

WATER VIRTUAL IN-PLANT (VINPLT) TRAINING

Session 7

1111/1/1

Session 7: Persistence Strategies

Energy Efficiency & Renewable Energy

Sponsor:

Today's Agenda

Homework Recap

Session 8 Participant Presentations

Engaging Employees

Energy Calculations Review

Break

Persistence Strategies

Activity Share-out

Kahoot!

Q&A

HOMEWORK RECAP

Energy Efficiency & Renewable Energy

Pump Curve @100%

Affinity Laws

Flow (Q) will change directly	When there is a change in speed (N) or diameter (D)	$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} or \frac{D_1}{D_2}$
Head (H) will change	As the square of change in speed (N) or diameter (D)	$\frac{H_1}{H_2} = \left(\frac{N_1}{N_2}\right)^2 \operatorname{or}\left(\frac{D_1}{D_2}\right)^2$
Power will change	As the cube of a change in speed (N) or diameter (D)	$\frac{BHP_1}{BHP_2} = \left(\frac{N_1}{N_2}\right)^3 \text{or} \left(\frac{D_1}{D_2}\right)^3$

Pump Curve @100%

Homework Recap

POLL

SESSION 8: CLOSEOUT

Energy Efficiency & Renewable Energy

Drinking Water Systems VINPLT: Close-out Presentation

11111111

Company Name: Facility Name: Participant Name(s):

Energy Efficiency & Renewable Energy

Savings Opportunities in Water Treatment

Savings Opportunities in Source Selection

Savings Opportunities in "Leaping"

Savings Opportunities in "Looping"

Savings Opportunities in "Leaking"

Savings Opportunities in "Losing"

Savings Opportunities in "Loading"

Savings Opportunities in Pumps

Savings Opportunities from Hydraulic Model

Tips Learned from this Training

Next Steps or Action Items after the VINPLT

- What are your next steps to implement opportunities?
- What are you planning to do after the VINPLT?
- Lessons learned?

Questions and Answers

ENGAGING EMPLOYEES

Energy Efficiency & Renewable Energy When people are financially invested, they want a return.

When people are emotionally invested, they want to contribute.

> Simon Sinek, leadership guru and promoter of "The Golden Circle"

An Engaged Workforce...

UNDERSTANDS the goals and objectives for energy management.

KNOWS their jobs impact energy performance.

Feels **EMPOWERED** to take steps.

Is **AWARE** of the process for collecting and vetting their energy ideas.

Is **RECOGNIZED** for their contributions.

SEM Alumni Employee Engagement Strategies

Key takeaways: Culture change within the water department played a critical role in helping the public works staff embrace energy management. Recommended operational changes also improved operating pressures, which resulted in fewer customer complaints.

SEM Alumni Employee Engagement Strategies

LESSONS LEARNED

- Staff bought in completely and quickly
- Questioning assumptions was crucial
- Surprised by how many energy saving ideas were generated
- Even with a small team, many projects were completed
- It didn't take a lot of time or money to get most projects implemented
- Energy saving projects were interesting and fun to work on

SEM Alumni Employee Engagement Strategies

Keep your team informed about successes (and failures)

Communication is critical to maintaining momentum. Failures are okay and expected. Take small steps with a new measure so you can back out before an issue grows.

Team effort with operations, engineering, and management

All team members, including upper management, need to be involved and supportive. Ask for ideas from the entire staff.

Past Experience with Employee Engagement

ENERGY CALCULATIONS REVIEW

Energy Efficiency & Renewable Energy Booster station pumped 30 MG in June to maintain 85 PSIG line pressure.

Energy Calc:

<u>3.14 kWh x MG x Feet = energy consumption in a perfect world</u> MG*Feet <u>3.14 kWh * 30 MG * 85 psi * 2.31 Feet</u> = 18,500 kWh in a perfect June MG*Feet psi

Booster station pumped 30 MG in June to maintain 85 PSIG line pressure.

18,500 kWh in a perfect June

Wire-to-Water efficiency is the total efficiency stack, from the grid through the pump system to the material moved.

97% VFD x 94% motor x 85% pump = 77.5%

<u>18,500 kWh</u> = 24,000 kWh in June 0.775

What is the energy intensity? 24,000 kWh/30 MG = 800 kWh/MG

Booster station pumped 30 MG in June to maintain **80** PSIG line pressure.

<u>5 psi reduction</u> * 24,000 kWh in June = 1400 kWh savings 85 psi

Energy intensity is 2,700 kWh/MG Leak repair saves 60 MG/year

2,700 kWh * 60 MG = <u>162,000 kWh</u> MG year year

PERSISTENCE STRATEGIES

Energy Efficiency & Renewable Energy It's not just what you know, but how you practice what you know that determines how well the learning serves you later.

> Peter C. Brown Make It Stick

Energy Project Lifecycle

43

What could happen? Or has already happened?

44

Persistence Strategies

Source Selection

Energy savings from using Well 1 more and Well 3 less

- Reduced Well 3 by 76 MG
- Assume Well 1 produced extra 76 MG

 $\frac{1800 \text{ kWh} - 1200 \text{ kWh}}{\text{MG}} = \frac{600 \text{ kWh savings}}{\text{MG}}$ $\frac{600 \text{ kWh savings} * 76 \text{ MG}}{\text{MG}} = 45,600 \text{ kWh savings}$ $\frac{600 \text{ kWh savings} * 76 \text{ MG}}{\text{MG}} = 45,600 \text{ kWh savings}$ $\frac{45,600 \text{ kWh}}{\text{year}} * \frac{50.05}{\text{kWh}} = $2,280 \text{ in energy (kWh) savings}$

35 hp * 0.75 kW/hp / 0.93 / 0.97 * 5,000 hrs/year = 145,000 kWh/yr

145,000 kWh/yr * 5% = 7,250 kWh/year

On your smart phone Go to: <u>https://kahoot.it/</u> Game PIN:

KAHOOT!

Energy Efficiency & Renewable Energy

- Engage employees around energy savings
- Implement persistence strategies whenever you implement energy saving projects
- Use rough energy calculations to estimate savings
- Prepare to share next week

Closing

Questions Comments Discussion

SEE YOU TUESDAY!

Saving energy, one gallon at a time

