

Biological Wastewater Treatment Training Series Presentation #14: Using the Bio-Tiger Model in DOE MEASUR – Case Study #1

Larry W. Moore, Ph.D., P.E., WEF Fellow July 2021

111/1/1/

Case Study: Military Base WWTP

*Aeration basin diffusers are flexible-membrane, fine-bubble diffusers (tapered aeration in each plug-flow reactor).

Design Parameters for Military Base WWTP: Conventional Activated Sludge Design

- Flow rate = 2.5 mgd (ave. daily)
- $CBOD_5 = 250 \text{ mg/L (ave)}$
- TSS = 350 mg/L (ave)
- TKN = 45 mg/L (ave)
- Ammonia-N = 25 mg/L (ave)

Summer NPDES Limits for Military Base WWTP

- $CBOD_5 = 12 mg/L (mo. ave)$
- TSS = 30 mg/L (mo. ave)
- Ammonia-N = 3 mg/L (mo. ave)

*Winter limits are secondary treatment limits (25/30/20).

Total average daily flow rate

Aeration volume in service

Sec. influent BOD₅ concentration

Sec. influent BOD₅ mass loading

Sec. influent TSS mass loading

Type of activated sludge process

0.66 mil gal (0.33 mil gal each) 90 mg/L

0.58 mgd (half to each aer tank)

435 lb/day

484 lb/day (100 mg/L)

Conventional plug flow (design)

Type of Aeration System

Type of blower

Horsepower of blower

MLSS

MLVSS

Fine bubble diffusers

Positive displacement (no VFD)

60 hp

3500 mg/L

2600 mg/L

One 60-hp PD blower runs 22 hrs/day for aeration basin

One 75-hp PD blower runs 24 hrs/day for aerobic digesters

TSS in activated sludge effluent

19 lb/day (4 mg/L)

VSS destroyed in aerobic digesters

390 lb/day

Oxygen required for aerobic digestion = $(2.3 \times VSS \text{ destroyed})$ 900 lb/day

Total Energy Use

Total Energy Use

Typical activated sludge energy use

Energy use vs. typical

Potential for energy savings

Soda ash addition for alkalinity

86,000 kWh/mo

4,900 kWh/mil gal

1,800 kWh/mil gal

172% more

Excellent

\$15,000/yr

Total Oxygen Supplied by aer. basin blower

Mixing intensity in aeration tanks with 60 hp

DO in aeration basins (average)

RAS flow rate

WAS flow rate

RAS TSS concentration

91 hp/mil gal
4.5 mg/L
0.66 mgd (114%)
0.0018 mgd

6500 mg/L

1,400 lb/day

Existing Conditions: Effluent Quality

CBOD ₅ Concentration	3 mg/L
TSS Concentration	4 mg/L
Ammonia-N Concentration	0.1 mg/L
NO _x Concentration	30 mg/L (145 lb/day)
TKN Concentration	1 mg/L
Total Nitrogen concentration	31 mg/L

Energy Conservation Measure #1: Use Only One Aeration Basin and Run the Blower Only 16 Hours/Day

Total average daily flow rate

Aeration volume in service

Sec. influent BOD₅ concentration

Sec. influent BOD₅ mass loading

0.58 mgd (all to one aeration tank)0.33 mil gal (one basin)

90 mg/L

435 lb/day (total)

Energy Conservation Measure #2: Use Only One Aeration Basin; Run Blower 16 Hours/Day at 60% Speed; Reduce MLSS to 2,500 mg/L

Total average daily flow rate

Aeration volume in service

0.58 mgd (all to one aeration tank)

0.33 mil gal (one basin)

Sec. influent BOD₅ concentration

Sec. influent BOD_5 mass loading 4.

90 mg/L

435 lb/day (total)

Energy Conservation Measure #3: Run the Aerobic Digester Blower Only 12 Hours/Day ... Energy Savings ≈ 17,000 kWh/mo

Current digester blower use	24 hrs/day full speed
Primary sludge VSS destroyed	390 lb/day
O ₂ needed for digesting prim. sludge	900 lb/day
O ₂ needed for digesting waste act. sludge	0 lb/day
Digester blower O ₂ transfer rate	26 lb/hp-day
O ₂ supplied by digester blower	1950 lb/day
Blower run time = $900 \text{ lb}/1950 \text{ lb}/day$	0.46 day (11 hours)

Thank you!

For Questions or Comments please reach out to the following:

Dr. Larry Moore <u>mlarry@bellsouth.net</u> Thomas Wenning Oak Ridge National Lab wenningtj@ornl.gov

15

