
Motor Systems Virtual INPLT Training & Assessment

Session 3

1111/1/1

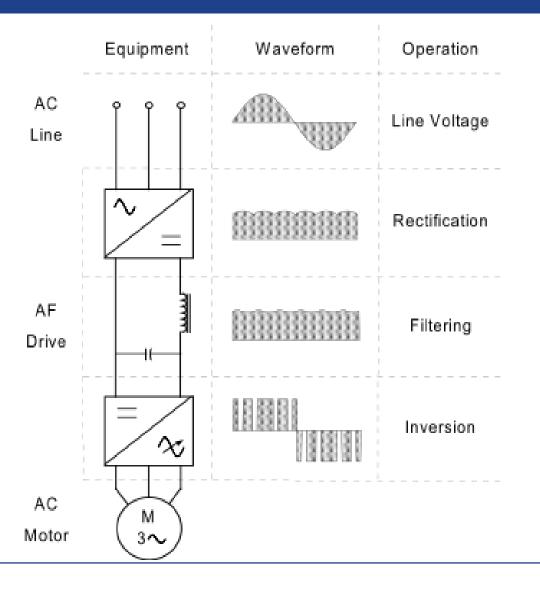
Motors Virtual INPLT Facilitator

Ron Wroblewski, PE, Productive Energy Solutions, LLC Madison, Wisconsin

> ron@productiveenergy.com (608) 232-1861

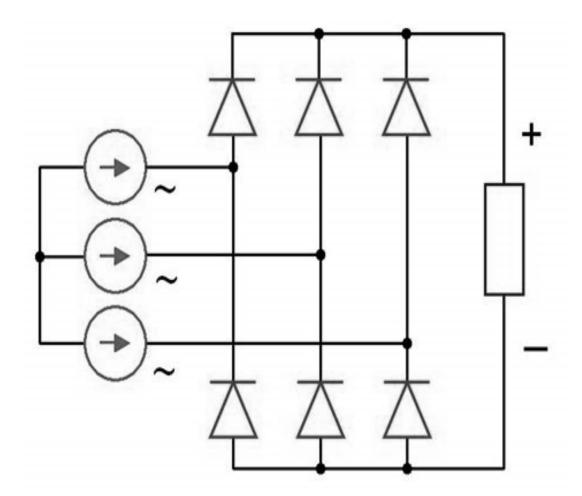
Learning Objectives

- List common problems associated with VFDs.
- Recognize critical requirements for VFD cables.
- Consider four key factors that dictate the critical (maximum) VFD cable length.
- Compare strategies for successful VFD operation with long motor cables.

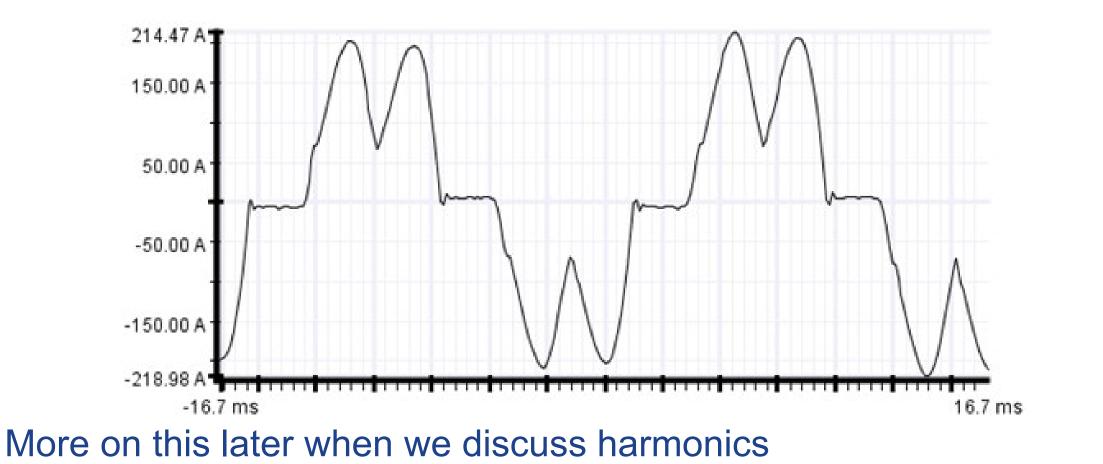

Agenda

- Advantages of problems of VFDs
- Minimum specifications for VFD cables
- Advantages and applications of inverter duty motors
- Causes and damaging effects of overvoltage reflection
- Strategies to avoid problems with bearing currents

