

In-Plant Trainings

8 – Session Virtual Platform

11111111

What is an In-Plant Training?

- In-Plant Trainings (INPLTs) are system-specific workshops led by Better Plants experts that train participants on how to identify, implement, and replicate energy-saving projects.
- The goal is to help manufacturing plants reduce energy consumption and become more efficient.
- During Pre-Covid days, Better Plant partners hosted an on-site, three-day training at one of their facilities, and invited others to attend.
- Due to the challenges from Covid, we conducted this Training virtually, with eight (8) 2-hour online training sessions.
- Through Better Plants:
 - Industrial organizations commit to efficiency goals
 - Receive technical assistance and national recognition for their achievements

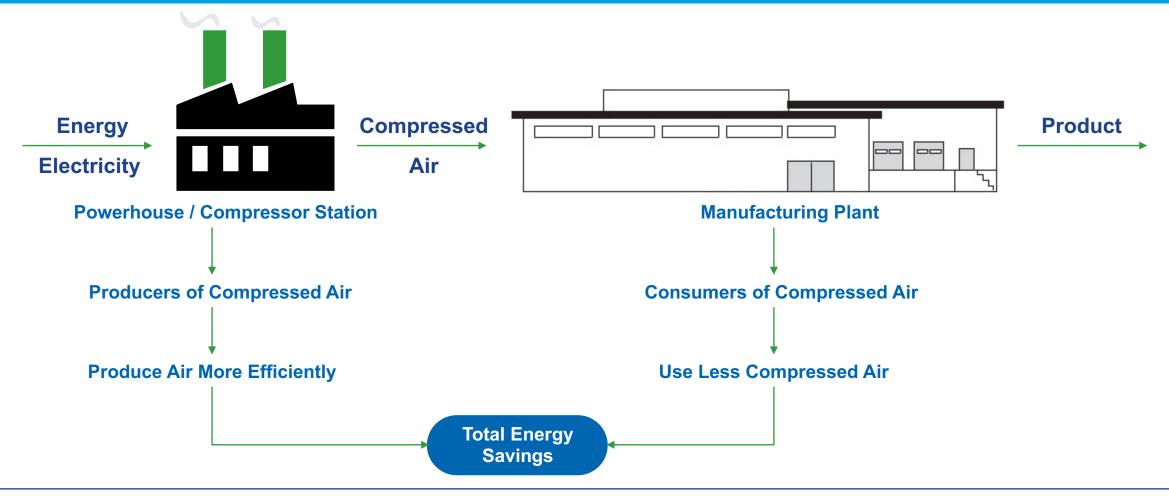
The Facilitator

- Frank Moskowitz Draw Professional Services
 - Compressed Air Challenge Instructor for Fundamentals & Advanced Workshop as well as an Instructor for AIRMaster+ Qualified Specialist Workshop
 - DOE Compressed Air System Energy Expert
 - In-Plant Training & Save Energy Now Assessments
 - CAGI Certified Compressed Air System Specialist
 - Co-Vice Chair <u>ASME EA-4 Energy Assessment for</u> <u>Compressed Air Systems</u>
 - International Standards Organization (ISO) Technical Advisory Group Member
 - Air compressors and compressed air systems energy management
 - Contact Information:
 - fmoskowitz@drawproservices.com
 - 602-809-4195

U.S. DEPARTMENT O

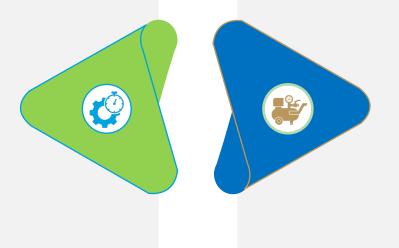
INSTRUCTOR

Week 1 we discussed:


Compressed Air Systems Basics

Compressed Air Systems Approach plant efficiency: energy >> product

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

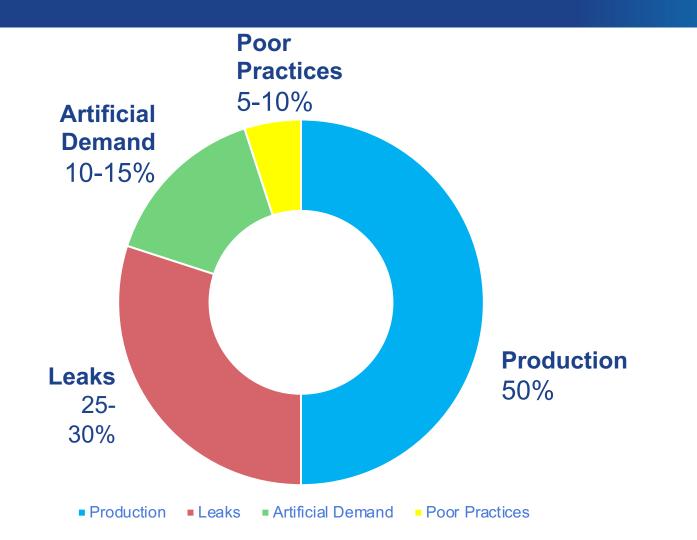


What Are My Goals?

