

Industrial Steam Systems Virtual INPLT Training & Assessment

Session 4

Thursday – November 3, 2022

10 am – 12:30 pm

1111/1/1

Agenda – Session FOUR

- Safety and Housekeeping
- Today's Content:
 - **Discussion of Homework**
 - **Quick Review from Session 3**
 - Steam System Distribution, End-Use & Recovery
 - Understanding the steam header system
 - End-Uses of steam and steam balance
 - Steam traps, condensate collection & return

US DOE MEASUR Tool

- Completing the steam system model
 <u>Better Plants Diagnostic Equipment Program (DEP)</u>
- Kahoot Quiz Game
- Q&A

letter

lants

Safety and Housekeeping

Safety Moment

- Do not use cell-phones or get distracted while walking in the plant or when working
- $\circ~$ Observe areas which are cordoned off temporarily due to ongoing work
- Break points after each sub-section where you can ask questions
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded
 - $\,\circ\,$ A link to the recorded webinars will be provided, afterwards

Steam Virtual INPLT Agenda

- Week 1 (October 14) Industrial Steam Systems Fundamentals and Introduction to SSST
- Week 2 (October 21) Focus on Steam System Generation, Boiler Efficiency & Plant Efficiency
- Week 3 (October 28) Introduction to DOE's MEASUR Tool & Cogeneration (CHP)
- Week 4 (November 3) Steam System Distribution, End-Use & Condensate Recovery
- Week 5 (November 11) Energy Efficiency Opportunities in the Generation Area
- Week 6 (November 18) Energy Efficiency Opportunities in Cogeneration (CHP) Area
- Week 7 (December 2) EE Opportunities in Distribution, End-use and Condensate Recovery
- Week 8 (December 9) Industrial Steam System VINPLT Wrap-up Presentations

Homework 3 Discussion

Homework #3

- Install and get comfortable using the MEASUR tool.
- Decide on a specific header model and work with your line diagram and develop a high-level steam system model for your facility. Use your numbers and values wherever you can otherwise use default information provided in the Steam System Assessment template.
- Use your plant's utility costs to calculate your marginal steam cost (\$/klb)
- Send a screenshot of the MEASUR diagram and cost summary page

1) How did you model your steam system in MEASUR?

- A. 1-header model
- B. 2-header model
- C. 3-header model
- D. Multi-header model with steam turbines
- E. Did not model yet

Session 3 – Quick Review

Solubility of Oxygen in Water

Impact Boiler & Fuel Selection

Fuel: Natural gas Fuel cost: \$5.00/MMBtu Boiler capacity: 120,000 lbm/hr Steam production: 100,000 lbm/hr Boiler efficiency: 78% Fuel: Number 2 fuel oil Fuel cost: \$15 79/MMB

Fuel: Number 2 fuel oil Fuel cost: \$15.79/MMBtu Boiler capacity: 50,000 lbm/hr Steam production: 10,000 lbm/hr Boiler efficiency: 85%

- The natural gas boiler is the **IMPACT boiler** because it responds to steam demand changes
- The #2 fuel oil boiler is a fixed operation boiler

MEASUR – System Setup

Easur Measur					
Steam Example Last modified: Apr 16, 2021		System Setup	Assessment Diagram	Report	t Sankey Calculators
1 Assessment Settings 2 Operations	3 Boiler	4 Header	5 Turbine		
BOILER DETAILS				_	HELP
Fuel Type	Gas			~	Boiler Help
Fuel Add New Fuel	Typical Natur	ral Gas - US		~	Enter measured data to ca
Boiler Combustion Efficiency Calculate Efficiency	78.7			%	Deaerator Pressure
Blowdown Rate Calculate Blowdown Rate	6			%	The pressure of the deaera 0 to 30 psig.
Is the blowdown flashed?	No			~	
Preheat Make-up Water with Blowdown	No			~	
Steam Temperature	700			°F	
Deaerator Vent Rate	0.0			%	
Deaerator Pressure	10			psig	

