

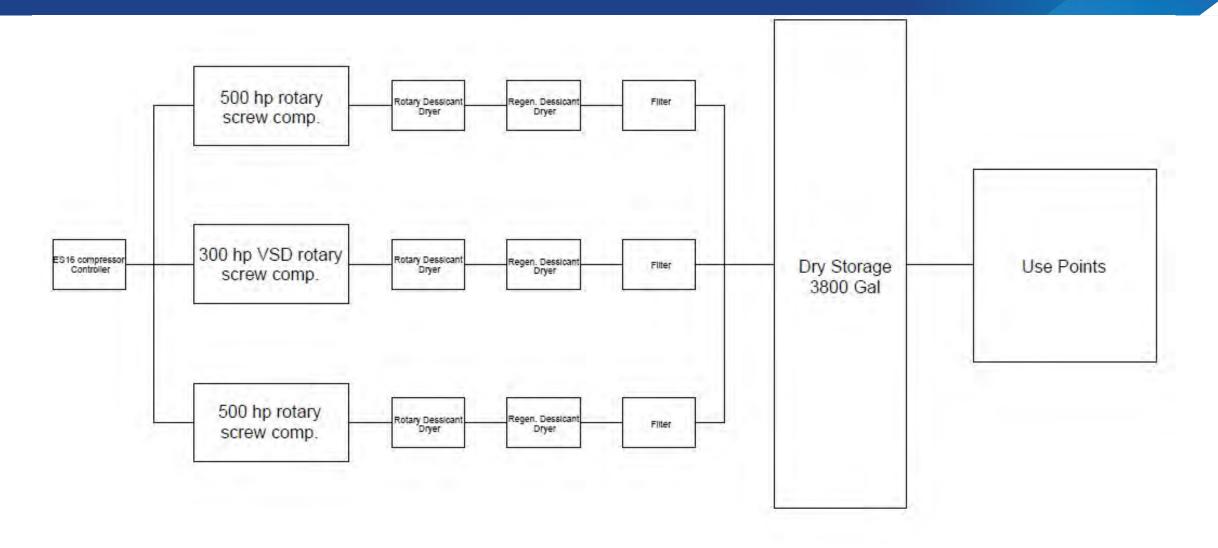
In-Plant Trainings

8 – Session Virtual Platform

11111111

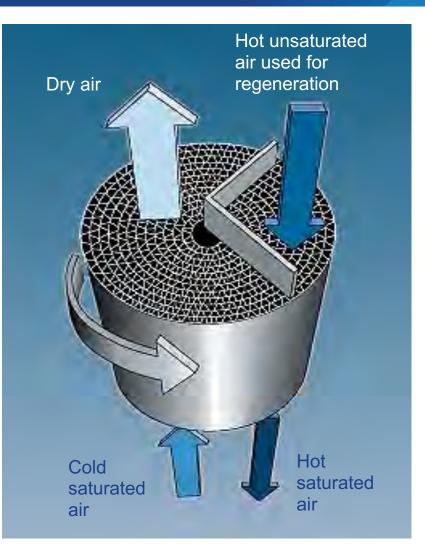
Last Session was Week 2, where we reviewed:

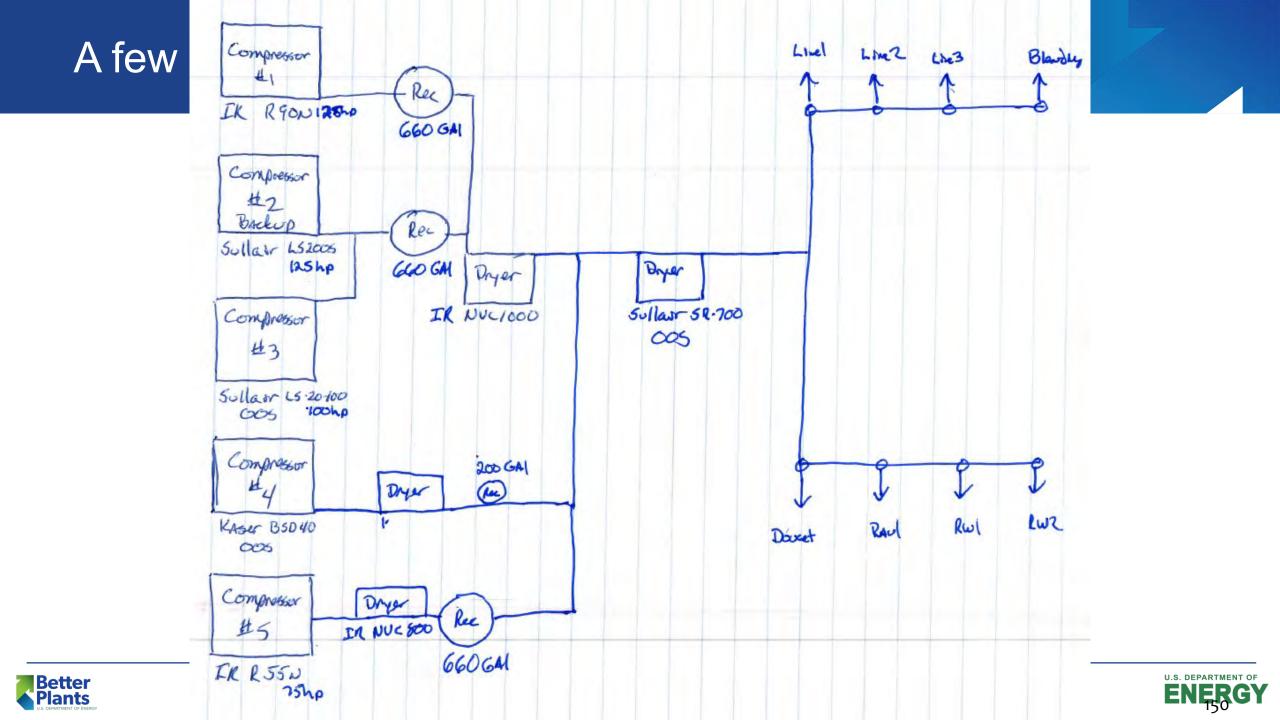
Compressor Types Maintenance Compressor Room Best Practices and Ventilation

