

In-Plant Trainings

Virtual Platform Session 3 – Controls

11111/1/1

Homework Questions

- How can we find the compressor discharge pressure?
- I'd like to get feedback regarding dry air storage system in my facility. I have some doubts, that it is efficient. As for me, majority of air is going to consumers via two bypasses. If my thoughts are correct, do we need to keep all 6 dry tanks?
- How to calculate right size of dry (or wet tank)
- What material is best for compressed air lines copper, steel, etc.?
- Pressure settings on Gardner Denver screw compressor –Robert Barrier
- Baseline unit for continuous operation, can these be on VFDs?

Compressor Controls

Compressor Control Types

- Start/Stop
- Load/Unload
- Modulating
- Variable Displacement
- Variable Speed

Inlet Throttling

Capacity Control by Inlet Throttling

- Atmospheric pressure 14.7 psia
- Intake pressure 9.0 psia
- Discharge pressure 114.7
- Compression ratio: 114.7/9.0 = 12.7 to 1
- End Result?? Increased internal leakage due to a higher compression ratio

Capacity Control by Inlet Throttling

- Varies capacity by throttling (restricting) the inlet flow
- Provides a relatively stable output pressure
- Energy hog... least efficient
- Every 10% reduction in capacity yields only a 3% reduction in power(BHP)
- At zero capacity, power remains at 70% of full load power

Inlet Valve Modulation

- The example shows a discharge pressure range of 100 110 psig.
- As discharge pressure rises from 100 to 110 psig, a proportional pressure regulator provides a control pressure from 0 -30 psig, to progressively close the inlet valve.
- As the inlet valve closes, the absolute pressure at the inlet of the air end is reduced.

Inlet Valve Modulation

- This reduces the mass flow of air entering the air end in direct proportion to the absolute pressure.
- However, the reduced inlet pressure, with increasing discharge pressure, results in increasing pressure ratio.
- At 40% capacity the pressure ratio will be 124.7/5.88 = 21.21.
- This is why there is not much reduction in the power requirement.

- Valves progressively opens ports connecting the compression chamber back to the compressor intake in response to rising discharge pressure. This allows some of the intake air to be returned to the compressor inlet before it gets compressed and uses power
- This progressive opening of by-pass ports has the effect of shortening the length of the rotors after the lobes seal without choking the intake and increasing the compression ratio

Original Version

- UP TO 55% TURN DOWN

Load/No-load Control Curve

the effect of receiver size on the part load power of a lubricant injected rotary screw compressor with load/unload controls

Load/Unload and Storage Size

- It is falsely assumed that a straight line, from full load bhp to unloaded bhp, represents the actual power requirement in this mode of operation.
- Sump blow down times will vary by machine size, but typically this takes in the range of 20 to 60 seconds to prevent foaming of the lubricant with the potential of excessive lubricant carry-over.
- In many cases, the system pressure will fall and the compressor will re-load before the fully unloaded power is realized.

Capacity Control by Load/No-Load

- During blow-off, the compressor is still running against significant back pressure and consuming a lot of power
- Bigger sump vessels lead to longer blow-off times and more energy consumption

Capacity Control by Load/No-Load

- Efficient means of rotary compressor capacity control,
- Integrated variable frequency AC or
- Switched reluctance DC drives.
- Compressor discharge pressure can be held to within +/- 1
- In order to provide efficient VSD regulation over the complete range of the customer's air profile, the VSD operational flow from min to max, needs to be sized so it will always be in its turndown range.

Variable Speed

Performance Curves

Various Compressor Control Performance Curves

Per cent Capacity (Flow Out)

- The most common VSD is the variable frequency drive, which converts 60 Hz alternating current to direct current and then reconverts it to the proper frequency required to turn the drive motor at the desired speed.
- The variable frequency drive is less efficient at full load compared to modulation controls because the electrical conversions usually consume an additional two to four percent more energy.

- VSD (variable speed drive) and VFD (variable frequency drive) are used interchangeably
- VFD is only one of the VSD technologies available.

 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the range of the VSD from min to max needs to be sized greater than the load/no load machine

How do I know my flow patterns to size a VSD Correctly?

Flow Histogram Mean=658.2, Standard Deviation=124.469, Skewness=-0.238556

Control Gap and Position

 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the cfm of the VSD needs to be greater than the load/no load machine

Centrifugal Compressor Control

- Performance is affected by inlet conditions and cooling water temperature
- Characteristic curve is determined by impeller design
- Two conditions should be avoided:
 - Surge (flow reversal)
 - Choke (excessive flow vs. frame design)
- Inlet throttle valves modulate the compressor to reduced flow and power but are limited by surge condition
- Blow-off valves control capacity below throttling limit

Centrifugal Compressor Control Common Terms

Auto-Dual Control or Load-Unload

- The standard regulation is achieved by means of inlet guide vanes and controller. –
- The compressor discharge pressure set point (B) will be set at the desired level and IGVs will modulate the compressor inlet to maintain constant discharge pressure over the control (B→C) range.
- At the surge control point (C), the IGVs stop closing, allowing the discharge pressure to rise to the unload set point.
- At this moment, the compressor will unload (IGVs close and unloading valve fully opens).