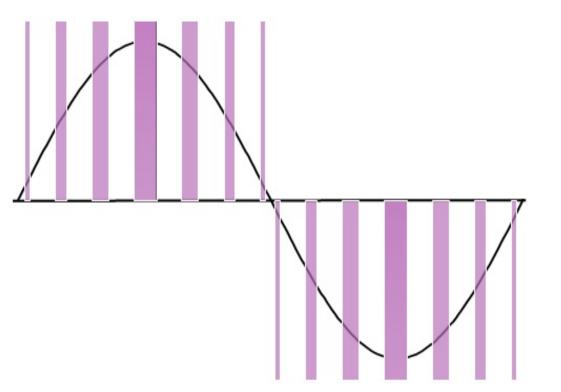
VFD Components



The Rectifier


The most common VFD design uses a 6-diode bridge rectifier

VFDs cause Non-Uniform Current Draw



The Inverter

IGBT transistors that fire very rapidly to convert the DC power into something that vaguely resembles alternating current (AC)

Advantages and Problems of VFDS

Answer the question below in the chat

1. What are the advantages of using VFDs?

You will have 2 minutes to put something in the chat. Don't worry if someone else already said the same thing, say it anyway.

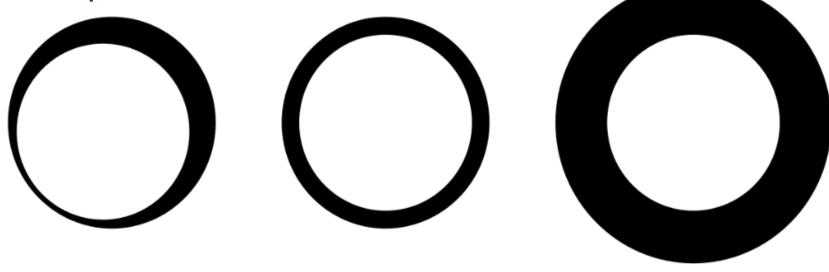
Answer the question below in the chat

2. What problems have you experienced with VFDs?

You will have 2 minutes to put something in the chat. Don't worry if someone else already said the same thing, say it anyway.

Problems with reusing the old cables laying loose in the cable tray:

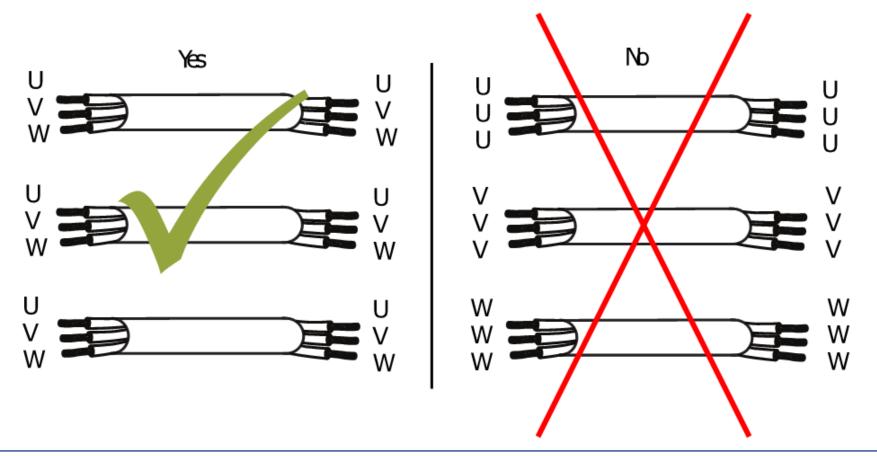
- Radio Frequency (RF) noise cross talk can corrupt critical control signals
- Shaft currents
- Nuisance trips of VFD
- Probably THHN on old cables will become brittle
 - Loose their dielectric properties and short
 - Cables with decaying insulation are a safety hazard
 - Cables with decaying insulation are a fire hazard


