High to Low Pressure Steam Turbine		Unrecycled Condensate Losses (MMBtu/yr)	11.8	11.8	
		Turbine Losses (MMBtu/yr)	0.1	0.1	
Baseline	Modifications	Other Losses (MMBtu/yr)	9.6	9.6	
Turbine Status	Turbine Status	Annual Cost (\$/yr)	\$8,712,976	\$8,696,558	
Off	On 🗸	Annual Savings (\$/yr)	_	\$16,418	
	Isentropic Efficiency 35 % Generator Efficiency 100 % Operation Type Power Generation ~ Fixed Power 75 KW				

Example – Pulp & Paper Mill Steam System

Backpressure Turbine Economics

Variables for Industrial Applications

- Constant steam flow
- High pressure supply steam
- Existing Pressure Reducing Valve (PRV)
- Multiple steam header system
- Simultaneous steam and electric (power) demand
- High run hours

Energy Efficiency Opportunities (CoGeneration)

Back Pressure Turbines – A case study

Steam Turbine-driven Topping Cycle

Equipment Specifications

- A steam turbine (Elliott 2BYRT: 65 kW; 4000 rpm; 10 klb/hr) is directly coupled to a screw chiller (Bitzer 86 ton refrigeration capacity)
- Plant boiler (150 psig) provides steam to turbine with the low pressure exhaust (50 psig) providing steam to operations and retorts

Equipment Specifications

Project Cost-Benefits Summary

Cost Summary

- Steam turbine and controls: \$30,000
- Bitzer Chiller and Controls: \$56,000

Savings Summary

- Steam turbine-driven chiller vs electric unit: 104 kW and 540,000 kWh (in-season)
- Natural gas net increase of 2,100 MMBtu due to an increase in steam generation to offset the steam enthalpy change across the steam turbine
- Net annual savings: \$45,000

Common BestPractices – Turbines

- Process and utility integration leads to overall energy optimization of the plant
- Install backpressure turbines in parallel with pressure letdown stations and minimize flow through letdown stations
- Evaluate backpressure turbine applications for direct mechanical drives
- Evaluate condensing turbines and optimize their operations to maintain design conditions
- Condensing turbines can serve as a system balance mechanism especially, in industries which have significant waste heat steam generation

Steam System Industrial Energy Assessment

• **Preparation for Group Discussion (December 9)**

Industrial Energy Assessment

- There are several levels of industrial plant energy assessments (audits)
 - Overall plant-wide
 - System focused steam, compressed air.....
 - 1-day, 3-day.....
- But the overall goal is typically, focused on reductions in energy usage (and/or intensity)
- Identification of energy savings opportunities and path to implementation
- Expectations vary significantly between plant personnel and energy auditor

http://www.asme.org/products/codes---standards/energy-assessment-for-steam-systems

- Scope
 - Covers steam systems containing steam generator(s) or other steam source(s), a steam distribution network, end-use equipment and recovery
 - Cogeneration and power generation components may be included
 - Sets the requirements for conducting and reporting the results of a steam system energy assessment that considers the entire system, from energy inputs to the work performed as the result of these inputs
 - Resulting assessment will identify the major opportunities for improving the overall energy performance of steam system
 - Designed to be applied primarily at industrial facilities, but most of the specified procedures can be used in other facilities such as those in the institutional and commercial sectors

- Use of this Standard and accompanying Guidance Document should increase the quantity and quality of energy assessments performed, with significant potential savings in implemented energy costs
- Intended for energy managers, facility managers, plant engineers, energy consultants, maintenance managers, plant managers, EH&S managers, across a broad range of industries

- The standard clearly identifies the processes, protocols and deliverables of a steam assessment
- The sections of the steam assessment standard are:
 - Scope & Introduction
 - Definitions
 - References
 - Organizing the Assessment
 - Conducting the Assessment
 - Assessment Data Analysis
 - Report & Documentation
 - Appendix A Key References
- An accompanying guide provides more detailed information for each of the sections

Typical Project Areas in a Steam System Assessment

- Boiler efficiency improvement
- Fuel switching
- Boiler blowdown thermal energy recovery
- Steam demand reduction
- General turbine operations
- Thermal integration
- Process/Utility integration

- Turbine-PRV operations
- Condensing turbine operations
- Thermal insulation
- Condensate recovery
- Flash steam recovery
- Steam leaks management
- Steam trap management
- Waste heat recovery

Energy Saving Opportunities

	Near-Term	Mid-Term	Long-Term
Definition	Improvements in operating and maintenance practices	Require purchase of additional equipment and/or system changes	New technology or confirmation of performance in plant
Capital Expense	Low cost actions or equipment purchases	Rules of thumb estimates can be made	Additional due-diligence required
Payback	Less than one year	One to two year	Two to five-year
Examples of Projects	 Boiler combustion tuning Insulation Steam leaks and trap management 	 Automatic combustion control Blowdown energy recovery Feedwater economizer 	 Combined Heat & Power Steam turbine driven process components Boiler fuel switching

Homework #6

- Evaluate the opportunities we talked about in the VINPLT today
- Pick one (or more) applicable scenarios and apply it to your plant by modeling it in your MEASUR plant model
- Save the file w/different scenarios on your computer and send us the .json file
- As you undertake your energy assessment, provide me with one project that you would want to present on December 9 in the group discussion

Thank You all for attending today's webinar. See you all on Friday – December 2, 2022 – 10 am ET If you have specific questions, please stay online and we will try and answer them. Alternately, you can email questions to me at rapapar@c2asustainable.com