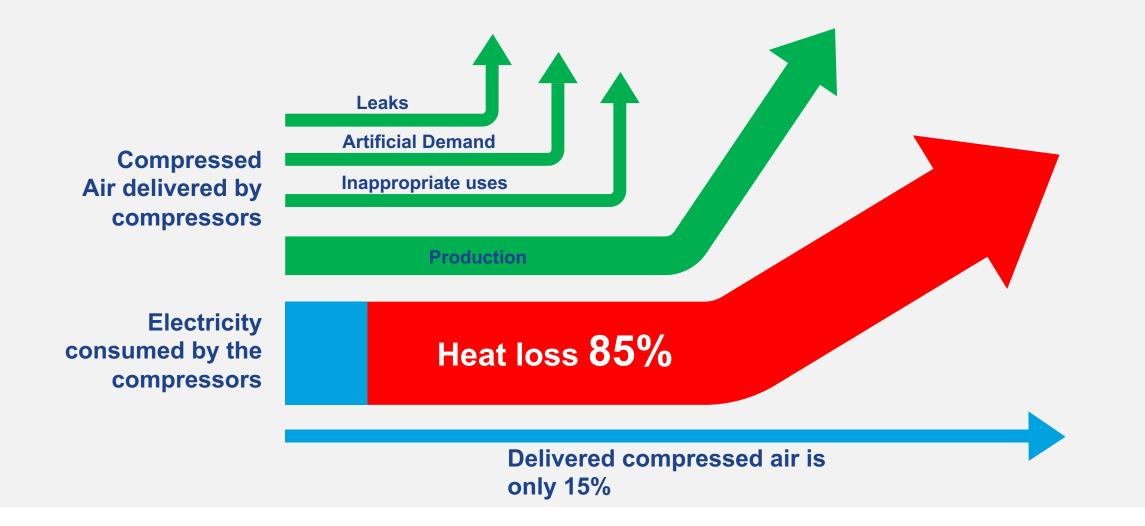
Produce more efficiently

- Improve Compressor Control
- Discharge Pressure?

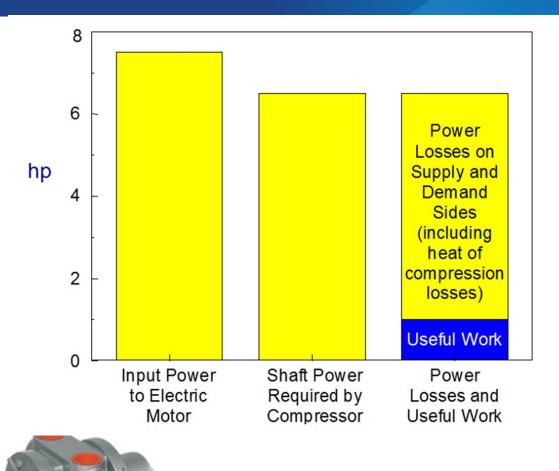
Use less compressed air


- Reduce Air Demand (Leaks, Inappropriate Uses, etc...)
- What is the Pressure at End Uses
- How does compressed air support production?

Understanding how compressed air is used is the single most important step to effective management.


Where does the air go?

Not very efficient!



Compressed Air Versus Other Energy Sources

- 1 hp air motor = 7-8 hp of electrical power
 - 30 scfm @ 90 psig is required by the air motor
 - 6 7 bhp at compressor shaft required for 30 scfm
 - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5-day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194

Week 2 we discussed:

Compressor Types Maintenance Compressor Room Best Practices and Ventilation

Ventilation

Heat Recovery Energy Savings Calculation

Annual energy savings (Btu/yr) =

0.80 x 0.85 x compressor bhp x 2,545 Btu/bhp-hour x hours of operation

Cost Savings (\$/yr)= $\left(\begin{bmatrix} \underline{EnergySavingsBTU / Yr} \\ BTU / UnitFuel \\ HeaterEfficiency \\ \end{bmatrix} \times \$UnitFuel \right)$

Example: 100 hp compressor running two shifts, 5 days per week

0.8 x 0.85 x 100 bhp x 2,545 Btu/bhp-hr x 4160 hr/yr = **719,929,600 Btu/yr**

In dollars:

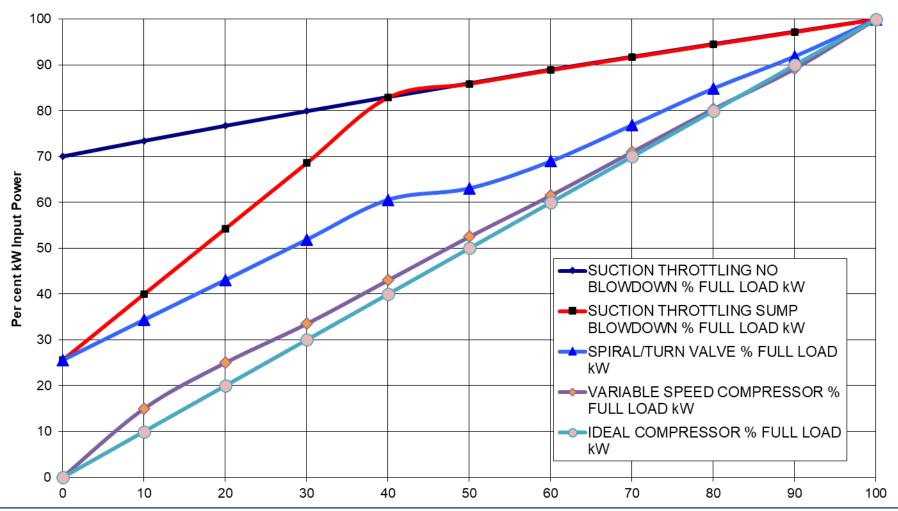
Cost Savings (\$/yr) = $\frac{\left(\frac{719,929,600Btu / yr}{100,000Btu / therm}\right)}{.85} \times \$0.40 / therm$

Cost Savings (\$/yr) =
$$\frac{7,199.296}{.85} \times \$0.40$$
 / therm

Cost Savings (\$/yr) = \$3,388

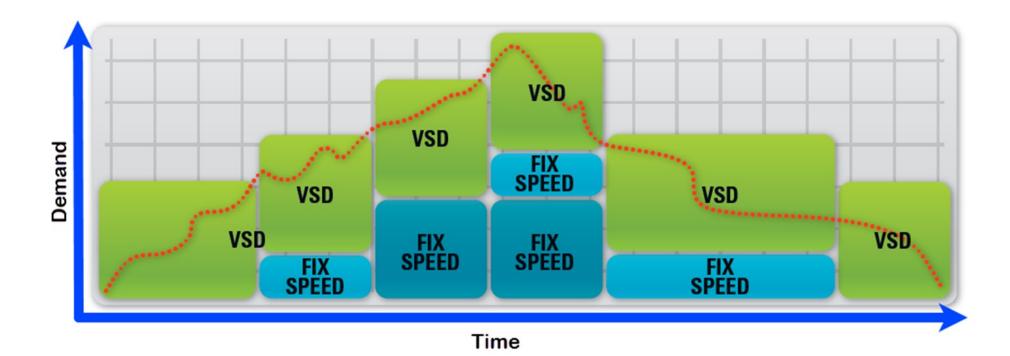
0.80 is the maximum theoretical recoverable heat as a percentage of the unit's output.0.85 adjusted the maximum theoretical recoverable heat to what is available in typical applications.2,545 converts bhp to Btu/hour

Session 3 – Week 3, we discussed:


Compressor Controls Intro to Airmaster+ Intro to LogTool Intro to MEASUR

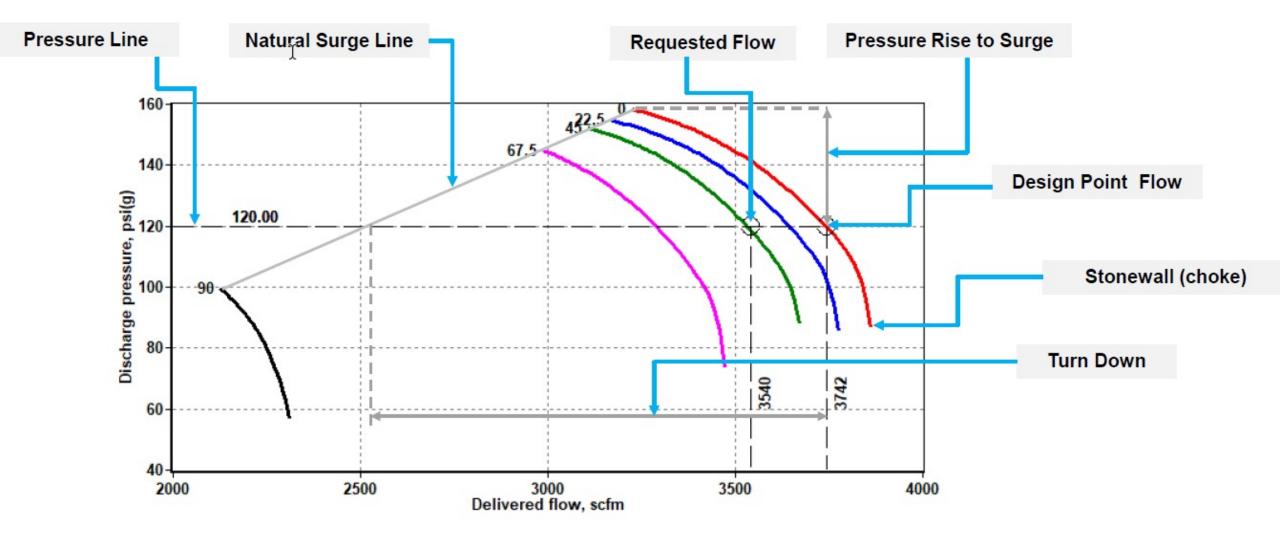
Inlet Valve Modulation

Various Compressor Control Performance Curves

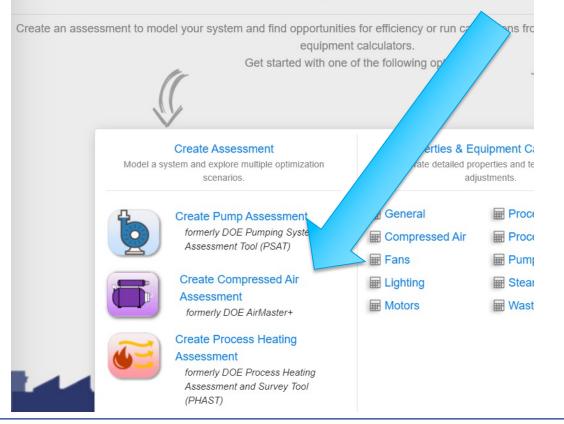


Per cent Capacity (Flow Out)

Variable Speed Compressors


 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the range of the VSD from min to max needs to be sized greater than the load/no load machine

Centrifugal Performance



MEASUR: Compressed Air Assessment!

- Coming Soon!
- VINPLT participants will be notified upon release.
- We will offer a supplemental session to help you learn the new software.

Welcome to the most efficient way to manage and optimize your facilities' sys

Create Your Compressor Inventory

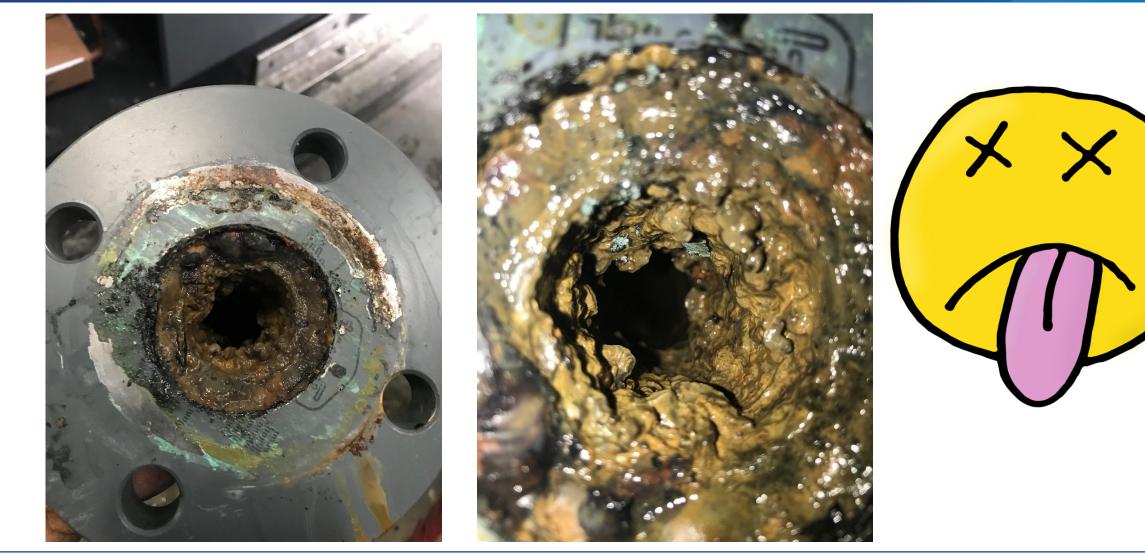
COMPRESSOR INVENTORY			CU	IRRENT INVENTORY		HELP	
Compressor Name	Compressor 1		Name	Compressor Type	Control Type	Pressure Range	
Description			> Compressor 1	Single stage lubricant-injected rotary screw	Load/unload	100 - 110 psig	t
	Set Data Fro	m Existing Compressor	Compressor 2	Single stage lubricant-injected rotary screw	Start/Stop	100 - 110 psig	a 40
NAMEPLATE DATA						+Add New Co	mpresso
Compressor Type	Single stage lubricant-	injected rotary screw 🗸					
Motor Power	5	hp	Compressor	Profile (Compressor 1)	Г	Graph All Com	pressor
Full Load Operating Pressure	100	psig					
Rated Capacity at Full Load Pressure	18	acfm	100%				
Full Load Amps	7.5	amps				*********	
Total Package Input Power	4.6	kW			********		
CONTROLS			80%				
INLET CONDITIONS			Loa	and the second			
DESIGN DETAILS							
PERFORMANCE POINTS			%).				
Discharge Pressur	e Airflow	Power	Power (% Full Load)				
Full Load (cut-in) 100 psig	18 acfm	4.6 kW	20%				
Max Full Flow (cut- out) psig	18 acfm	4.9 kW					
No Load (unloaded) 15 psig	0 acfm	2.3 kW	0%	20% 40%	60%	80%	100%
				Airflow (% C	apacity)		