Auto-Dual Control or Load-Unload

- The compressor remains in the unloaded condition until the system pressure declines below the preset load set point (A), the compressor resumes load at full flow, and the cycle is repeated.
- Re-loading time may be variable depending on system capacitance.
- If the compressor does not need to reload within a fixed time period, the unit will stop automatically.
- The controller will automatically re-start and load in anticipation, when the system pressure falls to the load set point (A).

Constant Pressure Control with Modulation

- This control method uses the inlet guide vanes (IGVs), unloading valve (ULV), and a controller.
- The compressor discharge pressure set point will be set at the desired level and the IGVs will modulate the compressor inlet to maintain constant discharge pressure over the control (A→B) range.
- At the surge control point (B), the position of the IGV is maintained fixed at min flow, the unloading valve starts to modulate open, and the excess compressed air is exhausted to atmosphere.

Constant Pressure Control with Modulation

- In this way, a constant discharge pressure is maintained over the full operating range of the compressor (A-C).
- Some controls can also provide for a maximum unloading valve (ULV) position to be programmed. This allows the plant to minimize inefficient operation during periods of low demand by limiting blow-off operation to a point between (B→C).
- The constant pressure control system is designed to continuously control the air output while keeping the net pressure fluctuations to a minimum.
- Constant pressure is critical in many applications.

How do I know how to size Centrifugal to my flow Patterns?

- Plant has 8000 cfm peak demand, 5800 cfm average demand, and 3000 cfm minimum demand during weekends at operating pressure of 100 psig.
- Two 4000 cfm centrifugals with a 30% turndown to 2800 cfm

How do I know how to size Centrifugal to my flow Patterns?

- During peak demand of 8000 cfm, both compressors will run at full load.
- When the flow demand is reduced to the average demand of 5800 cfm, the two centrifugal compressors will close the inlet guide valve and run in its turndown range without exhausting any compressed air to atmosphere.

How do I know how to size Centrifugal to my flow Patterns?

- During the weekend, when the demand reaches to minimum flow of 3000 cfm, one centrifugal compressor will stop and only one compressor will run in its turndown range.
- With this combination, the centrifugal compressors will work most efficiently and save a plant significant energy.

Inlet Guide Vanes - Open

Inlet Guide Vanes - Closed

Inlet Guide Vanes

- This valve positioner consists of a common housing that contains a 4 – 20 mA current to pressure (I/P) transducer that controls the attached pilot valve operated air to actuator assembly.
- The positioner will output 0 to 65 psi (448 kPa) to the actuator from an air signal.
- The air signal provided by the positioner is proportional to the microcontroller 4 – 20 mA output.
- The actuator provides the power to drive the valve open or closed in proportion to the microprocessor output control signal.

Centrifugal Compressor Control

The relationship of flow and pressure for dynamic compressors is different from that of positive displacement machines.

Effects on dynamic compressor performance

- Inlet pressure
- Inlet air temperature
- Cooling water temperature

Inlet Pressure Effects On Dynamic Compressor Performance

Inlet pressure

Cooling Water Effects On Dynamic Compressor Performance

Cooling water temperature

Inlet Air Temperature Effects On Dynamic Compressor Performance

Effects on dynamic compressor performance

- As the inlet temperature is lowered the denser air gives the first stage impeller increased pressure head making capability, causing a further increase in mass flow at a given discharge pressure.
- The converse is true for an increase in inlet temperature.
- When the cooling water temperature is reduced, the air temperature to the second and successive stages also is reduced, increasing their ability to generate pressure head, and to handle increased mass flow.

🛨 Inlet Temp. 95 F 📲 Surge Line 🥌 Constant Pressure Control 💷 Inlet Temp. 55 F

Centrifugal Compressor Performance

Curve showing air compressor performance at a 34°F inlet,60% RH, 77°F Coolant and 125 psig discharge pressure:

Curve showing air compressor horse power at a 34°F inlet,60% RH, 77°F Coolant and 125 psig discharge pressure:

Curve showing air compressor performance at a 104°F inlet,100% RH, 77°F Coolant and 125 psig discharge pressure:

Curve showing air compressor horsepower at a 104°F inlet, 100% RH, 77°F Coolant and 125 psig discharge pressure:

Multiple Compressor Control

- Holds a constant air pressure in the network within narrow limits.
- Easy to install.
- Connectable to all kinds of compressors.
- Optimisation of service intervals = lower service cost.
- Priority selection : old versus new machines.
- Delayed start : NEVER start two machines or more at the same time => high current peaks are avoided.
- Base load compressors can fill a net in advance to avoid load peaks.

Multiple Compressor Control

- Very simple user interface = minimum user training.
- Machines are used more efficiently.
- Energy reduction = immediately saves money.
- Full compressor & network status feed- back.
- Programmable pressure schedule.
- PC monitoring & analysing possibilities.