Avoid using cables with conductors twisted together

Feeder Cable Insulation (Between VFD and Motor)

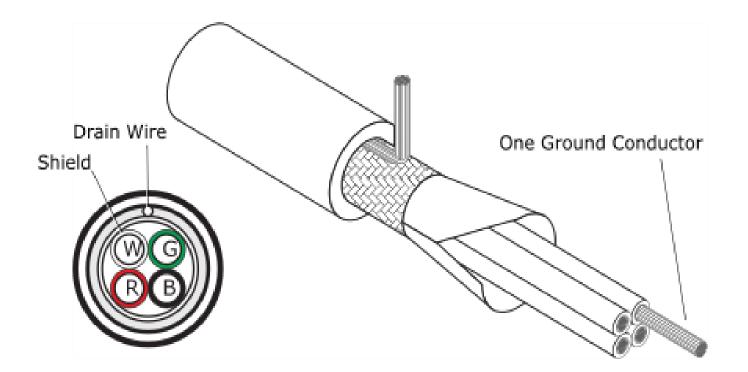
Minimum insulation thickness is 15 mil, 20 mil or more is better. XLPE is far superior to THHN

Poor, <15 mil (0.4 mm) Better, ≥15 mil


Best, ≥20 mil

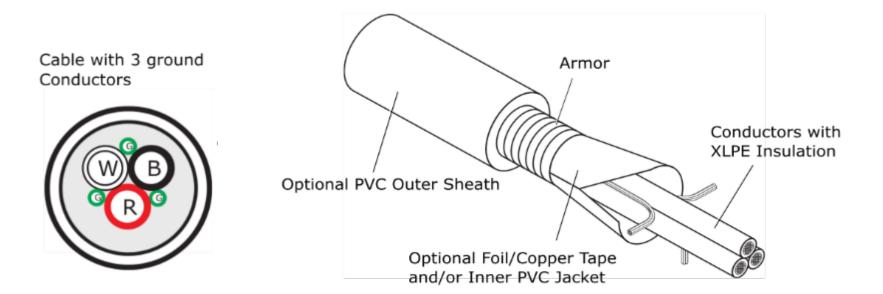
Multiple Cables (Between VFD and Motor)

Use 3 phases in each cable if more than one cable is required.