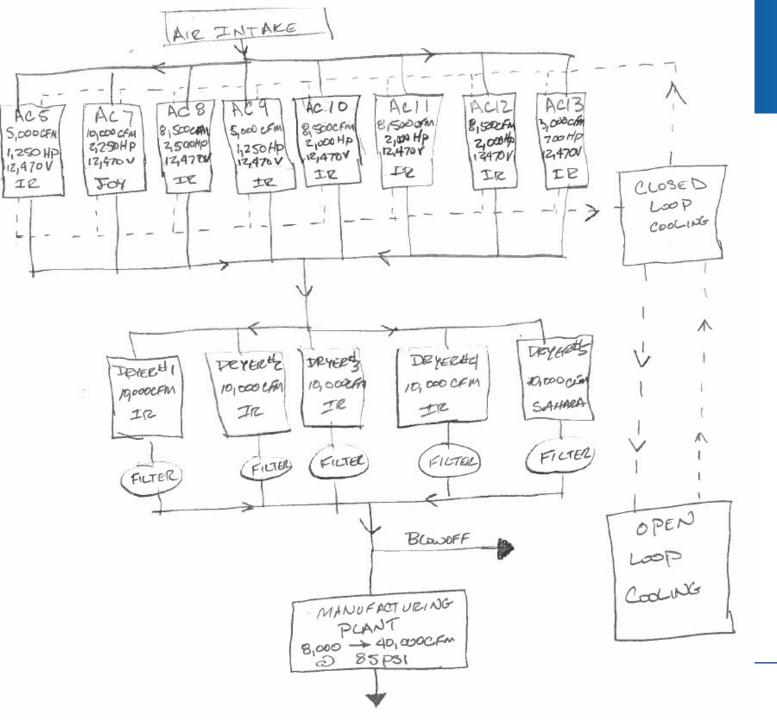


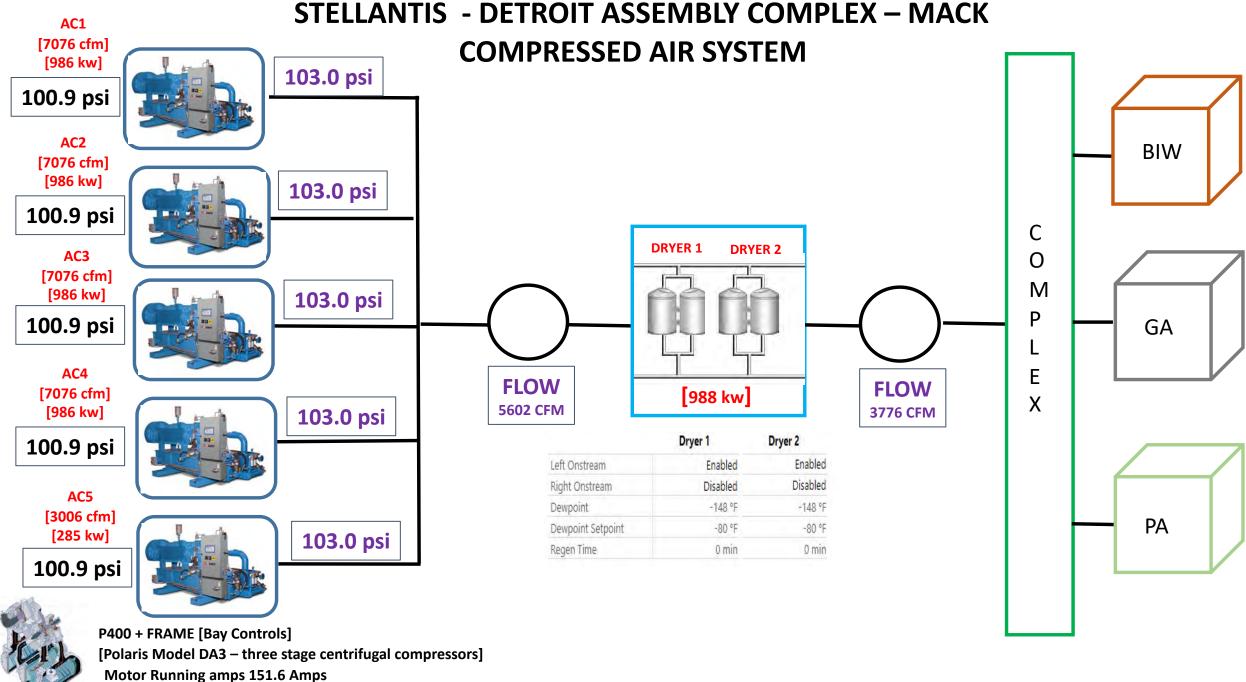
This is Session 3 – Week 3, where we will be discussing:

Compressor Controls Intro to Airmaster+ Intro to LogTool Intro to MEASUR

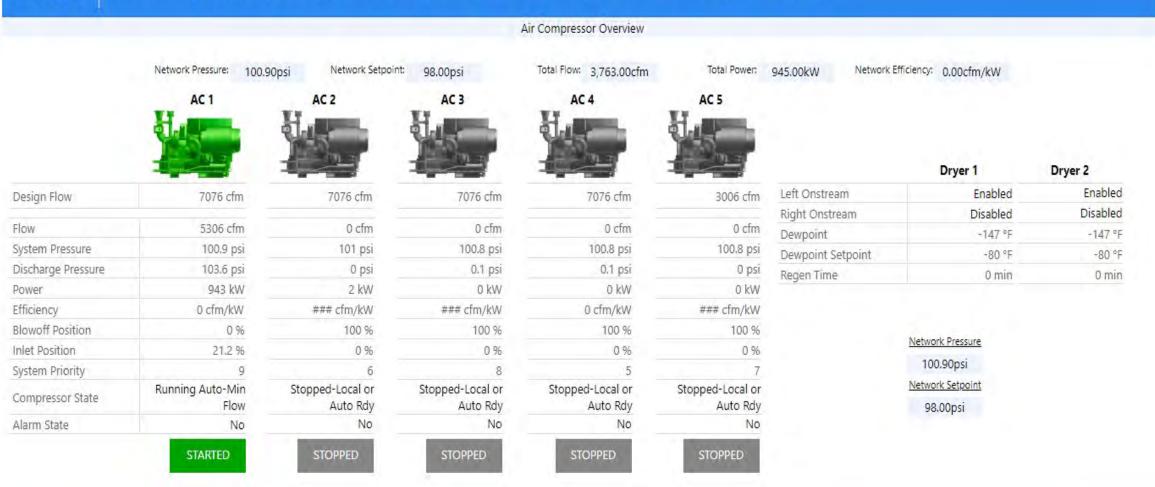



Heat of Compression Dryer





A few moi

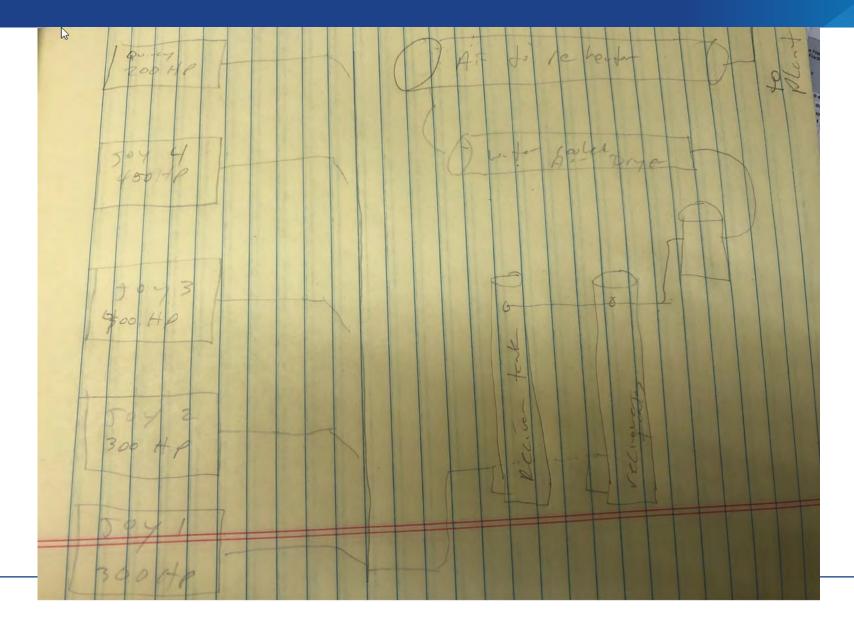


Motor Running amps 151.6 Amp Motor Power 1017 kw

)17 kw

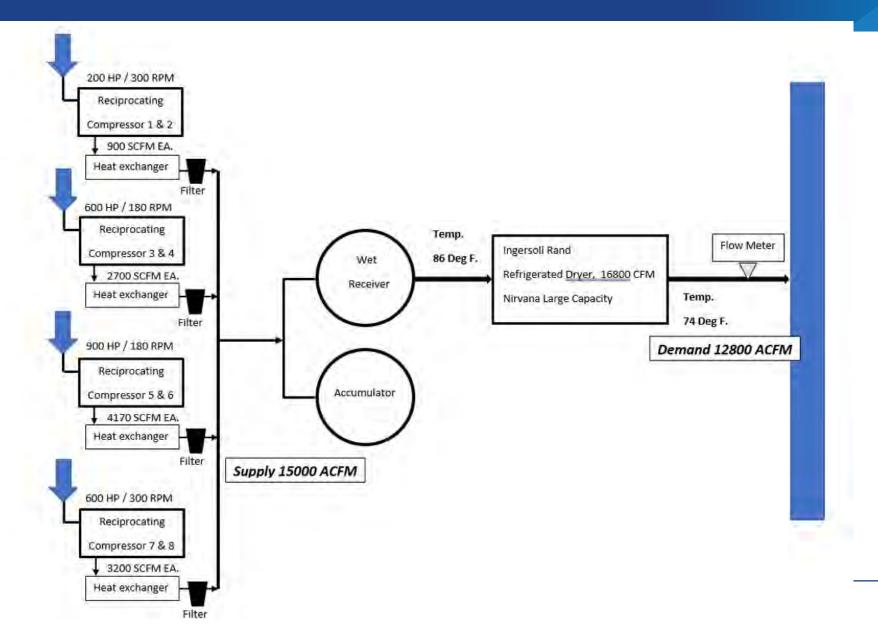
STELLANTIS - DETROIT ASSEMBLY COMPLEX – MACK