MEASUR – System Diagram

MEASUR – System Cost Summary

Power B	alance	
Generation	0 kW	
Demand	5,000 kW	
Import	5,000 kW	
Unit Cost	\$0.05 /kWh	
Total \$/yr	\$2,190,000	
Fuel Ba	lance	
Boiler	148.63 MMBtu/hr	
Unit Cost	\$5.00 /MMBtu	
Total \$/yr	\$6,510,187	
Make-Up	Water	
Flow	101.78 gpm 53,497,740.14 gal	
Unit Cost	\$0.01 /gal	
Total \$/yr	\$534,977	
Total Opera	ating Cost	
\$9,235	5,164	
TEAM COST		
High Pressure	\$9.04 /klb	
Medium Pressure	\$0.00 /klb	

Simple Utility Power Station

Industrial Power Station

Typical Steam Turbine Efficiency

- Major contributors to isentropic efficiency
 - Turbine design
 - Control valve type
 - Single valve throttle
 - Multi-valve flow nozzles

$$\eta_{isentropic} = \frac{(h_{in} - h_{out})_{actual}}{(h_{in} - h_{out})_{isentropic}} = 20\% \ to \ 80\%$$

Combustion Gas Turbine

Combined Heat and Power Example

Combustion Turbine - Heat Recovery Steam Generator

Conventional Boiler – Purchased Electricity

Example System Cogeneration Trending

US DOE MEASUR Preferences

- Full flexibility is offered to the user to select default (IP) or choose Custom units for the parameters
- Generally, US\$ is the easiest currency to work with but some other currencies are available
- HELP is always around

Assessment Settings 2 Operations	3 Boiler	4 Header	5 Turbine	
STEAM EXAMPLE SETTINGS				HELP
Language	Translate Ap	plication Using Google Translate		System Basics Help
Currency	\$ - US Dollar	r	~	
Units of Measure	●Imperial OMetric OCustom			Your system basics help define th settings are inherited by default from the setting of the sett
Pressure Measurement	Pounds per S	Pounds per Square Inch gauge (psig)		
Temperature Measurement	Degrees Fah	nrenheit (°F)	~	
Specific Enthalpy	Btu per Ibs (B	Btu/lb)		
Specific Entropy	British Thermal Units per Pound Fahrenheit (Btu/lb-°F)			
Specific Volume	Cubic Feet per Pound (ft³/lb)			
Mass Flow	Thousand po	Thousand pounds per hour (klb)/hr		
Energy	Millions Britis	Millions British Thermal Units (MMBtu)		
Power	Kilowatts (kV	Kilowatts (kW)		
Vacuum Pressure	Pounds per Square Inch absolute (psia)			
Volume	U.S. Gallons	U.S. Gallons (gal)		
Volume Flow	Gallons per r	Gallons per minute (gpm)		
Equipment Notes				
Add additional information for your equipment				
			2	
Add a star for an antifant and different				
Add note for operating conditions				

MEASUR – System Setup

MEASUR			
Steam Example Last modified: Apr 16, 2021	System Setup	Assessment Diagram Report	t Sankey Calculators
1 Assessment Settings2 Operations3 Boi	er 4 Header	5 Turbine	
OPERATING CONDITIONS			HELP
General Details			Steam Operation
Operating Hours	8760	hrs/yr	
Site Power Import	5000	kW	Enter measured data to c
Make-up Water Temperature	65	°F	Make-up Water Cos
Energy Costs for Operation			Cost of makeup water pe
Fuel	5.00	\$/MMBtu	
Electricity	0.05	\$/kWh	
Make-Up Water Cost	0.010	\$/gal	