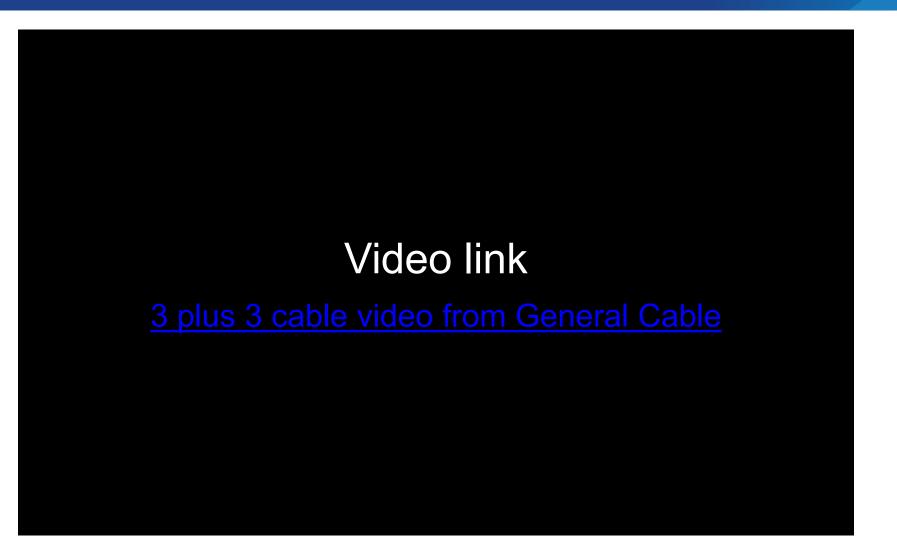


Cable Types for Drives

Cable type for drives ≤100 or 200 HP



Cable Types for Drives


Cable type for drives ≥100 or 200 HP

Video 3 + 3 Cable for VFD

Factors to Consider When Choosing a VFD Cable

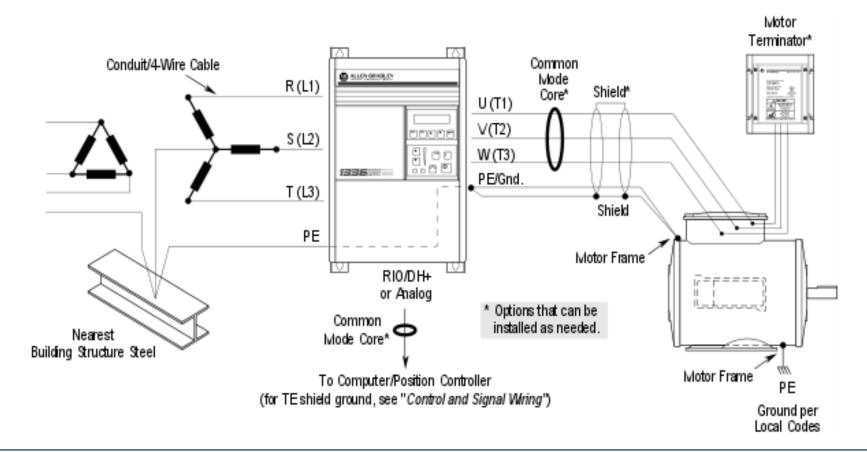
Factors to consider	Why it's important
DV/DT and clock rate	Faster switching puts more stress on the cable, and exacerbates reflected voltage
Fixed geometry NOT twisted conductors	Twisted conductors and loose cables in a tray cause many problems including RF and nuisance trips
RF (radio frequency) noise containment	Can cause interference with other equipment
Water, chemical, or crush resistance	Depending on where it will be installed
Dynamic braking	If the drive will be used for dynamic braking, a specialized cable is required

Factors to Consider When Choosing a VFD cable (cont)

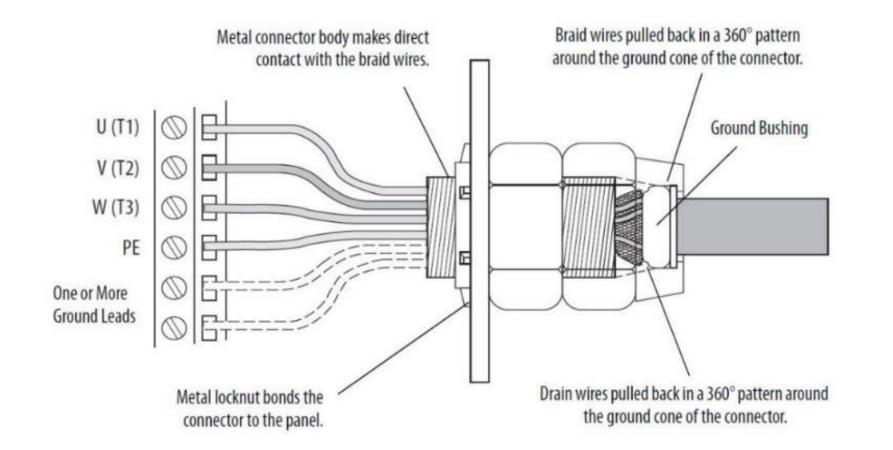
Factors to consider	Why it's important
XLPE insulation	Cross-linked polyethylene is thicker and tougher, less likely to become brittle, also reduces capacitance. Avoid THHN
Ampacity (NOT < 12 AWG)	VFD manufacturers recommend minimum 12 gauge to minimize nuisance trips
Voltage rating	May need 1000 or 2000 volt rating for lengthy cable runs to cope with reflected voltage (More on this in session 4)
Capacitance	If the capacitance it too high, it may overload the drive, especially small drives
Charging current of VFD	The charging current of the drive is needed to overcome the capacitance of the cable