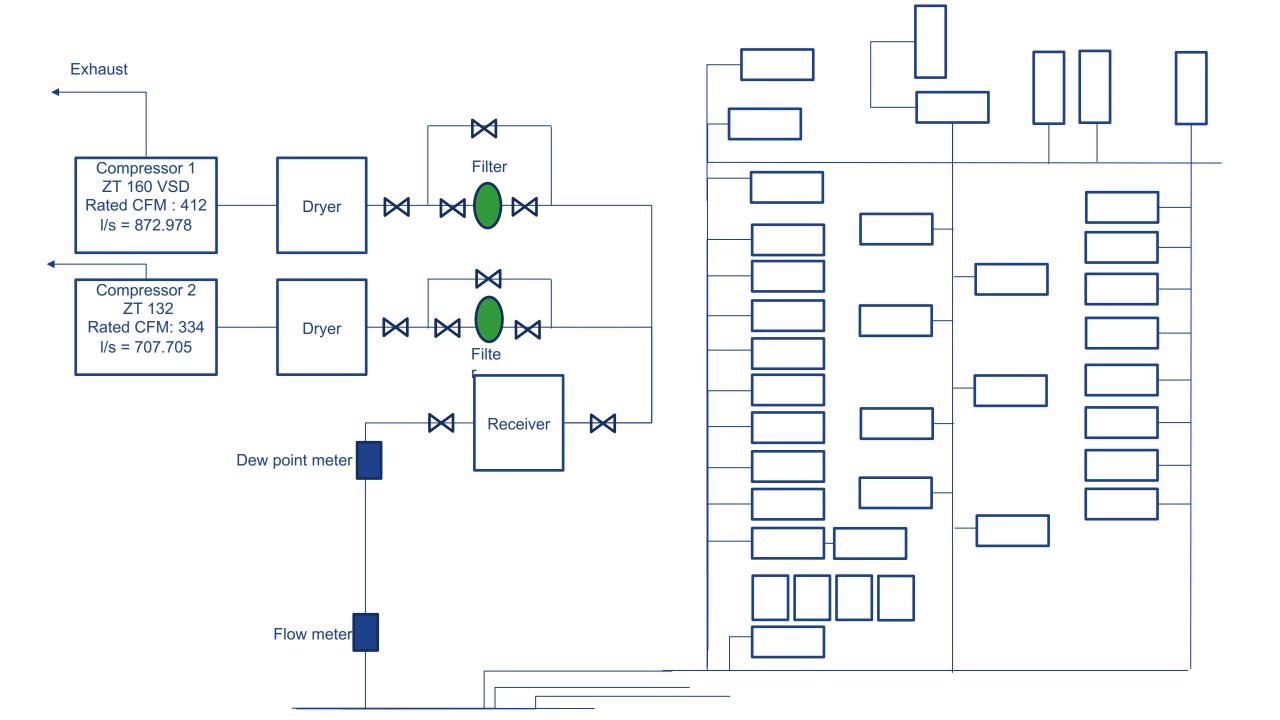
DACM General Assembly Body Shop Energy Center Power MOOMPRESSED AIR SYSTEM Alarm(s)

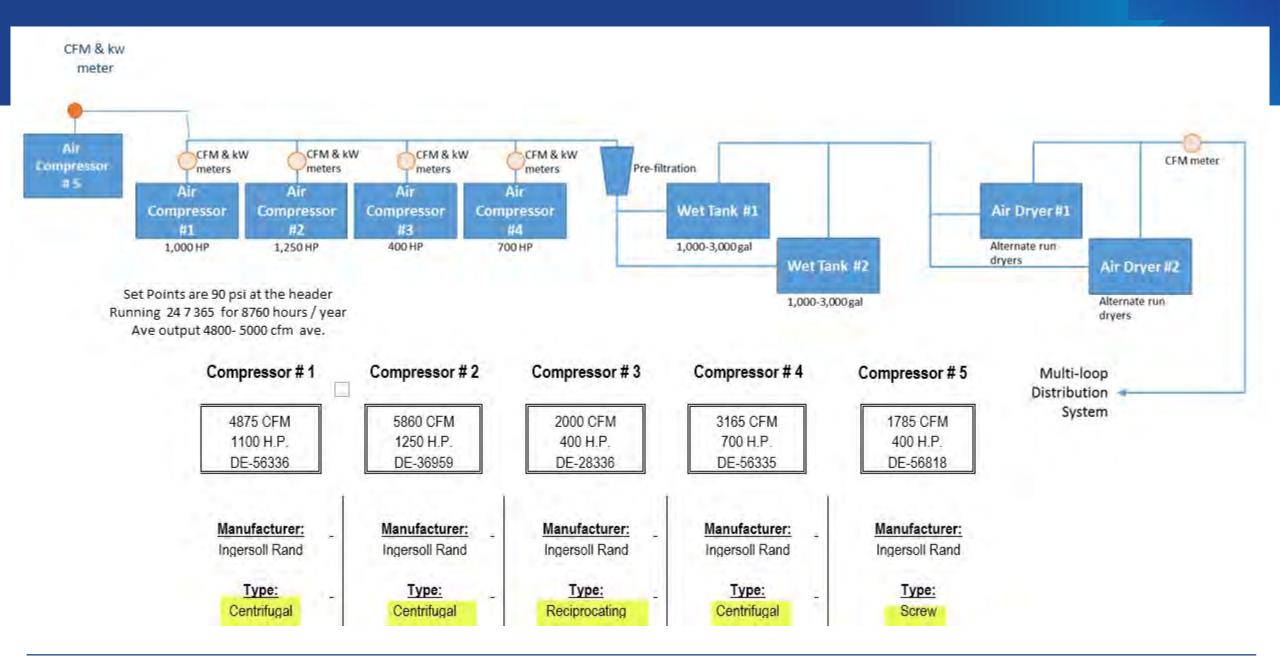

Active (On)
 Fault
 Inactive (Off)
 No Comm
 Warning

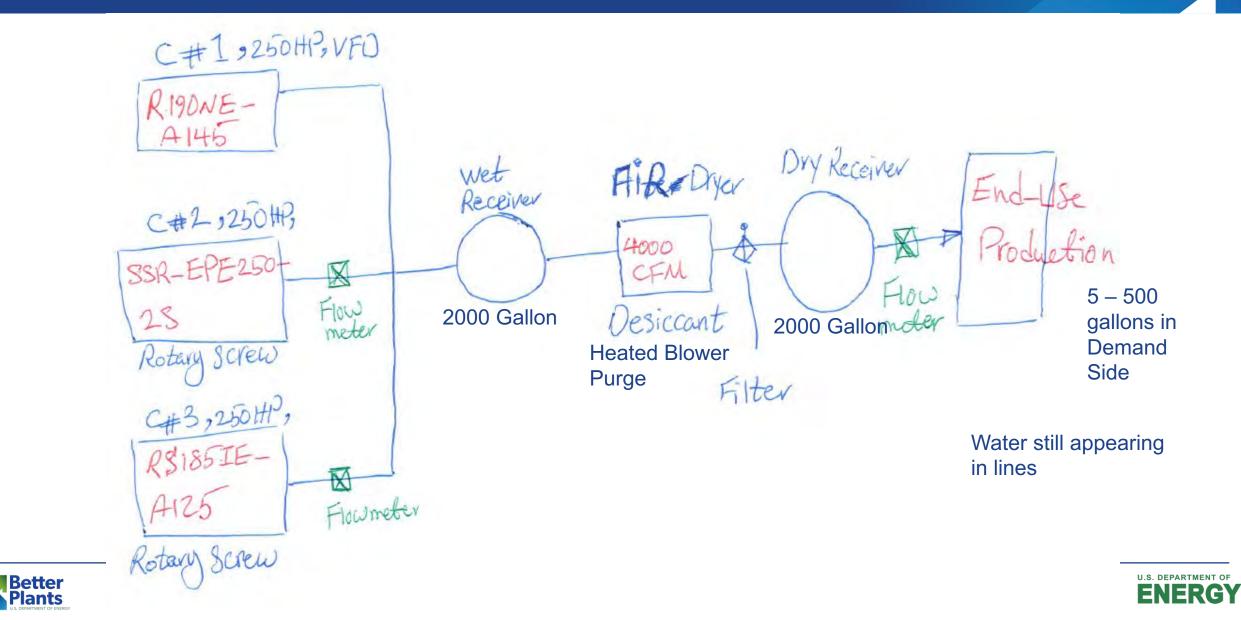
Legend

Communication Status Curre


Status: 0 Updates Received Current Time: 08/23/2021 10:22 AM User: t8903el







So How Do I Measure My Dewpoint? (Covered Next Session)