Enter Your Operation Profile

1 Assessme	ent Basics	2 S	ystem In	formatio	n 3	Invento	ry 🚺	Day Ty	pes 5	Syste	m Profi	e						
Setup Profile	Profile S	ummary	Graph	is <mark>An</mark> n	ual Sum	mary												
		: Day Typ Data Ty				ndard Da Iow, % Ca			* *	Data Ir Pressu		ol Range		1 hr 100 -	· 110 psig)		~
	Compressor Ordering (No Sequencer)																	
	FLP 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
Compressor 1	100 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Compressor 2	100 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Profile Data	change																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Compressor 1	% Capacity	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Compressor 2	% Capacity	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20

Find Energy Savings!

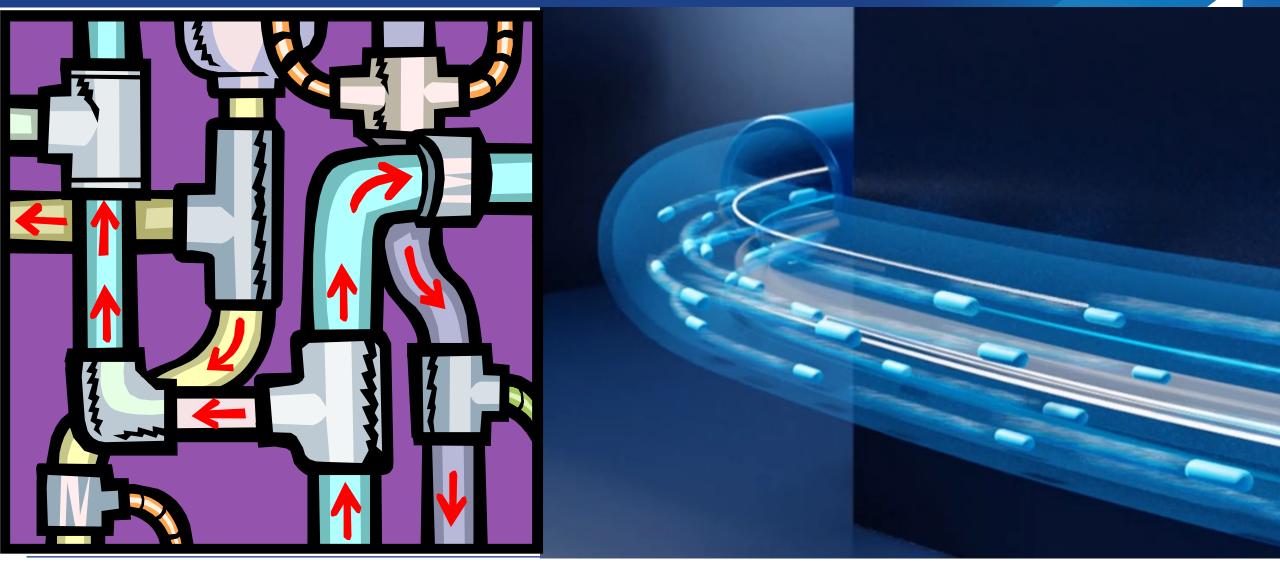
Setup Profile Profile Summary Tabl	e Profile Summary Graphs				Scenario 1 Selected Scenario	View / Add Scenarios
SELECT POTENTIAL ADJ	USTMENT PROJECTS		MODIFICATION	COMPF	RESSOR	HELP NOTES
Select potential adjustment projects to explore	opportunities to increase efficiency and the effect	tiveness of	RESULTS	PRO	FILE	HEEP NOTES
	your system.			All Day Types	~	
Add	New Scenario					
Modification Name	Scenario 1			Baseline	Scenari	01
mouncation Name	Scenario 1					
			Percent Savings (%)			
Reduce Air Leaks		1 ¥				18.0%
Implementation Cost	0	\$	Flow Reallocation Savings		\$201.99	
Leak Flow	2	acfm	Reduce Air Leaks Savings		\$150.57	
Leak Reduction	100	%	Peak Demand	3.87 kW	3.17 kW	1
			Peak Demand Savings		0.7 kW	
Improve End Use Efficiency		Off ✓	Peak Demand Cost	\$232.19	\$190.38	
Reduce System Air Pressure		Off 🗸	Peak Demand Cost Savings		\$41.81	
			Annual Energy (kWh)	29,662	24,321	
Adjust Cascading Set Points		Off ✓	Annual Energy Savings (kWh)	—	5,342	
Use Automatic Sequencer		Off ✓	Annual Cost	\$1,957.72	\$1,605.	16
			Annual Savings	-	\$352.56	
Reduce Run Time		Off 🗸				
Add Primary Receiver Volume		Off ✓				