MEASUR – System Setup

MEASUR					
Steam Example Last modified: Apr 16, 2021		System Setup	Assessment Diagram	Repor	t Sankey Calculators
1 Assessment Settings 2 Operations	3 Boiler	4 Header	5 Turbine		
BOILER DETAILS				_	HELP
Fuel Type	Gas			~	Boiler Help
Fuel Add New Fuel	Typical Natu	ral Gas - US		~	Enter measured data to ca
Boiler Combustion Efficiency Calculate Efficiency	78.7			%	Deaerator Pressure
Blowdown Rate Calculate Blowdown Rate	6			%	The pressure of the deaera 0 to 30 psig.
Is the blowdown flashed?	No			~	
Preheat Make-up Water with Blowdown	No			~	
Steam Temperature	700			°F	
Deaerator Vent Rate	0.0			%	
Deaerator Pressure	10			psig	

Distribution

- Header Pressures
- Letdown Stations
- Header Losses

Example Steam System – Pulp & Paper Mill

Pressure levels for steam distribution in the plant

- High pressure 400 psig
- Medium pressure 150 psig
- Low pressure 30 psig
- Use a 3-header steam system model
- Steam usage will be determined in the End-Use section for each header

Example Steam System – Pulp & Paper Mill

VINPLT_0421 Last modified: Apr 23, 2021		System Setup		
1 Assessment Settings 2 Operations	3 Boiler	4 Header	5	Turbine
Flash Condensate Return	No			v
High Pressure Header				
Pressure	400			psig
Process Steam Usage				klb/hr
	Value Required			
Condensate Recovery Rate				%
	Value Required			
Heat Loss	0			%
Medium Pressure Header				
Pressure	150			psig
Process Steam Usage				kib/hi
	Value Required			
Condensate Recovery Rate				%
	Value Required			
Flash Condensate Into Header	No			~
Heat Loss	0.1			%
Desuperheat Steam out of Highest Pressure Header	No			~
Low Pressure Header				
Pressure	30			psig
Process Steam Usage				klb/hr
	Value Required			
Condensate Recovery Rate				%
	Value Required			
Flash Condensate Into Header	No			~
Heat Loss	0.1			%
Desuperheat Steam out of Medium Pressure Header	No			~

Letdowns / PRVs

- Pressure Reducing Valves (PRVs) are most prevalent method of reducing pressure in a steam system
- A steam system will have one or more PRVs between two headers
- Not all PRVs maybe controlling header pressures
- Steam temperature at the outlet of the PRVs is controlled by feedwater (Desuperheaters)

Desuperheat Steam out of Highest Pressure Header

- Mainly done for
 - Protecting equipment
 - Design conditions
 - Reducing pressure drop

No

Header Heat Loss

- The heat transfer loss associated with the piping distribution system is related to the total enthalpy flow entering the header in question
 - The enthalpy reference datum (*h*_{datum}) is 0.0 Btu/lbm
 - 32°F and 0 psig
- The loss (non-impact) can be expressed as
 - A fraction (percentage) of the total enthalpy entering the header
- 3E Plus can be utilized to estimate this loss

Header Heat Loss

- The header heat loss impacts the energy delivered to the process units
 - The mass flows to the process demands remain as specified but the energy content of the steam is diminished

Heat Loss	0	%

End-Use

- Steam Mass Balance
- Steam Usage on Different Headers
- Significant Steam User

Process Steam Demand Evaluation

• US DOE MEASUR is a "pull type" model

- Process steam flows "pull" steam through the boiler
- Typically modeling activities strive to match general boiler load
- Process steam flows are established by:
 - Direct continuous flow measurement
 - Direct intermittent flow measurement
 - Mass balance
 - Energy balance
 - System or Process design information
 - Empirical standards or data

Flow Measurements

- Steam flow measurement is typically completed by conventional flow meters
 - Orifice plates
 - Vortex
- Condensate flow measurement is often completed by intermittent field observations
 - Timed volume capture
 - Condensate receiver fill and discharge
 - Known volume fill