- Maintaining the dew point of your air or gas system will prolong the lifetime of your equipment and reduce maintenance costs.
- For dew points related to production processes, guarding the dew point is critical for the end-product and key in preventing costly production losses.
- Permanent monitoring enables you to detect and prevent problems quickly and may provide visibility that a change in dew point is capacity or maintenance related.

- What's the compression ratio of the single stage compressor below:
 - 13.5 psia inlet pressure
 - 113.5 psia discharge pressure

 $\frac{113.5\,psia}{13.5\,psia} = 8.4$

Homework for Week 2 – Compressor Info

Nameplate Information

Compressor # (from bloc Manufacturer Model	ck diagram)	-
Compressor Type Motor Nameplate Horsepower	hp	voltage
Rated CFM	cfm	
Maximum Design Full Load Pressure Age/Comments:	psig	

How are the pressure setpoints on the compressors' controls configured?

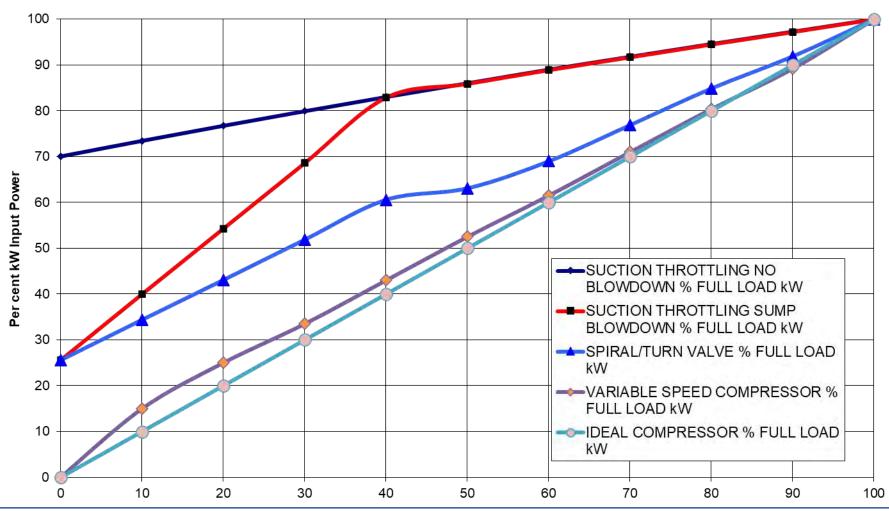
	Load	Unload/Modulate
Pressure setting:	psig	psig
Pressure setting:	psig	psig
Pressure setting:	psig	psig

Operating Schedule Information

Number of Days of Operation Annually Number of Hours per Day		
Compressor Discharge Pressure	psig	

Compressor Controls

System capacity control is based on:


- Number of compressors in a system
- Type and size of the compressors
- Application requirements

Performance Curves

Various Compressor Control Performance Curves

Per cent Capacity (Flow Out)

Compressor Control Pros and Cons

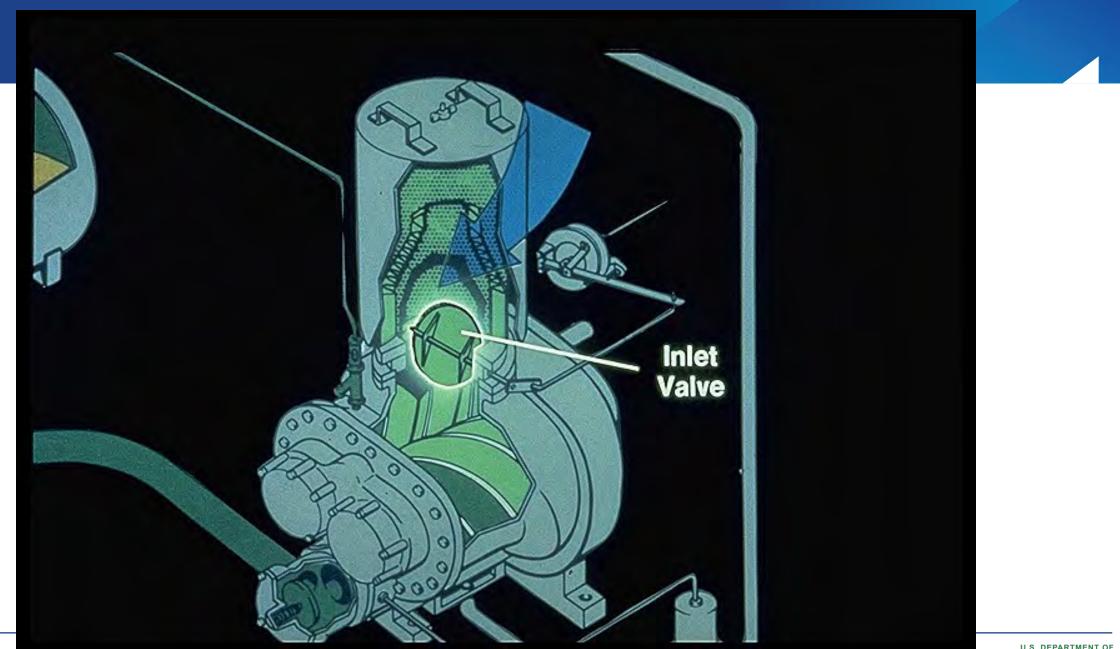
Start/Stop

- Pros:
 - Simple control using only a pressure switch
 - Motor and compressor operate only when needed
 - Good for small compressors
- Cons:
 - Frequent full load starting wears down motor and compressor
 - Loose pressure control as high as 35 psi
 - Limited to small units

Compressor Control Pros and Cons

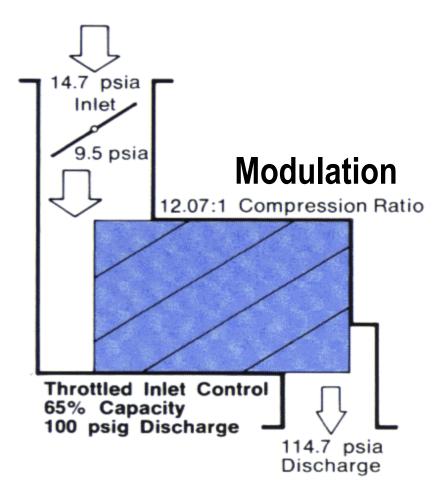
Load/Unload

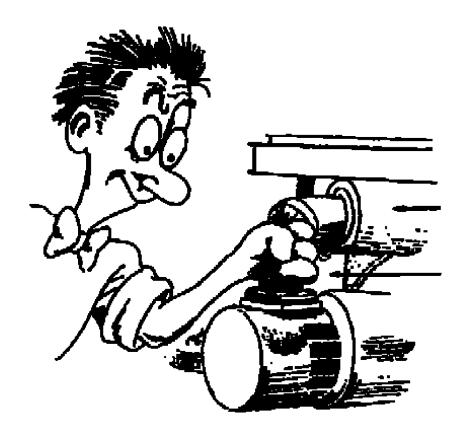
- Pros:
 - Motor and compressor run continuously reducing wear
 - Tighter range of pressure control
- Cons:
 - Improperly applied can cause short cycling which causes premature wear and failure