Video Cable Capacitance

Video link


Cable Capacitance from Lutze cable

Grounding Connections


Critical to follow grounding and connection recommendations

Recommended Cable Termination

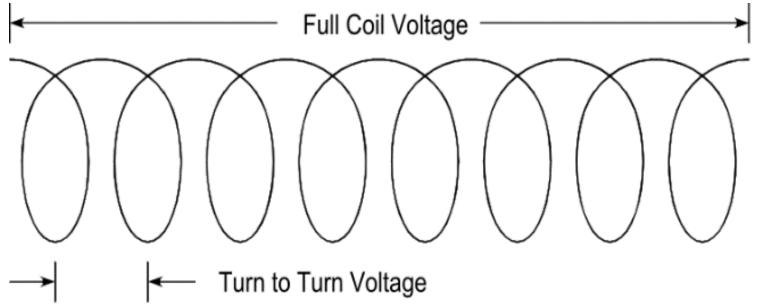
Video

Video link

Cable termination video from Wattmaster (Australian)

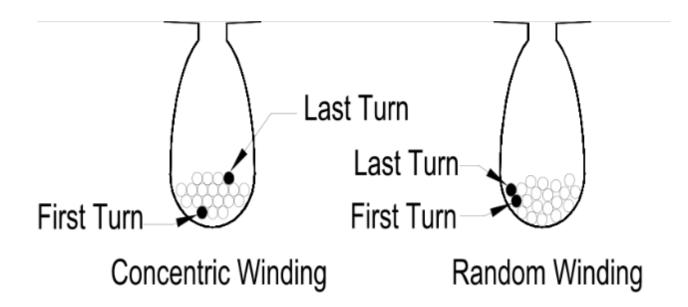
Advantages and Applications of Inverter Duty Motors

Better insulation in the windings protects against overvoltage reflection phenomenon.

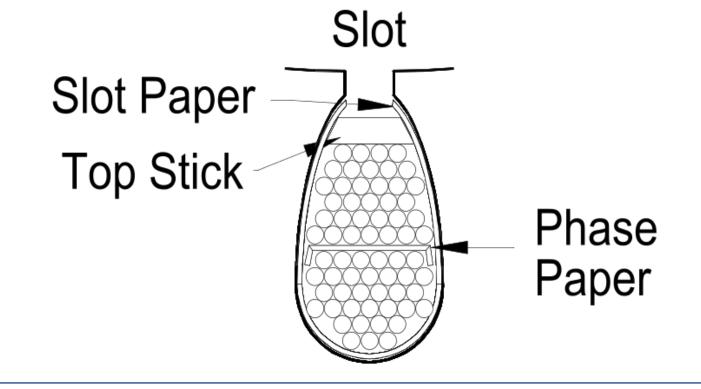

NEMA MG1 requires 1600 volt insulation in inverter duty motors

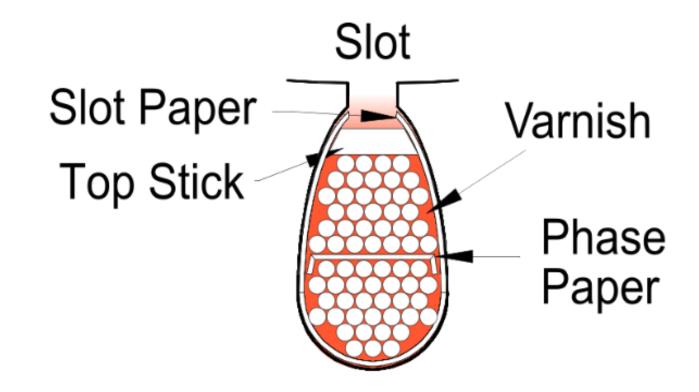
Voltage Rating	Not inverter duty	Inverter duty
Older motors	1000 v	1488 v
Newer motors	1200 v	1600 v

The loss across one turn might only be ~20 volts, (assuming 30 turns) compared to the 600 volt drop across the entire coil


The peak voltage the insulation sees is higher than the 460 volt RMS voltage

Concentric winding greatly reduces chance of short-circuits


 With concentric winding, the first and last turn will be separated by the other turns.