Cascade Compressor Control

Master Controls

Basic single set point control scheme

Master Control Basics

Cascaded Pressure Switches Vs Master

- Primary function: Stabilize pressure regardless of demand
- Most compressor controls cause 3-10 psi swings
- Multiple compressors can compound the system pressure swings
- Pressure/flow controllers typically hold pressure to production within ± 1% of set point
- The following graph is from a system with 9 compressors totaling over 6,000 hp – pressure is set at 79 psig

- The compressor discharge pressure varies about 10 psi as the trim compressor loads and unloads to meet plant demand.
- The pressure to the plant is kept at a constant 79 psig.

South Compressor Room psig comparisons

—— psig at Compressor —— psig into Flow Controller —— psig out of flow controller

 A typical block diagram of a pressure/flow controller in a compressed air system with one point of entry (single compressor room)

Primary Storage

How does Volume Help

- A paint area in a body shop has a 5 HP compressor mounted on an 80-gallon air receiver. This receiver is pumped up to 175 psig. The air flow to the buffer which uses 18 SCFM at 90 PSIG, is regulated to 90 PSIG outflow from the regulator.
- The compressor delivers 12-13 SCFM at 90 psig but yet it runs the 18 SCFM sander just fine.
- How can this work???
- The buffer uses more volume(scfm) than the compressor can deliver !!
- If there were no regulation and receiver, you can be sure that the compressor would not be able to run the tool

U.S. DEPARTMENT

How does Volume Help

With no receiver, the painter must install a second 5 hp compressor and therefore use twice the energy as before

Controls Summary

Create a control strategy:

- ✓ Know how your controls work
- \checkmark Realize the pros and cons of different controls
- ✓ Recognize how controls affect part load efficiency
- ✓ Understand how storage affects the effectiveness of control strategies

Logtool, AirMaster+ and the **MEASUR Tool**

Why AIRMaster+?

- ~90% of energy input to compressor never reaches tools (waste heat, drying, etc.)
- Leaks +pressure drops remove air energy before reaching tools-sometimes >50%
- Poor or improperly adjusted controls leave several compressors operating a part load
- System assessments can be an arduous task using spreadsheets that must be modified for each job
- AIRMaster+ provides a systematic approach to assessing compressed air systems, analyzing collected data, and reporting results

What Can This Tool Help Me With?

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

What Can This Tool Help Me With?

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

What Can This Tool Help Me With?

Produce more efficiently

- Improve Compressor Control
- Type of Compressor Control

Use less compressed air

- Reduce System Pressure
- Reduce Air Demand
- How does compressed air support production?

Compressed Air Versus Other Energy Sources

- 1 hp air motor = 7-8 hp of electrical power
 - 30 scfm @ 90 psig is required by the air motor
 - 6 7 bhp at compressor shaft required for 30 scfm
 - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194

AIRMaster+ Features

- AIRMaster+ is a Windows-based software tool used to analyze industrial compressed air systems:
- Simulates existing and modified compressed air system operation
- Models part load system operation
- Assigns electrical utility energy schedules
- Enters 24-hour metered airflow or power data
- Is not a substitute for an experienced auditor!

Energy Efficiency Measures

- 1. Reduce Air Leaks
- 2. Improve End Use Efficiency
- 3. Reduce System Air Pressure
- 4. Use Unloading Controls

- 5. Adjust Cascading Set Points
- 6. Use Automatic Sequencer
- 7. Reduce Run Time
- 8. Add Primary Receiver Volume

Why LogTool?

- LogTool is a public domain tool developed by SBW Consulting with support from the Compressed Air Challenge[™].
- It is designed to assist in the analysis of compressed air system performance measurements.
- It is a companion tool for Airmaster+ available from the US DOE and CAC.

LogTool is Designed To:

- Import data which is exported from different types of data loggers.
- Select logger data channels and modify their properties.
 - e.g., name, type, units, etc.
- View data values for one or more logger channels.
- Display trend plots on one or two Y axis.
- Display scatter plots.
- Display daytype plots in the format that is needed for AIRMaster+

Enter LogTool Data Into AIRMaster

- Enter Utility and rate information
- Enter System information including Day Types
- Enter compressor Information
- Enter recorded data to establish the baseline
 - This data comes from LogTool
- Experiment with different EEM's

AIRMaster+ Main Menu

MEASUR Main Menu

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators. Get started with one of the following options.

If you need help at any point along the way, click on a 🗾 User Manual icon.

Box Plant Company Example

Baseline Info

- 200 hp baseloaded compressor rated 1014 acfm using modulated inlet control
- 250 hp trim compressor rated 1269 acfm using modulated inlet control operating at 40% output
- Production is 24/6 with Sundays off
- Average flow during Monday to Saturday is 1500 cfm
- Baseline energy is 2,587,516 kWh or \$174,657 using \$.0675/kWh
- Leakage is estimated to be about 600 cfm based on leak down test

Baseline Info

- Air Operated Diaphragm Pumps (AOD) are in use and can be replaced with electric driven pumps made to pump heavy viscous fluids such as glue
- 3-inch pipe is used in the compressor room to handle almost 1500 scfm of flow. This is borderline undersized and is creating additional pressure drop.
- Both compressors must run to support production. Neither one by itself can run production. There is no redundancy at this plant for compressed air.