Compressor Control Pros and Cons

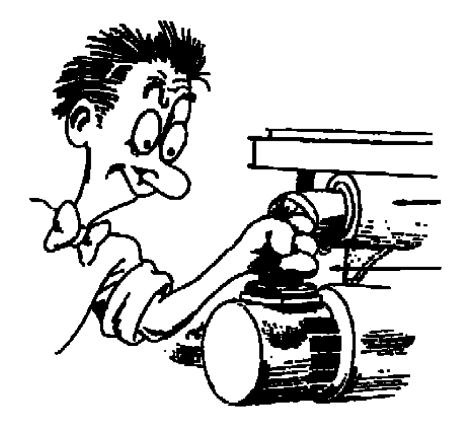
Modulating

- Pros:
 - Motor and compressor run continuously reducing wear
 - Tighter range of pressure control
 - Steadily progressive capacity control to match demand
- Cons:
 - Inefficient at lower loads, centrifugal units limited by potential surge and can require discharge blowoff
 - Pressure ratios increase as inlet is throttled



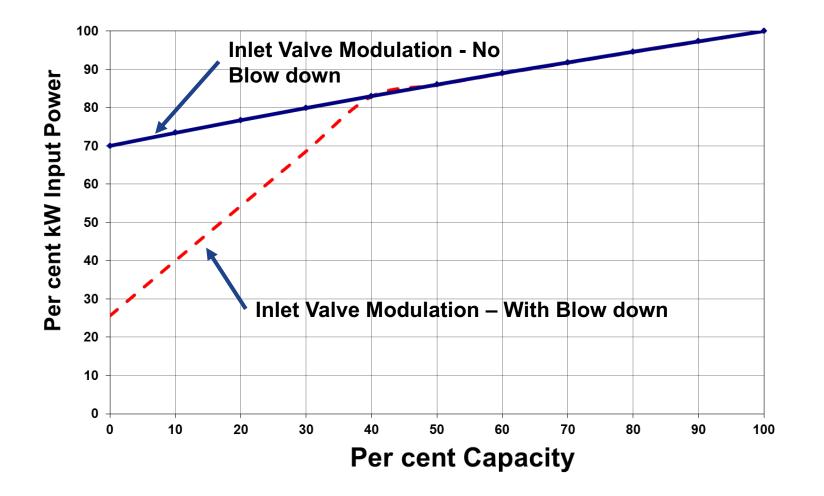

Inlet Throttling

Capacity Control by Inlet Throttling

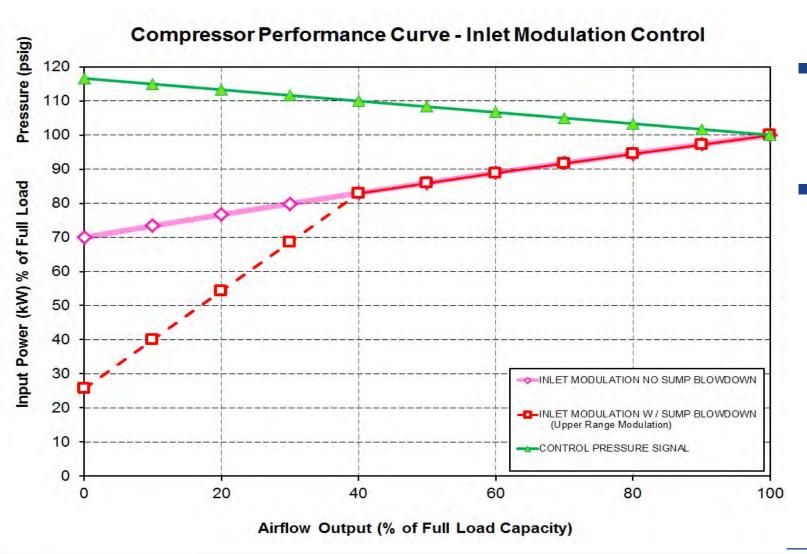


- Atmospheric pressure 14.7 psia
- Intake pressure 9.0 psia from inlet throttling
- Discharge pressure 100 psig or 114.7 psia
- Compression ratio: 114.7/9.0 = 12.7 to 1
- End Result?? Increased internal leakage due to a higher compression ratio

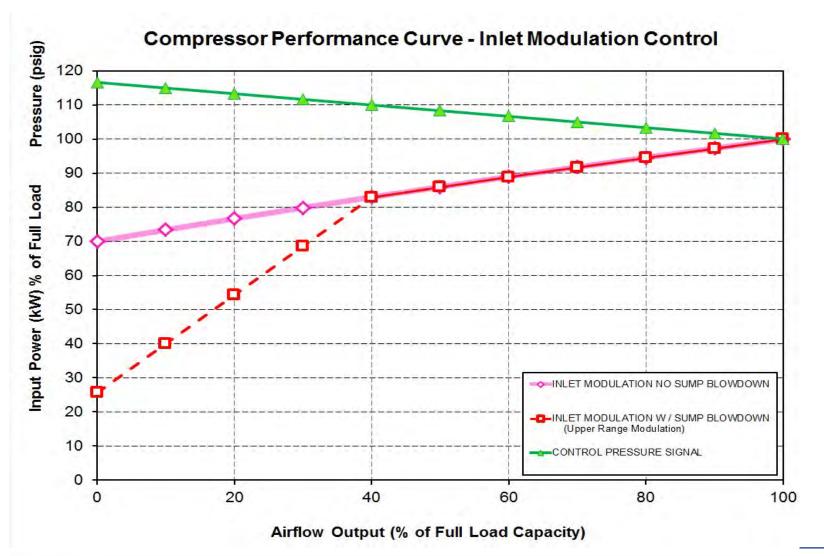
Capacity Control by Inlet Throttling



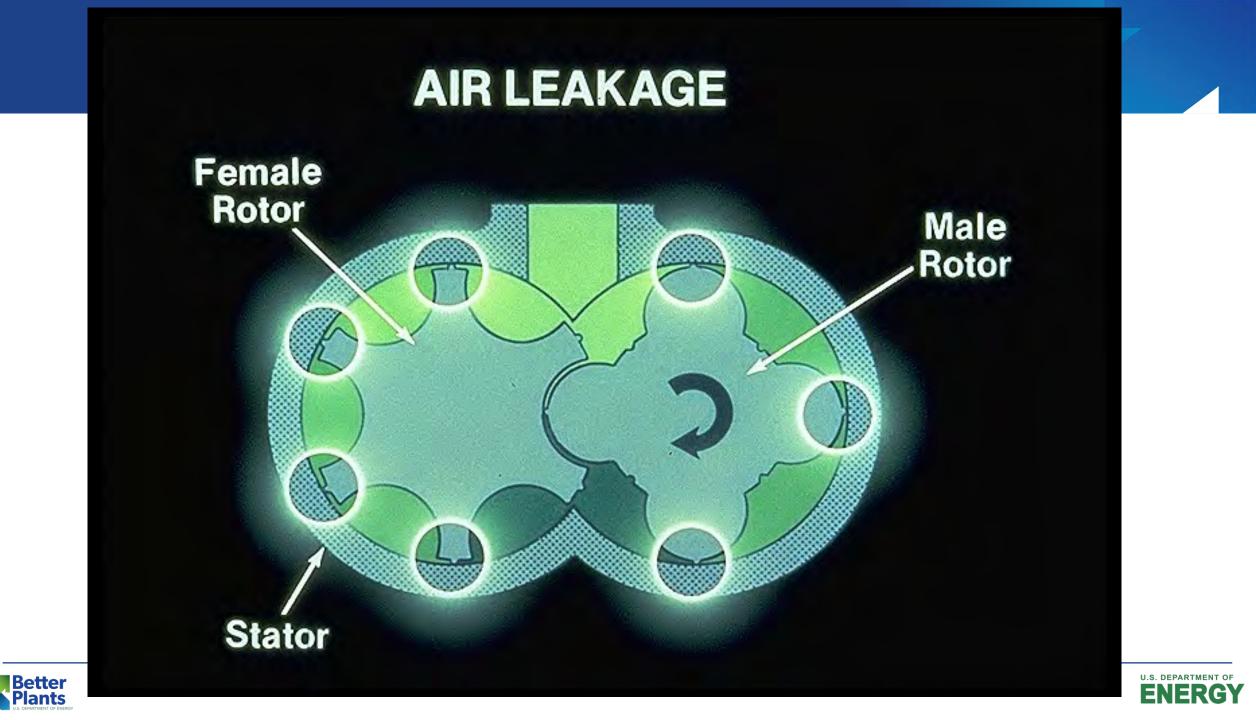
- Varies capacity by throttling (restricting) the inlet flow
- Provides a relatively stable output pressure.
- Energy hog... least efficient.
- Every 10% reduction in capacity yields only a 3% reduction in power(BHP)
- At zero capacity, power remains at 70% of full load power.