Phase paper helps to avoid short circuits. Top stick holds winding rigidly in place.

Extra varnish dip and bake locks the windings more firmly in place.

Inverter Duty Motor May Have Coated Bearings

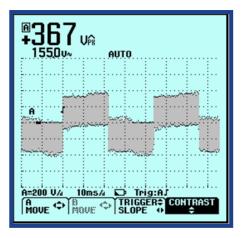
Aluminum oxide coated bearing provides electrical insulation.

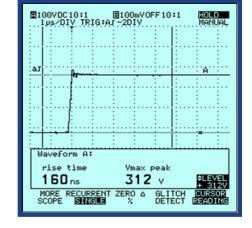
Relatively inexpensive, so sometimes included in GP motors


Causes and Damaging Effects of Overvoltage Reflection

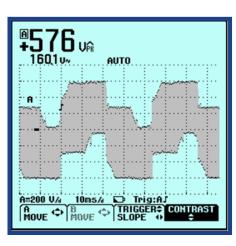
Overvoltage Reflection

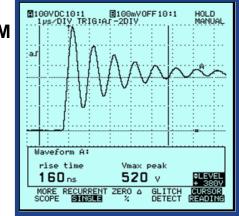
Typical failure from overvoltage reflection: Winding shorted, turn-to-turn





Comparison of PWM waveform and pulses




Leading edge of normal PWM pulse

PWM waveform with reflected voltage

Leading edge of PWM pulse with reflected voltage (ringing)

 ch between line and load impedance	+	lc	ong cable	=	reflected wave
			Typical Surg Impedance (ohms)		
Cable				80-1	80 Ω
Motors <5 hp			20	000-50	00 Ω
Motor 125 hp				8	00 Ω
Motor 500 hp				4	00 Ω

Voltage at the motor can be 2.4 times higher than VFD output.

$$\Gamma = \frac{Z_{load} - Z_{\theta}}{Z_{load} + Z_{\theta}}$$

$$V_{motor} = (1 + \Gamma) \times V_{drive}$$

TIP: For smaller, dual-voltage motors, reconfigure the motor wiring and VFD settings for 230 volt operation!

At the lower output voltage, you are much less likely to exceed the ratings of even older motors with insulation rated at 1,000 volts.

Critical Cable Length

To determine the critical cable length, consider the following:

- Motor characteristics
 - NEMA (or IEC) frame size
 - HP (or kW) rating
 - Insulation rating on the wire used in the windings
- Drive characteristics
 - kHz Frequency

This information is contained in the 150 or 200 page installation manual that comes with the drive.

Example: Finding the Critical Cable Length

- Model XY3 wall mount drive
- 400 volt motor

Drive	Rating		No Solut m (ft.)	tion	1	(Reactor m (ft.)	Only		(Reactor a RWR m (ft.)	nd Damping	Resistor or	1321-	Reactor/R WR (see page 152)	Resi	stor	Avail	able O	ptions
Frame	kW	kHz	1000V	1200V	1488V	1600V	1000V	1200V	1488V	1600V	1000V	1200V	1488V	1600V	Cat. No.	Ohms	Watts	TFA1	TFB2	RWR2
3	15	2	7.6 (25)	137.2 (450)	365.8 (1200)	365.8 (1200)	91.4 (300)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	1321-				•	
		4	7.6 (25)	91.4 (300)	152.4 (500)	213.4 (700)	18.3 (60)	91.4 (300)	365.8 (1200)	365.8 (1200)	182.9 (600)	304.8 (1000)	365.8 (1200)	365.8 (1200)	RWR35DP					
	18.5	2	7.6 (25)	137.2 (450)	365.8 (1200)	365.8 (1200)	91.4 (300)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	365.8 (1200)	1321-				•	
		4	7.6 (25)	91.4 (300)	152.4 (500)	213.4 (700)	18.3 (60)	91.4 (300)	365.8 (1200)	365.8 (1200)	182.9 (600)	304.8 (1000)	365.8 (1200)	365.8 (1200)	RWR35DP					

Example: Finding the Critical Cable Length (cont.)