CHAPTER 4

Compressed Air Distribution (Systems)

Table 4.7 Loss of Air Pressure Due to Friction

	Equivalent	t											
Cu ft	Cu ft				Nom	inal Di	ameter	In					
Free Air	Compresse	d			1,011		anicter,						
Per Min	Air	17	3/	1	1.17	1.1/	2	2	4	6	0	10	12
	Per Min	1/2	5/4	1	1 1/4	1 1/2	2	5	4	0	0	10	12
10	1.28	6.50	99. (0.28									
20	2.56	25.9	3.90	1.11	0.25	0.11							
30	3.84	58.5	9.01	2.51	0.57	0.26							
40	5.12		16.0	4.45	1.03	0.46							
50	6.41		25.1	9.96	1.61	0.71	0.19						
60	7.68		36.2	10.0	2.32	1.02	0.28						
70	8.96		49.3	13.7	3.16	1.40	0.37						
80	10.24		64.5.	17.8	4.14	1.83	0.49						
90	11.52		82.8	22.6	5.23	2.32	0.62						
100	12.81			27.9	6.47	2.86	0.77						
125	15.82			48.6	10.2	4.49	1.19						
150	19.23			62.8	14.6	6.43	1.72	0.21					
175	22.40				19.8	8.72	2.36	0.28					
200	25.62				25.9	11.4	3.06	0.37					
250	31.64				40.4	17.9	4.78	0.58					
300	38.44				58.2	25.8	6.85	0.84	0.20				
350	44.80					35.1	9.36	1.14	0.27				
400	51.24					45.8	12.1	1.50	0.35				
450	57.65					58.0	15.4	1.89	0.46				
500	63.28					71.6	19.2	2.34	0.55				
600	76.88						27.6	3.36	0.79				
700	89.60						37.7	4.55	1.09				
800	102.5						49.0	5.89	1.42				
900	115.3						62.3	7.6	1.80				
1 000	128.1						76.9	93	2.21				
1,500	192.3							21.0	4.9	0.57			
2,000	256.2							37.4	8.8	0.99	0.24		
A F A A									100		~ ~ ~		

LogTool Trend Plot

Better Plants

LogTool Trend Plot

U.S. DEPARTMENT OF

EN

Cfm Leakage =	[V x (P1 - P2) x 1.25]/(T x	14.7)						
Where	V=	453.9	Cu ft						
	P1=	118.66	Psig						
	P2 =	59.33	Psig						
	T =	3.50	Minute						
Cfm Leakage =	654.34								
% Leakage =	Measured cfm leakage/total cfm output of plant compressor								
% Leakage =	32.3% Assuming 4cfm/hp and total HP of 450								

LogTool Trend Plot

LogTool Scatter Plot

LogTool Scatter Plot

Scatter Plot: Right-Click for Action Menu

🖏 Import/Manage Logger Data in: IP LogTool.mdb	×	
Logger File Type Select Logger Data Files Fo Pace Pocket Logger Software HOBOware for Windows FLUKE Hydra Logger DP 3000 Configuration Software SULLAIR LogAir Software Ranger Pronto For Windows Wonderware ActiveFactory Unknown Logger Software	Help	
Channels in Files Checked for Import		
Import File Name Logger ID Logger Name Ch # Name Tune Units Period	System	
Import Checked Channels Check All Channels Logger Channels Imported to this MDB File		
Delete Name Type Units Period System Start End	Interval (sec.)	
▶ Wet Lank Pressure ▼ psig ▼ Not Assigned ▼ Not Assigned ■ 1/11/2018 11:45:51 1/23/2018 14:40:00 □ □ □ □ □ □ 1/11/2018 11:45:51 1/23/2019 14:40:00	3	
40 inch pre feed Pressure + psig + Not Assigned + Not Assigned + 1/11/2018 12:12:03 1/23/2018 15:05:12	3	
40 inch main header Pressure - psig - Not Assigned - Not Assigned - 1/11/2018 12:15:25 1/23/2018 15:08:34	3	
🔲 🔲 Exit Conveyor Pusha Pressure 📼 psig 📼 Not Assigned 📼 Not Assigned 📼 1/11/2018 12:22:10 1/23/2018 15:15:19	3	
□ Waste Water Pressure - psig - Not Assigned - Not Assigned - 1/11/2018 12:05:48 1/23/2018 14:58:57	3	
□ 200 QNW Power ➡ WW ➡ Not Assigned ➡ 1/11/2018 11:35:38 1/23/2018 14:29:59	3	
L L <thl< th=""> L <thl< th=""> <thl< th=""> L L L</thl<></thl<></thl<>	3	
		L