Inlet Valve Modulation

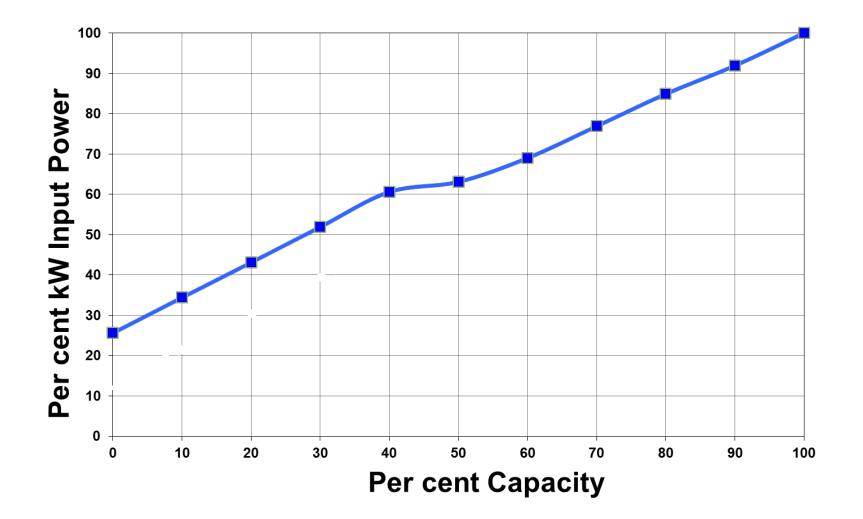
Inlet Valve Modulation



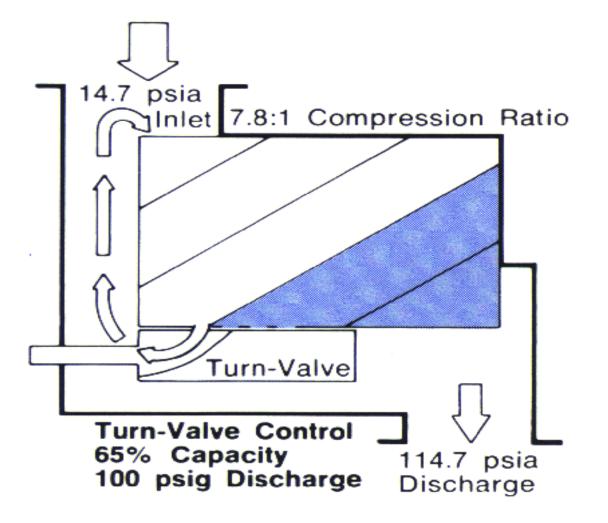
- The example shows a discharge pressure range of 100 110 psig.
- As discharge pressure rises from 100 to 110 psig, a proportional pressure regulator provides a control pressure typically from 0 -30 psig, to progressively close the inlet valve.

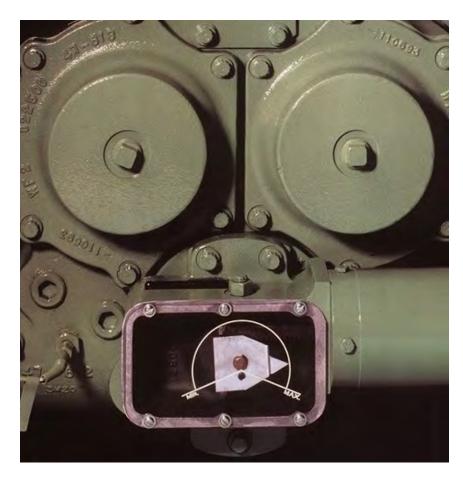

Inlet Valve Modulation

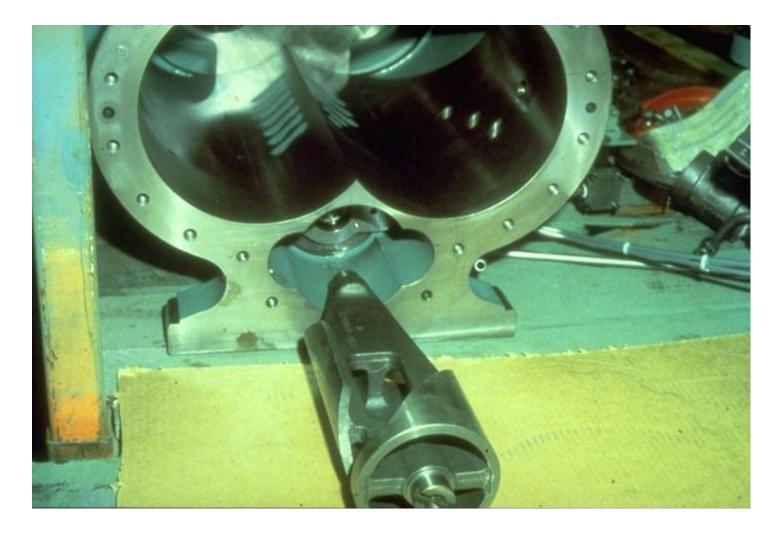
- As the inlet valve closes, the absolute pressure at the inlet of the air end is reduced.
- This reduces the mass flow of air entering the air end in direct proportion to the absolute pressure.
- However, the reduced inlet pressure, with increasing discharge pressure, results in increasing pressure ratio.
- At 40% capacity the pressure ratio will be 124.7/5.88 = 21.2:1
- This is why there is not much reduction in the power requirement.