Session 4 we discussed:

Air Treatment Dryers Filters Condensate Removal

EFFECTS OF WATER CONTAMINATION

So How Do I Measure My Dewpoint?



- Maintaining the dew point of your air or gas system will prolong the lifetime of your equipment and reduce maintenance costs.
- For dew points related to production processes, guarding the dew point is critical for the end-product and key in preventing costly production losses.
- Permanent monitoring enables you to detect and prevent problems quickly and may provide visibility that a change in dew point is capacity or maintenance related.

Session 5 we discussed: Distribution System

Let's Not Forget Rubber Hose Losses

	Air Pressure Loss (PSI) in Standard power tool hoses Based on 100 psi Line Pressure Hose Number and Size														
Air Flow CFM															
	1/4" x 10'	5/16" x 8'	1000 62230 1000	1/2" x 12 1/2		(1/2'' x 50'	3/4" x 12.5'		3/4" x 50'	50' +	50'+	50' +	x 50'		50' +
10 - 11	5.0	0.9								5.3	0.7	1.4			
11 - 12	5.9	1.0								6.2	0.8	1.6			
12 - 13	6.8	1.2	0.4						1	7.2	0.9	1.9			
13 - 14	8.0	1.4	0.5						1	8.4	1.1	2.2			
14 - 15	9.3	1.3	0.6			1				9.8	1.3	2.5			
15 - 16	11.0	1.9	0.7			1	1		1	11.6	1.5	2.9			
16 - 18	14.0	2.4	0.8			1	-		1	15.0	1.9	3.5	1.7		
18 - 20	19.6	3.0	1.0			1	-		1	21.4	2.4	4.5	2.0		
20 - 25		4.3	1.4	0.7	1.0	1.3			1		3.5	6.4	2.6	1.3	
25 - 30		6.6	2.1	1.0	1.5	2.3					5.2	9.8	3.8	1.9	
30 - 35		9.5	3.1	1.3	2.1	3.6			1		7.3	13.7	5.3	2.6	
35 - 40		12.8	4.2	1.7	2.8	5.2	1		Í	1	9.6	18.4	7.1	3.5	
40 - 50		19.3	6.3	2.4	4.1	8.0	1		1	1	14.0		10.4	5.2	1.8
50 - 60			9.6	3.7	6.3	12.2	1		1	1	21.8		16.0	7.8	2.3
60 - 70			13.5	5.3	9.0	17.4	0.9	1.4	1.9	1			22.8	11.1	3.0
70 - 80			18.7	7.1	12.4		1.1	1.7	2.5					15.0	3.7
80 - 90			25.0	9.0	16.1		1.4	2.2	3.2					19.8	4.6
90 - 100				11.0			1.7	2.7	4.0						5.8
100 - 120							2.3	3.5	5.6						7.9
120 - 140							3.2	4.8	8.0						11.2
140 - 160							4.6	6.6	11.0						15.5
160 - 180						1	5.6	8.7	15.2						20.4
180 - 200							7.2	11.0	-						
200 - 220						1	9.0		-	-				-	