LogTool Main Menu

🖵 LogTool v2 – 🗆 X																	
File Tools Help																	
~																	
Uper	Upen/Lreate Database file to store logger data																
	IUben an Existing Database J.MDB File] Create a New Database (.MDB File) Help																
Fi	File IP LogTool.mdb																
Folder D:\WEEC 2018\International Paper Company																	
,																	
Import Logger Data																	
Tr	end	1	Scat	ter	DayTy	pe											
_					-			_	Log	igei	Data in: IP Log	Tool.	mdb				
	٦T	end	Sca	itter	DayType												
View	<u>Y1</u>	Y2	×	<u> </u>	Include	Name	Туре	_	Uni	s	Period		System	Start	End	Interval	<u>(sec.)</u>
Data				느		Wet lank	Pressure	-	psig	-	Not Assigned	-	Not Assigned 💌	1/11/2018 11:46:51	1/23/2018 14:40:00	3	
Data	≝		ᆜ	<u> </u>		Dry Lank	Pressure	_	psig	-	Not Assigned	_	Not Assigned 💌	1/11/2018 11:43:14	1/23/2018 14:36:23	3	
Data	\square	<u> </u>		Ē		40 inch pre feed	Pressure	-	psig	•	Not Assigned	-	Not Assigned 💌	1/11/2018 12:12:03	1/23/2018 15:05:12	3	
Data	≝			Ē		40 inch main head	Pressure	•	psig	•	Not Assigned	_	Not Assigned 💌	1/11/2018 12:15:25	1/23/2018 15:08:34	3	
Data	⊻			Ē		Exit Conveyor Pusi	Pressure	•	psig	•	Not Assigned	_	Not Assigned 💌	1/11/2018 12:22:10	1/23/2018 15:15:19	3	
Data	⊵			<u> </u>		Waste Water	Pressure	•	psig	•	Not Assigned	-	Not Assigned 💌	1/11/2018 12:05:48	1/23/2018 14:58:57	3	
Data				<u> </u>		200 QNW	Power	•	kW	•	Not Assigned	-	Not Assigned 💌	1/11/2018 11:35:38	1/23/2018 14:29:59	3	
Data				☑		250 QNW	Power	•	kW	•	Not Assigned	•	Not Assigned 💌	1/11/2018 11:31:38	1/23/2018 14:24:47	3	
ΓU	nche	ck—															
	Trei	nd	Sc	atter	r DayTyp	e											

Enter LogTool Data Into AIRMaster

Better

Plants

DayType Profiles

DayType Profiles

DayType Profiles

Enter LogTool Data Into AIRMaster

- Enter Utility and rate information
- Enter System information including Day Types
- Enter compressor Information
- Enter recorded data to establish the baseline
 - This data comes from LogTool
- Experiment with different EEM's

Utility and Rate Information

🕄 Utility			×
File Calculators	; Help		
0 🖌 🛛 🖻	a ?		<u>C</u> lose
Utility SRP		•	Rate Schedules
Utility Data			
Utility name	SRP		
Utility code			
Address 1			
Address 2			
City			
State/Zip			
Contact			
Phone	() ·	_	

System Information

		<u>C</u> lose
Facility	System Production	•
System Data Sequencer Data	Daytypes	End Uses
System name Production	Calculated airflow capacity (sum of compressors), acfm Nominal system pressure, psig	3800 115.0
Phone ()	System elevation, feet	1000
Sequencer used 🗔	Air storage capacity (receivers + distribution pipe) , ft3 *	448.0
Sequencer type	Air 9 Capacity 0	Storage Calculator
* Air s field	torage capacity refers to unregulated (prima is required to run Add Receiver Volume effi	ary) storage. This ciency measure.

System Information Day Types

Facility System Production System Data Sequencer Data Daytypes: Daytype Description Operating Operating	End Uses
System Data Sequencer Data Daytypes Seas	End Uses
Operating Operating A Seas	
Season 1 Season 2 Season 2	ion 1 6 onths 6
Monday 52 0 demand mo	onths 0
Sunday 52 0 Total annual	days 365
Total down	days 0
	Ener Lag ber Data tes APMater

Compressor Information

🖏 Compressor Catalog				×							
Select Clear Add	Сору			🞒 🢡 🛛 Cancel							
Search Criteria											
Compressor tune Single stage lubricant-injeg	ted rotary screw 🔻	Motor po	wer Al	l- User-							
	Desired capa	citu 🖂									
Control type Inlet modulation without ur	nloading 🔄 🗖		acfm	+/- %							
Manufacturer -All-		📃 🛛 Desired full li	oad 🥅								
Inlet modulation with unlea	iloading dina	pressure,	psig I	T/ ~							
Search results - 11 Variable displacement with	unloading										
Scroll right for me Load/unload	-			Compressor <u>D</u> etails							
Start/Stop											
Compressor Tupe	Manufacturer	Model	Motor Bating								
	in an a course	in oddi	hp	Control (ypc							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation without un							
Single stage lubricant-injected rotary screw	<generic></generic>	250 hp/185 kW	250	Inlet modulation without un							
Single stage lubricant-injected rotary screw		나는 물을 다 나라 운동 수수									
	<generic></generic>	250 hp/185 kW	250	Inlet modulation without un							