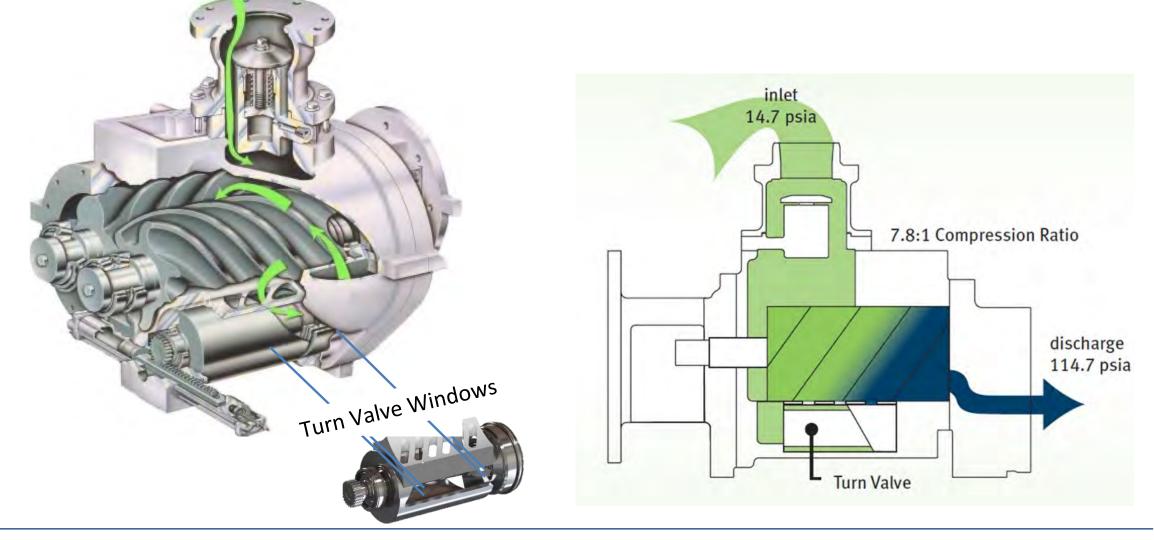


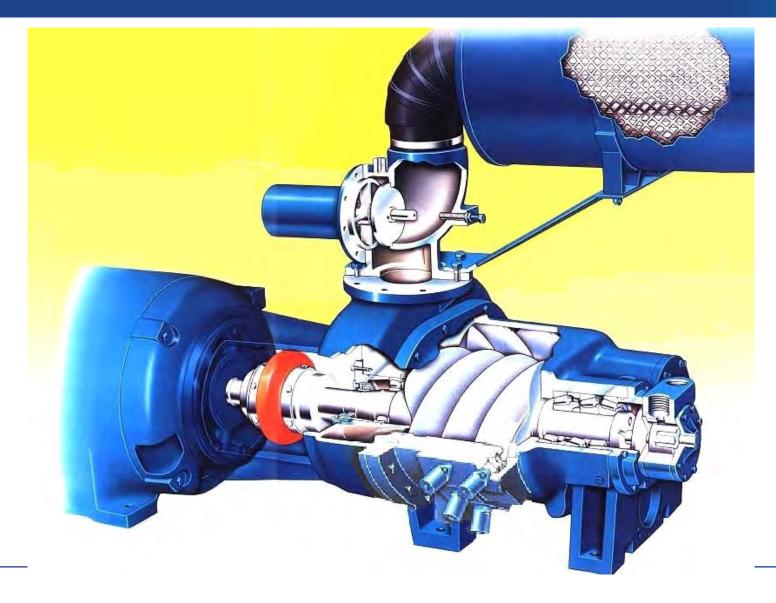
- Valves progressively opens ports connecting the compression chamber back to the compressor intake in response to rising discharge pressure.
- This allows some of the intake air to be returned to the compressor inlet before it gets compressed and uses power.
- This progressive opening of by-pass ports has the effect of shortening the length of the rotors after the lobes seal without choking the intake and increasing the compression ratio.

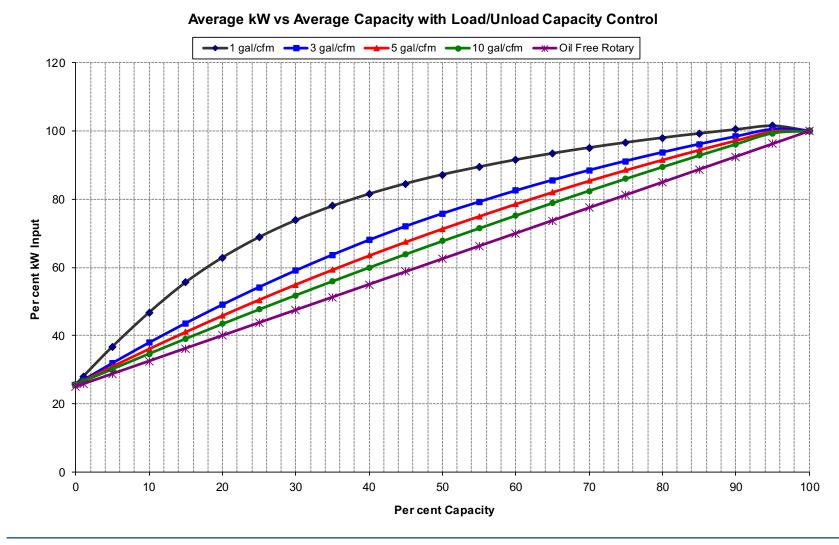





Original Version

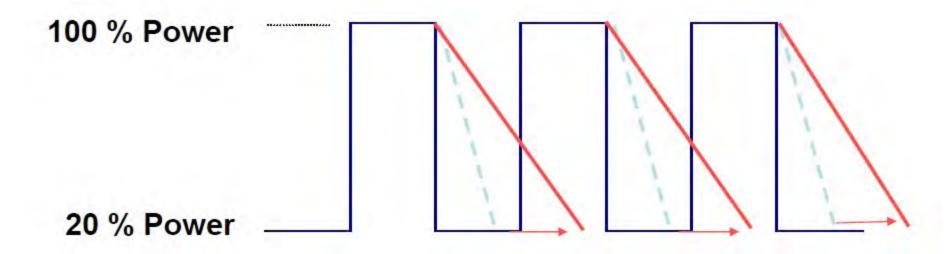





Variable Displacement

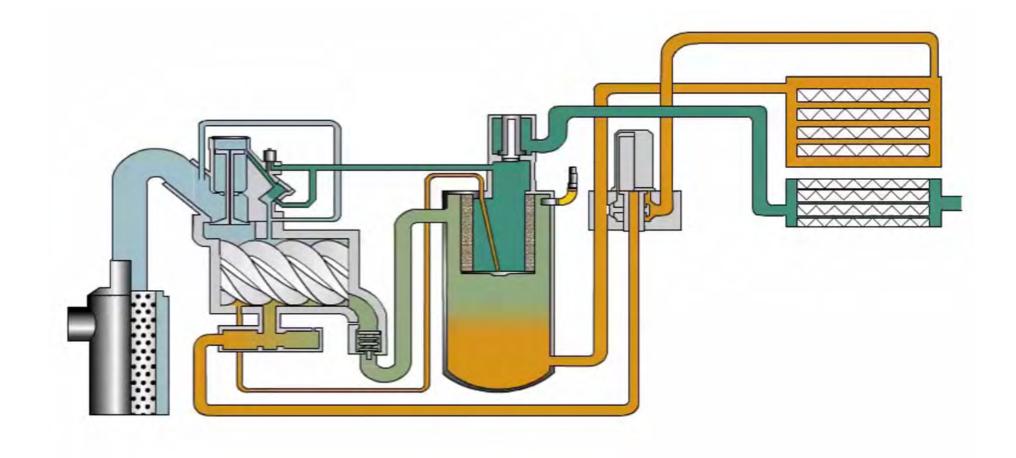
Load/No-load Control Curve

This graph shows the effect of receiver size on the part load power of a lubricant injected rotary screw compressor with load/noload controls


Load/Unload and Storage Size

- It is falsely assumed that a straight line, from full load bhp to unloaded bhp, represents the actual power requirement in this mode of operation.
- Sump blow down times will vary by machine size, but typically this takes in the range of 20 to 60 seconds to prevent foaming of the lubricant with the potential of excessive lubricant carry-over.
- In many cases, the system pressure will fall and the compressor will re-load before the fully unloaded power is realized.

Capacity Control by Load/No-Load

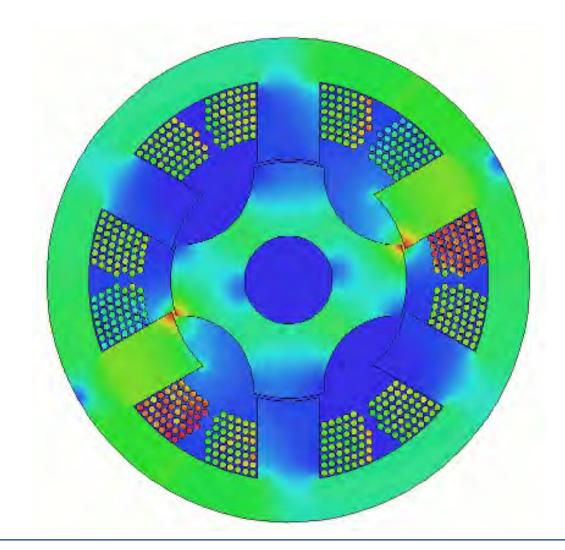


- During blow-off, the compressor is still running against significant back pressure and consuming a lot of power
- Bigger sump vessels lead to longer blow-off times and more energy consumption

Rotary Screw

Capacity Control by Load/No-Load

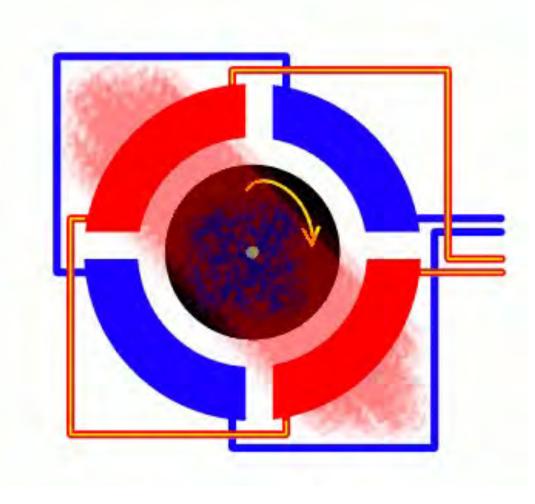
Active Power consumption evolution from L to NL


Variable Speed Compressors

- Efficient means of rotary compressor capacity control,
- Integrated variable frequency AC or Switched reluctance DC drives.
- Compressor discharge pressure can be held to within +/- 1 psi
- In order to provide efficient VSD regulation over the complete range of the customer's air profile, the VSD needs to be sized so it will always be in its turndown range.
- VSD (variable speed drive) and VFD (variable frequency drive) are used interchangeably
- VFD is only one of the VSD technologies available.