Mass & Energy Balances

- Conservation of mass principle can often be applied very effectively
- The first law of thermodynamics (energy balance) for heat exchange is typically applied to:
 - Steam alone
 - Heated material alone

$$\dot{Q}_{x} = \dot{m}_{x} (C_{p})_{x} (T_{e} - T_{i})_{x}$$
For constant specific heats and when enthalpy is a function of temperature only
$$\dot{Q}_{x} = \dot{m}_{x} (h_{e} - h_{i})_{x}$$
When material enthalpies are known
$$\dot{Q}_{steam} = -\dot{Q}_{x}$$
Typical heat exchanger applications

Steam Balance

- Account for significant steam energy users
- Aim to get 80-85% steam usage accounted using some form of steam flow / condensate measurement

Endlice	Steam	Energy	% of Total
Ella Ose	(lb/hr)	(MMBtu)	(%)
Cooker C	37,983	246,131	26.1
Cooker B	35,684	231,231	24.5
Finisher	33,590	217,663	23.1
Cooker A	22,996	149,013	15.8
Hydrolyzer	4,000	25,920	2.7
Preheater (Cooker A)	4,000	25,920	2.7
East Feather Dryer	1,776	11,508	1.2
West Feather Dryer	1,776	11,508	1.2
Coagulator	1,000	6,480	0.7
Blood Dryer	1,000	6,480	0.7
Hot water exchanger	250	1,620	0.2
Other	1,505	9,753	1.0
Total	145,560	943,229	100.0

Significant Steam Energy Users

Polling Questions 2-3

2) Will you be able to prepare a list of users which account for 85% of steam in your plant?

A. Yes

- B. No
- C. Don't know

3) Will you be able to measure the steam used by these major users?

- A. Yes
- B. No
- C. Don't know

Example Steam System – Pulp & Paper Mill

- Steam usage at different pressure levels for steam distribution in the plant
 - High pressure 400 psig 8 klb/hr
 - Medium pressure 150 psig 30 klb/hr (Significant energy user Digester)
 - Low pressure 30 psig 50 klb/hr (Significant energy users Paper Machines, Driers)
- Use a 3-header steam system model

Medium Pressure Header		
Pressure	150	psig
Process Steam Usage	30	klb/hr

Condensate Recovery

- Steam Traps
- Condensate Collection System
- Flash Tanks
- Condensate Return

Steam Traps

- Thermostatic
- Closed Float
- Float and Thermostatic
- Open Float
- Thermodynamic
- Orifice

Thermostatic Steam Traps

Thermostatic Steam Traps

Thermostatic Steam Traps

- Opens to subcooled condensate
- Can discharge condensate or condensate and flash steam depending on subcooling
- Allows energy recovery from condensate
- Significant air-removal capability

Closed Float Steam Trap

Closed Float Steam Trap

Closed Float Steam Trap

- Rarely applied in this form in steam systems
- Opens to saturated condensate
- Will discharge condensate and flash steam
- Poor (no) air-removal capability

Float and Thermostatic Steam Trap

Float and Thermostatic Steam Trap

Float and Thermostatic Steam Trap

- Opens to saturated condensate
- Will discharge condensate and flash steam
- Significant air-removal and startup capabilities
- Modulating type operation

Open Float (Inverted Bucket) Steam Trap

Open Float (Inverted Bucket) Steam Trap

Open Float (Inverted Bucket) Steam Trap

- Opens to saturated condensate
- Will discharge condensate and flash steam
- Limited air-removal capability
- Application in superheated steam service should be investigated
- Intermittent operation

Thermodynamic Steam Traps

Thermodynamic Steam Traps

Thermodynamic Steam Traps

- Opens to saturated condensate
- Will discharge condensate and flash steam
- Intermittent operation
- Can be equipped with thermostatic element to improve air removal

Orifice Steam Traps

Orifice Steam Traps

Orifice Steam Traps

- No moving parts
- Continuous operation
- Common applications are steady loads
- Limited air-removal capability due to orifice limitations

Process Condensate

- MEASUR condensate receiver operates at atmospheric pressure
- MEASUR condensate return temperature provides an indication of the energy loss associated with the condensate return system
 - MEASUR condensate exits a process heat exchanger as a saturated liquid at the pressure of the heat exchanger