Compressor Information

Compressor Inventory X											
File Calculators Help											
	Сору Сотргеззо	Query Inv	rentory	Copy To Cal	talog	<u>C</u> lose					
Facility International Paper Compressor 200 hp QNW											
System Production 200 hp, Single Stage Rotary Screw, 1005 acfm											
User- assigned ID 200 hp QNW Compressor discharge control range 110.0 - 120.0 psig Manufacture Compressor Description 200 hp QNW Sequencer used Details.											
Nameplate	Controls	Per	formance	То	Totals (from Profile modu						
Inlet Conditions	Performanc	e Points	Discharge Pressure	Airflo	w P	ower					
Avg. temperature, *F 85	lactual, no	t rated)	psig	Dflt?_acfr	m Dflt?	kW					
Atmos. pressure, psia 14.2		Full load (cut-in)	110.0	v 10	005	175.0					
	Max full flo	w (mod begins)	110.0	10	005 🗹 🗌	175.0					
Unloading Blowdown Time	Unloa	d point (cut-out)	120.0		106 0	138.5					
For lubricant-injected	No	load (unloaded)	15.0			35.8					
rotary screws, sec.	Pressures are refer	enced from the o	compressor di	scharge.	Performanc	e Profile					

Compressor Information

Create the baseline from the Data

System	Туре	Period	DayTypeNa	ChannelName	Hr_01	Hr_02	Hr_03	Hr_04	Hr_05	Hr_06	Hr_07	Hr_08	Hr_09	Hr_10	Hr_11	Hr_12	Hr_13	Hr_14	Hr_15	Hr_16	Hr_17	Hr_18	Hr_19	Hr_20	Hr_21	Hr_22	Hr_23	Hr_24
Not Assig	nePower	Not Assign	Monday	200 QNW	0.0	0.0	0.0	0.0	84.6	175.9	177.1	181.6	182.2	180.8	177.2	177.7	177.0	178.6	178.7	178.7	176.9	177.0	178.2	177.2	178.7	179.6	180.1	179.3
Not Assig	nePower	Not Assign	Monday	250 QNW	0.0	0.0	0.0	0.0	83.8	164.2	163.6	164.5	165.0	166.7	171.6	169.9	168.1	164.9	163.3	162.5	163.6	164.8	165.6	167.1	167.1	167.0	166.2	166.9
Not Assig	nePower	Not Assign	Production	200 QNW	178.1	178.3	177.9	177.1	177.7	178.1	178.0	177.9	177.7	178.1	177.3	177.2	177.2	168.0	174.9	175.7	175.7	175.8	177.5	177.4	178.4	179.0	179.1	179.8
Not Assig	nePower	Not Assign	Production	250 QNW	166.5	166.8	167.5	168.3	168.5	168.5	168.4	168.0	168.1	167.1	166.4	166.1	165.0	167.1	165.9	164.7	164.5	165.2	165.0	165.8	165.3	164.5	164.2	164.4
Not Assig	nePower	Not Assign	Sunday	200 QNW	181.8	180.5	179.2	177.0	154.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Not Assig	nePower	Not Assign	Sunday	250 QNW	165.6	163.8	162.4	161.8	143.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Date	Day	Day Type																										
Jan-11-20	01 Thu	Excluded D	ays																									
Jan-12-20	1 Fri	Production																										
Jan-13-20	of Sat	Production																										
Jan-14-20	1 Sun	Sunday																										
Jan-15-20	1 Mon	Monday																										
Jan-16-20	1 Tue	Production																										
Jan-17-20	ved	Production																										
Jan-18-20	1 Inu	Production																										
Jan-19-20	D1 Fri	Production																										
Jan-20-20	1 Sat	Production																										
Jan-21-20	1 Sun	Excluded D	ays																									
Jan-22-20	1 Mon	Excluded D	ays																									
Jan-23-20	1 Tue	Excluded D	ays																									

File Calculators Help								
Select Facility System Production System Production								
Data Entry Profile Summary Totals								
Cascade Order - click cell to toggle stage#/'off' Copy Prev Col Graph								
Compressor 1 2 3 4 5 6 7 8 9 10<▲ 200 hp QNW 1 1 1 1 1 1 1 1 1 1								
250 hp QNW 2 <th2< th=""> <th2< th=""> <th2< <="" td=""></th2<></th2<></th2<>								
Profile data type: Power, kW Paste From Clipboard Copy Prev Col Graph								
Compressor Units 1 2 3 4 5 6 7 8 9 10 2001 0004 0004 1201 1201 1271 1								
200 hp QNW KW 178.1 178.3 177.9 177.1 177.7 178.1 178.0 177.9 177.7 17 250 hp QNW KW 166.5 166.8 167.5 168.3 168.5 168.5 168.4 168.0 168.1 16								
New 250 hp VSD kW 0.0 <								