Example find the critical (maximum) cable length for the VFD:

- Model XY3 wall mount drive
- 400 volt
- Frame 3
- Rating of 15 kW
- Default carrier frequency in the VFD is 4 kHz
- Newer energy efficient motor

First look up the insulation rating of the motor, then find the corresponding table in the VFD manual

Example: Finding the Critical Cable Length (cont.)

Drive	Drive Rating			No Solution m (ft.)						
Frame	kW	kHz	1000V	1200V	1488V	1600V				
		2	7.6 (25)	137.2 (450)	365.8 (1200)	365.8 (1200)				
(3)	(15)	4	7.6 (25)	91.4 (300)	152.4 (500)	213.4 (700)				
	18.5	2	7.6 (25)	137.2 (450)	365.8 (1200)	365.8 (1200)				
	10.5	4	7.6 (25)	91.4 (300)	152.4 (500)	213.4 (700)				

Coping With Reflected Wave - Dual Voltage Motors

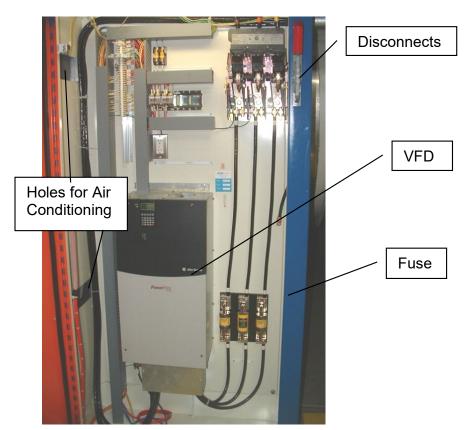
If the motor is dual voltage, use 230 volts if practicable.

ULTRA POWER SERIES								
€ ₿		MODEL NO. TB0014DFA VOLTS208-230/460 AMP. 3.8-3.6/1.8 ENCL. DDP FRAME NO. 143T MAX. AMB. 40 °C SERVICE FACTOR 1.15						
HP	1	TIME RATING CONT. BRG. D.E. 6205ZZ LOWVOLTS						
RPM	1720	KVA CODE K NO. 0.D.E. 6205ZZ 7 8 9						
INS.	В	NEMA F.L. EFF. 77 NEMA DESIGN B 192939						
HZ	60	DATE CODE 0396 SER # 001687411 HIGH VOLTS						
	<mark>Э</mark> _т	ATUNG CO. MADE IN TAIWAN R.O.C.						

Coping With Reflected Wave - Motor Insulation

Use a motor and cable with higher voltage rating.

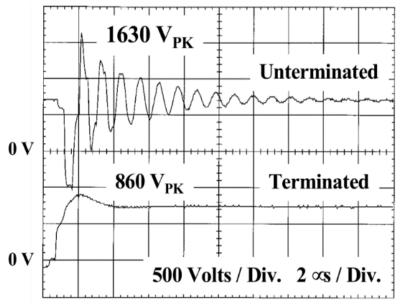
	Not Inverter Duty	Inverter Duty
Older	1000	1488
Newer	1200	1600