Condensate Return		
Condensate Return Temperature	150	°F
Flash Condensate Return	No	~

Process Condensate

- Condensate recovery percentage describes the amount of <u>process steam</u> recovered in the condensate system
- Flash steam recovery systems allow recovered condensate to flash steam into lower-pressure steam systems
- Makeup water temperature impacts condensate related projects

Medium Pressure Header		
Pressure	150 psig	
Process Steam Usage	30 klb/hr	
Condensate Recovery Rate	50 %	
Flash Condensate Into Header	No 🗸	

Condensate Recovery / Flash Steam

- Condensate is saturated liquid at the header pressure
 - Some sub-cooling may occur depending on heat losses, heat exchanger design, process conditions, etc.
- This condensate has a lot of energy and can be flashed to produce steam for lower pressures

		. +	
	Inlet	Steam Out	Liquid Out
Pressure (psig)	400	150	150
Temperature (°F)	448.2	365.9	365.9
Sp. Enthalpy (Btu/lb)	428.2	1,196	338.6
Sp. Entropy (Btu/Ib-°F)	0.626	1.562	0.524
Quality	Liquid	Gas	Liquid
Mass Flow (klb/hr)	10	1.04	8.96
Energy Flow (MMBtu/hr)	4.3	1.2	3

US DOE MEASUR

Building a Steam System Model

MEASUR – Pulp & Paper Mill Model

MEASUR – Pulp & Paper Mill Model

Pov	ver Balance
Generation	0 kW
Demand	5,000 kW
Import	5,000 kW
Unit Cost	\$0.05 /kWh
Total \$/yr	\$2,190,000
Fu	el Balance
Boiler	147.02 MMBtu/hr
Unit Cost	\$5.00 /MMBtu
Total \$/yr	\$6,439,310
Mak	e-Up Water
Flow	100.64 gpm 52,898,985.56 gal
Unit Cost	\$0.01 /gal

Marginal Steam Costs

- Marginal steam costs are typically used when analyzing
 - Steam leaks
 - Process changes
 - Elimination or institution of nominal steam use
- Marginal steam costs are impacted by condensate return
 - Amount
 - Temperature

MARGINAL STEAM COST	
High Pressure	\$9.04 /klb
Medium Pressure	\$9.04 /klb
Low Pressure	\$9.04 /klb

Low-pressure Header Vent

• The low-pressure header can operate in an "unbalanced" state

- This can develop in steam systems by:
 - Operating more backpressure turbines than necessary
 - Poor control strategies
- The low-pressure vent should always be a point of investigation
 - From the physical site operations standpoint
 - From the MEASUR model standpoint

Example Steam System – Pulp & Paper Mill

One final modification

- The pulp and paper mill has one condensing steam turbine to produce just enough power to allow for a safe shutdown of the mill during a power issue from the grid
- Condensing turbine efficiency = 80%
- Steam flow rate = 5.0 klb/hr
- High Pressure header steam usage = 3 klb/hr

TURBINE DETAILS	
Condensing Turbine	
Isentropic Efficiency	80 %
Generator Efficiency	95 %
Condenser Pressure	1 psia
Operation Type	Steam Flow 🗸
Fixed Flow	5 klb

MEASUR – Pulp & Paper Mill Model

MEASUR – Pulp & Paper Mill Model

DST SUMMARY		
Power Balance		
Generation	499.6 kW	
Demand	5,499.6 kW	
Import	5,000 kW	
Unit Cost	\$0.05 /kWh	
Total \$/yr	\$2,190,000	
Fuel	Balance	
Boiler	147.05 MMBtu/hr	
Unit Cost	\$5.00 /MMBtu	
Total \$/yr	\$6,440,979	
Make-Up Water		
Flow	95.65 gpm 50,272,661.49 gal	
Unit Cost	\$0.01 /gal	
Total \$/yr	\$502,727	
Total Op	erating Cost	
\$9,133,705		

MARGINAL STEAM COST	
High Pressure	\$9.04 /klb
Medium Pressure	\$9.04 /klb
Low Pressure	\$9.04 /klb

Better Plants Diagnostic Equipment Program (DEP)

Steam System Assessment Portable Tools

Field Measurements

- Usually energy experts can do these over short durations (1 or 2 days)
- Use of portable instrumentation is a good way to back up findings
- Portable Measurements can help to build credibility in existing in-situ instruments for accuracy

Field Measurements (Caution!)