🕽 Syst	tem Profiles											>
File	Calculators Help	,										
/												<u>C</u> lose
-Selec Fac Syst	st ility rem Production		• Day	vtype St	unday			- Sysi	tem pres control ra	sure <mark>100</mark>	0.0 - 120).0 psig
	Data Entr	у			Profile S	Summary		γ^{-}		To	otals	
	Cascade Order - cli	ck cell to tog	igle stage	#/'off'					Co	py Prev	Col	<u>G</u> raph
	Compressor 200 hp QNW		1	2	3	4	5	6	7	8	9	<u>10</u> ▲
	New 250 hp VSD		Z Off	Z Off	∠ Off	∠ Off	Z Off	∠ Off	Z Off	Z Off	2 Off	∠ Off
-	•											
	Profile data type:	^p ower, kW		•		<u>P</u> a	ste From	i Clipboar	d Co	py Prev	Col	G <u>r</u> aph
	Compressor 200 bp ONW	Units	1	2	3	4	5	6	7	8	9	10 -
	250 hp QNW	kW	165.6	163.8	162.4	161.8	143.1	0.0	0.0	0.0	0.0	
	New 250 hp VSD	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	•											• •

3 System Profiles X									
File Calculators Help									
🖌 🖃 🗧 📍				<u>C</u> lose					
Select Facility System Production Daytype Monday System pressure control range 100.0									
Data Entry	Profile	Summary	Totals						
Cascade Order - click cell to tog	gle stage#/'off'		Copy Prev Col	<u>G</u> raph					
	1 2 3	4 5 1	6 7 8 9	10 -					
200 hp UNW									
New 250 hp VSD	CIF OFF OFF	110 110 110		Off					
				•					
Profile data type: Power, kW	-	Paste From Clip	board Copy Prev Col	Graph					
Compressor Units	1 2 3	4 5	6789	10 🗕					
200 hp QNW kW 250 hp QNW kW	0.0 0.0 0.1 0.0 0.0 0.	0 0.0 84.6 1 0 0.0 83.8 1	75.9 177.1 181.6 182.2 64.2 163.6 164.5 165.0	18					
New 250 hp VSD KW	0.0 0.0 0./	0 0.0 0.0	0.0 0.0 0.0 0.0						
Image: Profile data type: Profile data type: Power, kW Image: Compressor Units 200 hp QNW kW 250 hp QNW kW New 250 hp VSD kW Image: Image	I 2 3 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1	Paste From Clip 4 5 0 0.0 84.6 1 0 0.0 83.8 1 0 0.0 0.0	board Copy Prev Col 6 7 8 9 75.9 177.1 181.6 182.2 64.2 163.6 164.5 165.0 0.0 0.0 0.0 0.0	Graph 10 ▲ 18 16 16 ▼					

The Baseline

3 System Profiles X										
File Calculators Hel	р									
/ 🗉 🗧 👂 📍								<u>C</u> lose		
Select Facility Daytype System pressure 100.0 - 120.0 psig System Production										
Data Enti	у У		Prof	ile Summary			Totals			
System Summary										
Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Energy Cost, \$	<u> </u>		
Monday	1,040	1,459	38.4	348.8	51.3	349,102	23,564			
Week Day	6,264	1,509	39.7	346.6	52.5	2,151,606	145,233			
Sunday	260	1,434	37.7	347.4	51.0	86,809	5,860			
								-		
System Totals ∢	7,564	1,500	39.5	348.8	52.3	2,587,516	174,657 •			
	Copy To Clipboard									
	Total demand cost, \$ \$0									
Total operating costs, \$ \$174,657										

€ 3, E	nergy Efficiency	y Measures							×
File	Calculators	Help							
D		a ?	Сору <u>Е</u> ЕМ	Scenario		Life Cyc	le R	es <u>u</u> lts <u>C</u> lose	
	Facility System Produc	tion	• •	EEM Scenario	eak reduc	tion and a:	dd VSD	•	
		Data Entry				Savings Si	ummary		
	Description	ak reduction and add	VSD		Indude	Order	Edit/ Review	Data Needs Review	
		DEMAND SIDE	Be	educe Air Leaks	\checkmark	1 💌			
			Improve End	Use Efficiency		-			
			Reduce Syst	em Air Pressure		•			
		SUPPLY SIDE	Use Un	oading Controls		-		Γ	
			Adjust Casca	ding Set Points		-			
			Use Auton	natic Sequencer		-			
			Re	educe Run Time	\checkmark	2 💌			
		1	Add Primary Ro	eceiver Volume*		-			
	* Available only if air storage capacity was entered in the system module. Visit the system module to edit this value. Only lubricant-injected rotary screw compressors with unloading controls will benefit from adding receiver volume.								