Coping With Reflected Wave – Minimize Cable Length

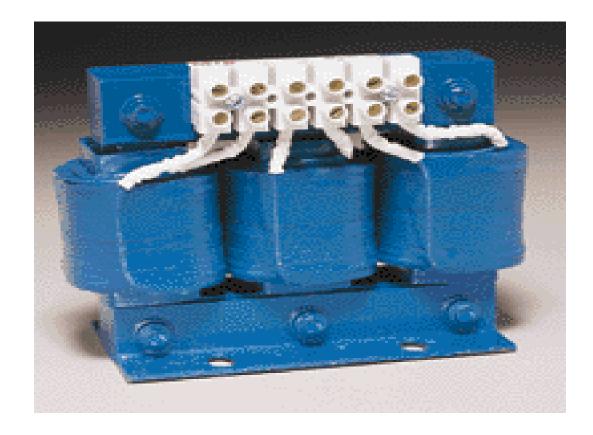
Move VFD closer to motor

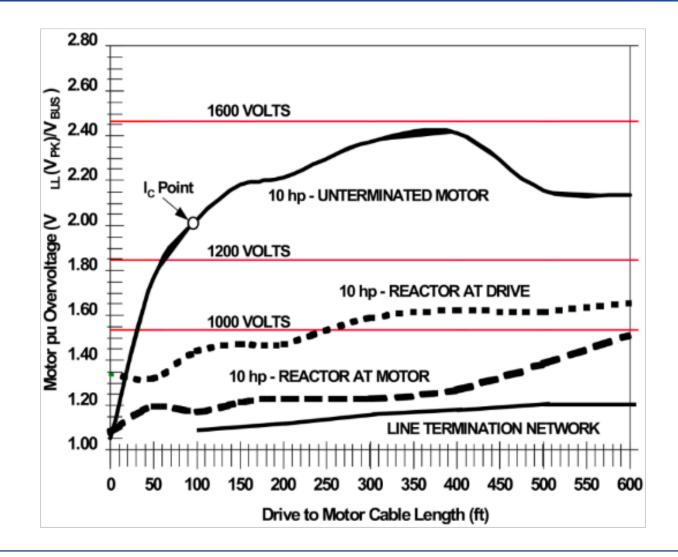




Coping With Reflected Wave – Line Termination Network

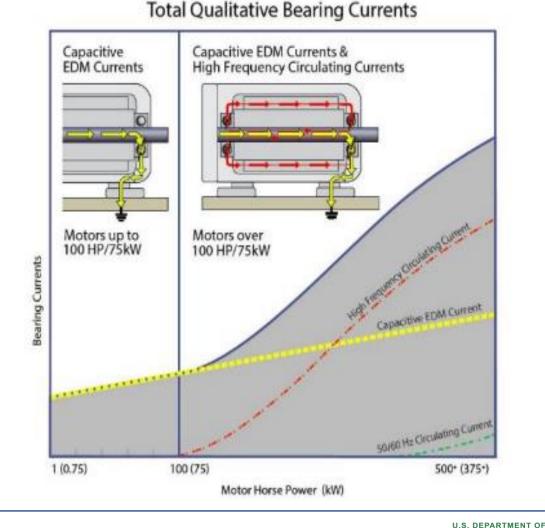
Use a line termination network – A clever arrangement of capacitors and resistors that balances the impedance




Coping With Reflected Wave - Use an Output Reactor

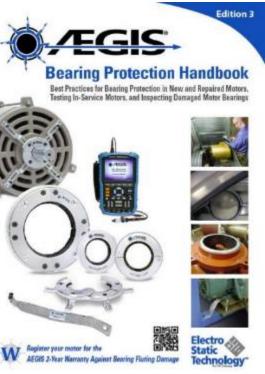
Use Sine Wave Filter or DV/DT Filters

Strategies to Avoid Problems with Bearing Currents



Sometimes VFDs Cause Bearing Fluting

- Bearing currents occur when shaft voltages exceed the insulating capability of the grease.
- We call this an EDM current
 <u>Electrical Discharge Machining</u>



Avoid Bearing Damage from VFDs

Avoid Damage:

- Proper cable type
- Proper cable termination strategies
- Proper grounding
- Insulated bearings
- Shaft grounding

Shaft Grounding Video (optional)

Video link

Aegis bearing current demo

Questions

Thank you!

For Questions or Comments please reach out to the following:

Ron Wroblewski, PE Productive Energy Solutions, LLC ron@productiveenergy.com Thomas Wenning Oak Ridge National Lab wenningtj@ornl.gov

52