Instantaneous measurements

Data Gathering – Snapshot or Movie?

- Historical data
- Measurements over time interval

Working from daily/weekly/monthly data

Combustion Flue gas Analyzer

- Main purpose Combustion Efficiency, Stack Loss
- Additionally, it provides information on
 - Stack temperature
 - Flue gas O₂, Excess air
 - CO unburnt fuel
 - CO₂ generally, a calculated value
 - SO_x , NO_x depending on the sensors
 - Draft in the stack / furnace
- Standard fuels maybe available in equipment
- Specific fuel information maybe needed

Combustion Flue gas Analyzer

Sensor Life (1.5-2 years)
Location of reading
Remember – Dry basis measurement

Infra-Red Thermographic Camera

- Main purpose Heat Loss, Surface Temperature
- Additionally, it can be used for
 - Safety
 - Validating temperature sensors
 - Operation of steam traps
 - Boiler shell loss evaluation
 - Electrical equipment protection
- Different models
- Software may or may not be needed

Infra-Red Thermographic Camera

Type of image
Remember to Focus
Emissivity; Scale Setting

Thermometer with Probes

- Can have applications where a bulk temperature needs to be measured
 - Condensate, Make-up water
 - Process fluid in a tank
 - Waste / effluent

Water Conductivity Meter

 Used for feedwater and blowdown conductivity measurement

- TDS (ppm)
- Calibrate with distilled water

Ultrasonic Leak Detector

Monitors the acoustic signal of flow through orifice

- Steam traps
- Leaks in valves

Pitot Tubes w/dP Gage / Manometer

Can be used for measuring flow in different places

- Air flow in duct
- Steam venting from pipe
- Leaks

Water-filled manometer can be used also instead of dP gage

Other Essentials

- Safety Equipment
 - PPE
- ✓ Digital camera
- ✓ Stop watch
- Batteries / Chargers

Better Plants Diagnostic Equipment Program (DEP)

EXPLORE THE FULL SUITE OF DIAGNOSTIC EQUIPMENT AND SUBMIT AN APPLICATION:

Scan the QR Code above, or click here to download the DEP rental application.

Send this completed form to the Better Plants Diagnostic Equipment Program Manager, Daryl Cox at coxdf@ornl.gov.

HAVE QUESTIONS ABOUT **BORROWING EQUIPMENT?**

Scan the QR code

above, or click here to email Daryl Cox, DEP

Daryl Cox has over 20 years of experience managing industrial technology and equipment and can help you find the right tool for your energy needs.

4) Will you be requiring the Better Plants Diagnostic Tools for your plant's steam energy assessment?

- A. Yes, probably most of them
- B. Maybe only one or two
- C. None at all
- D. Don't know yet

Homework #4

- Complete an end-user steam mass balance by individual header level for your plant. Ensure that you have accounted for all significant steam energy users which should total >85% of your total steam usage.
- Complete your steam system model from Homework #3 to more accurately represent your steam balance and your plant operations. If you want create two or at most three models to account for seasonality, production schedules.
- Compare actual steam generation by your boiler to steam generated as per the MEASUR steam system model.
- Compare your fuel costs with your plant's actual fuel costs.
- Use your plant's utility costs to calculate your marginal steam cost (\$/klb)
- Save the file as BaseModel on your computer and send us the .json file

Thank You all for attending today's webinar. See you all on next Friday – November 11, 2022 – 10 am ET If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at <u>rapapar@c2asustainable.com</u>