🖏 EEM - Reduce Air Leaks			×
File Calculators Help			
<u>/ I 5 ?</u>		Resul	ts <u>C</u> lose
Facility		System Production	
Description Reduce Air Measured data Airflow, act	·Leaks	Measure cost, \$ 5000	
Compressor Operations To F Compressor 200 hp QNW 250 hp QNW New 250 hp VSD Maximum hourly system at (according to entered pr	eed Leaks Airflow, acfm acfm acfm acfm acfm acfm acfm acfm 0 acfm 1 1 1 1 1 1 1	Leak Airflow Values Airflow, acfm Peak system requirement + leaks Leaks 200 Peak system requirement 1314 Reduce leaks by 200 acfr	% Cs. 39.8 5.3 34.6 n 100.0 %

🗅 EEM - Reduce Run Time X										
File Calculators Help										
🖌 🖃 🗧 🔋			Res <u>u</u> lts <u>C</u> lose							
		D.	ata View							
Facility O Existing Bestore										
System Production										
Measure Description										
Description Reduce Run Time Measure cost, \$ 106700										
Proposed Run Time Data										
Daytype Monday	A check indic online. Unche	ates a compressor is availat eck to force a compressor o	ble or ff.							
Compressor Airflow Cap.,acfm	1 2 3	4 5 6	7 8 9 🔶							
200 hp QNW 1,006										
250 hp QNW 1,266										
1,527										
			•							
Available Airflow, acfm	1527 1527 1527	1527 1527 1527	1527 1527 152							
Required Airflow, acfm		0 220 1314								

3 Energy Efficiency Measures X									
ile Calculators Help									
	?	Copy <u>E</u> EM	l Scenario		L	ife Cycle	Res <u>u</u> l	lts <u>C</u> lose	a
Facility International Paper System Production									
Da	ta Entry				Savi	ings Sun	nmary		
Description	Energy Savings, kWh	Energy Javings, \$	Energy Savings, %	Demand Savings, kW	Demand Savings, \$	Installed Cost, \$	Total Savings, \$	Simple _ Payback, years	•
Reduce Air Leaks	457,487	30,880	17.7	64.1	0	5,000	30,880	0.2	
Reduce Run Time	484,848	32,727	18.7	64.9	0	106,700	32,727	3.3	
									-
TOTALS 942,335 63,608 36.4 129.0 0 111,700 63,608 1.8 ↓									
Double-click row to view corresponding measure input data Copy To Clipboard									

Bar Graphs

Bar Graphs

Calculators

Calculators

🗅 Air Storage Capacity Calculator 🛛 🗙	🔁 Cycle Time Calculator
Measured Test Conditions	Actual Conditions
Elevation, ft. β000 Atmospheric pressure, psia 13.17 Compressor capacity, acfm 500 Full load or cut-in pressure, psig 100.0 Unload or cut-out pressure, psig 110.0 Pump-up time, sec. 30 Drain-down time, sec. 15	Elevation, ft. 3000 Atmospheric pressure, psia 13.17 Compressor capacity, acfm 500 System airflow requirement, acfm 400 System volume, cubic feet 109.0 Full load or cut-in pressure, psig 100.0 Unload or cut-out pressure, psig 110.0
Results Air storage capacity (receivers + distribution pipe), ft3 109.8 Close US, Department of Energy Comparison of Energy	Results Pump-up time, sec. 50.0 Drain-down time, sec. 12.0 Total cycle time, sec. 62.0 Close
Energy Efficiency and Renewable Energy Bitgagyas a zasysta klass there there are a they should be field a solution	

 \times

Performance Profile Graph

VSD Performance Graph

MEASUR Tool

MEASUR Tool

Compressed Air Calculators

Compressed Air Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air usage.

Compressed Air Pressure Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air system pressure.

Actual to Standard Airflow

The calculator converts ACFM (Actual cubic feet per minute) to SCFM (Standard cubic feet per minute) and vice versa for the given conditions using either ASME standard conditions or CAGI/ISO standard conditions.

Leak Loss Estimator - Bag Method

Estimates the leakage losses in a compressed air system using the bag method

Pneumatic Air Requirement

Estimate the quantity of air required by a specific single acting or a double acting piston cylinder compressor

Compressed Air - Leak Survey

Used to quantify the energy savings associated with reducing compressed air leaks.

MEASUR Tool

Receiver Tank Sizing

Calculate the required size of the receiver tank

Usable Air Capacity

Estimate the quantity of compressed air that is available for use

Pipe Sizing

Determine pipe diameter when the volumetric flow velocity, pressure, and design velocity are known

Velocity in the Piping

Estimate the velocity of compressed air throughout system piping

System Capacity

Determine total capacity of compressed air system or specific pipes and receiver tanks

Operation Costs

Estimate the cost of operation of the compressor in both fully and partially loaded instances

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators. Get started with one of the following options. If you need help at any point along the way, click on a 🖉 User Manual icon.

 Let's go live to see how the MEASUR Tool works

Next Week Session 4 – Air Treatment

- Compressed air must be dried. This is an undeniable statement of fact.
 - Today's modern industry can no longer tolerate the problems of wet, dirty compressed air.
 - Wet air causes rust, pitting, blockages, and freeze-ups, with resultant component failure and product rejection.
 - Wet air is a major contributor of downtime, causing millions of dollars of lost production.

Questions?