From

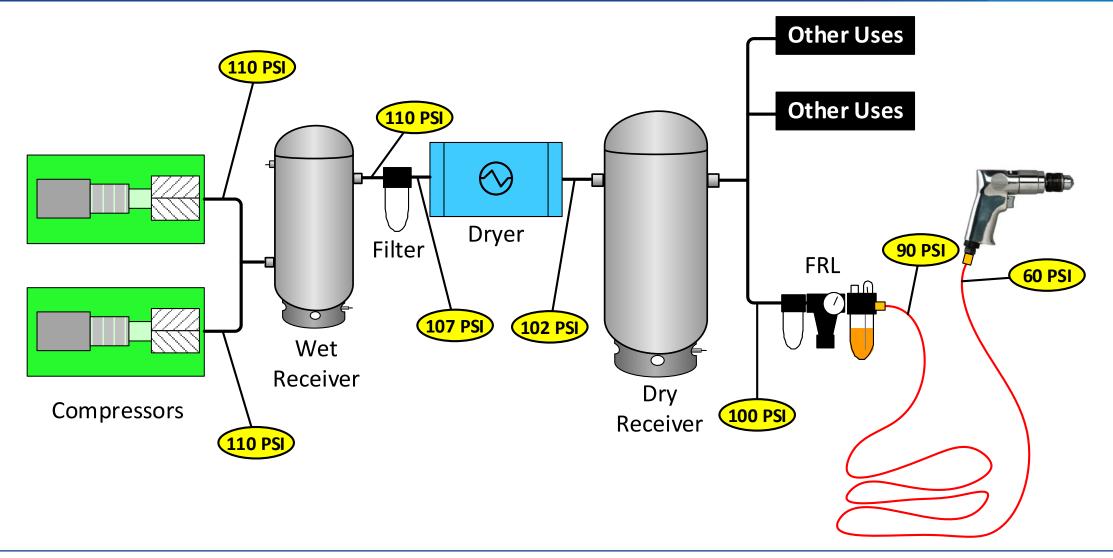
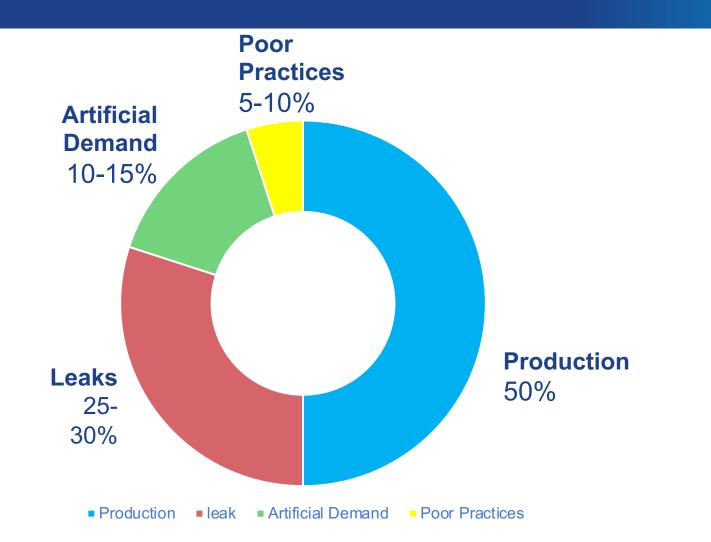

Better Plants

Table 4.7 Loss of Air Pressure Due to Friction @ 100 psig

	Cu Ft Free Air	Equivalent Cu Ft Compressed	Nominal Diameter, In.											
	Per Min	Air Per Min	1/2	3/4	1	1 1/4	1 1/2	2	3	4	6	8	10	12
	300	38.44				58.2	25.8	6.85	0.84	0.20				
	350	44.80					35.1	9.36	1.14	0.27				
	400	51.24					45.8	12.1	1.50	0.35				
	450	57.65					58.0	15.4	1.89	0.46				
	500	63.28					71.6	19.2	2.34	0.55				
	600	76.88						27.6	3.36	0.79				
	700	89.60						37.7	4.55	1.09				
	800	102.5						49.0	5.89	1.42				
	900	115.3						62.3	7.6	1.80				
	1,000	128.1						76.9	9.3	2.21				
	1,500	192.3							21.0	4.9	0.57			
	2,000	256.2							37.4	8.8	0.99	0.24		
	2,500	316.4							58.4	13.8	1.57	0.37		
	3,000	384.6							84.1	20.0	2.26	0.53		
	3,500	447.8								27.2	3.04	0.70	0.22	
	4,000	512.4								35.5	4.01	0.94	0.28	
-	4,500	576.5								45.0	5.10	1.19	0.36	
	5,000	632.8								55.6	6.3	1.47	0.44	0.17

Developing a System Profile

Session 6 we discussed:

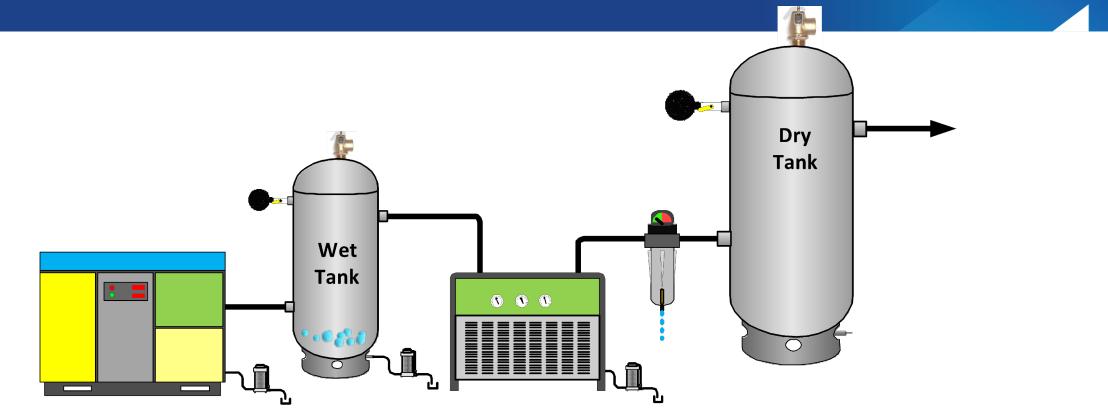

Demand Side

We looked at the waste

Potentially Inappropriate Applications

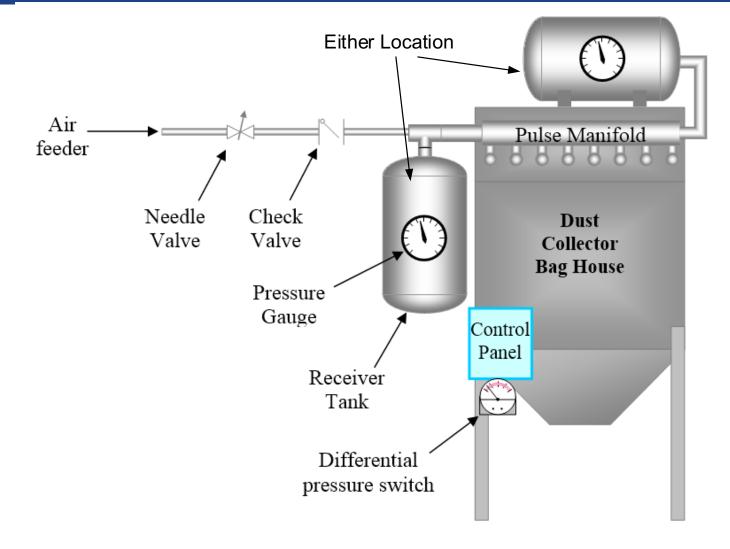
- Many applications can be served more efficiently by low pressure air from a fan, a blower; or by a vacuum pump, rather than by compressed air. Examples:
- Open blowing
- Sparging (agitating, aerating stirring, mixing)
- Aspirating
- Atomizing
- Padding
- Dilute phase transport
- Dense phase transport
- Vacuum generation

- Personnel cooling
- Open hand-held blow guns or lances
- Cabinet cooling
- Vacuum venturi
- Diaphragm pumps
- Timer drains/open drains
- Air motors


Session 7 we discussed:

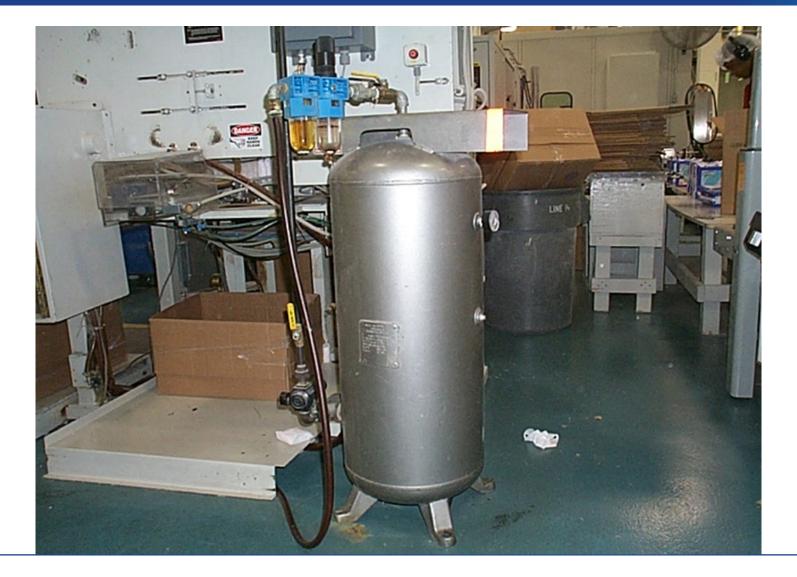
System Volume vs Storage

Best Practice



- A best practice is often to have two receivers at the supply side.
- One "wet" air receiver before the dryer to provide control storage and condensate drop out.
- And a second "dry" air receiver to meet sudden demands.
- Typical size ratio is 25% -30% wet and 70% 75% dry.

Dedicated Storage to Shield the system from a high flow end use application


Example of Local Storage for Critical End Use Pressure

Example of Local Storage

Summary

- You need to be able to understand what is happening with your compressed air system - things are not always as they seem.
- Controls will help you to align supply with demand.
- Heat recovery can lead to substantial energy savings.
- Properly addressing air quality issues can greatly affect system performance (and economics).
- High pressure requirements should not drive your system.
- System profiles can help you understand what is happening.
- There are ways to effectively deal with high volume/intermittent needs.

Now let's look at some of the close out presentations from our attendee's