Switched Reluctance DC Drive

- Unlike common brushed DC motor types, power is delivered to windings in the stator (case) rather than the rotor.
- SR motors are designed for continuous operation.
- Switched Reluctance motors are capable of high torques with low weight.
- The motors are structurally simple but need relatively advanced control for optimum performance.


Variable Speed Compressors

- The most common VSD is the variable frequency drive, which converts 60 Hz alternating current to direct current and then reconverts it to the proper frequency required to turn the drive motor at the desired speed.
- The variable frequency drive is less efficient at full load compared to modulation controls because the electrical conversions usually consume an additional two to four percent more energy.

Variable Frequency Induction AC Motor

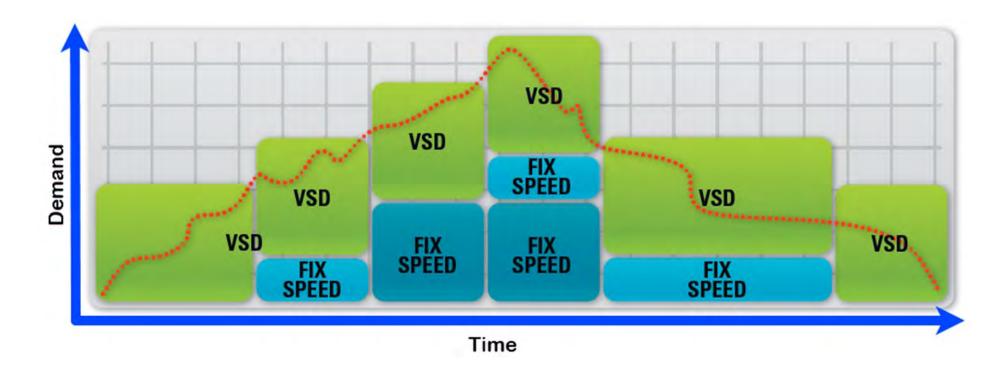
- An ac motor's speed is determined by the number of poles and the frequency.
- So as frequency is adjusted the motor's speed can be controlled as well.
- One of the most common types of drives is a variable frequency drive (VFD),

Variable Frequency Induction AC Motor

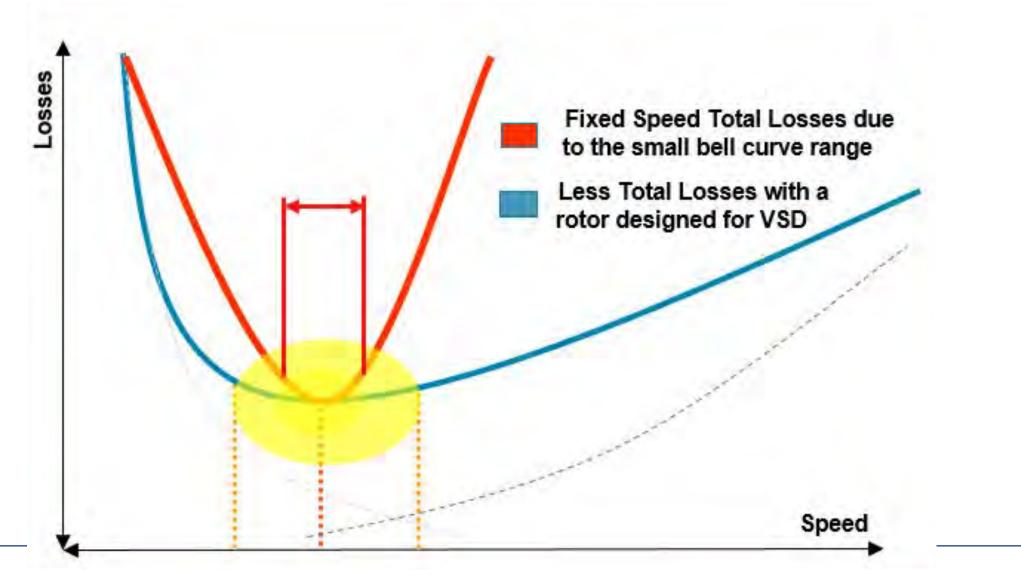
- To calculate RPM for an AC induction motor, you multiply the frequency in Hertz (Hz) by 60 — for the number of seconds in a minute — by two for the negative and positive pulses in a cycle. You then divide by the number of poles the motor has: $2 \times f \times 60$
- n = no load rpm

$$n = \frac{2 \times f \times 60}{p}$$

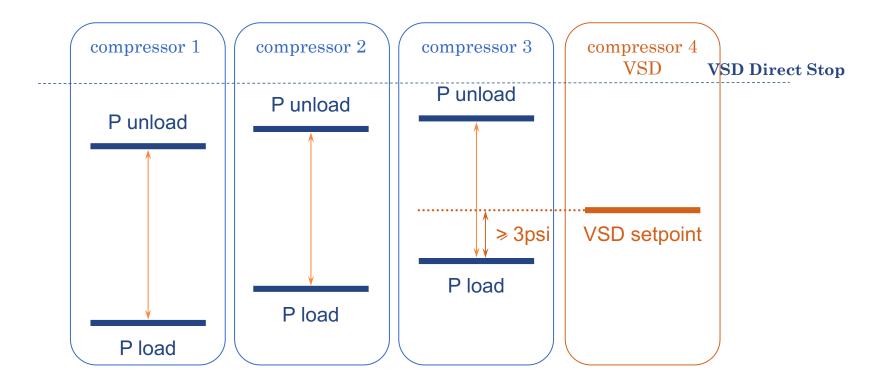
- *f* = frequency
- *p* = Number of poles
- Example: 4-pole motor running at 50Hz


$$n = \frac{2 \times 50 \times 60}{4} = 1500 rpm$$

Variable Speed Compressors


 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the range of the VSD from min to max needs to be sized greater than the load/no load machine

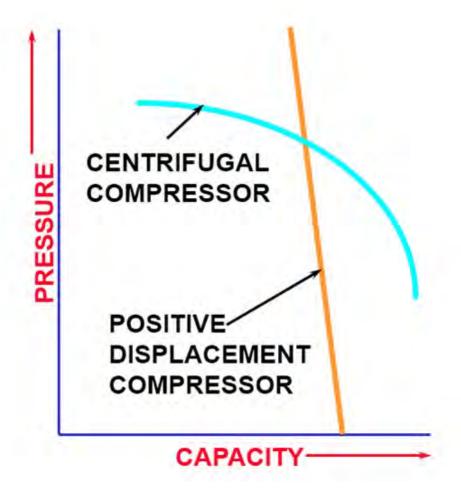
Variable Speed



Control Gap and Position

 In order to provide efficient VSD regulation over the complete range of the customer's air profile, the cfm of the VSD needs to be greater than the load/no load machine

Centrifugal Compressor Control


- Performance is affected by inlet conditions and cooling water temperature
- Characteristic curve is determined by impeller design
- Two conditions should be avoided:
 - Surge (flow reversal)
 - Choke (excessive flow vs. frame design)
- Inlet throttle valves modulate the compressor to reduced flow and power but are limited by surge condition
- Blow-off valves control capacity below throttling limit

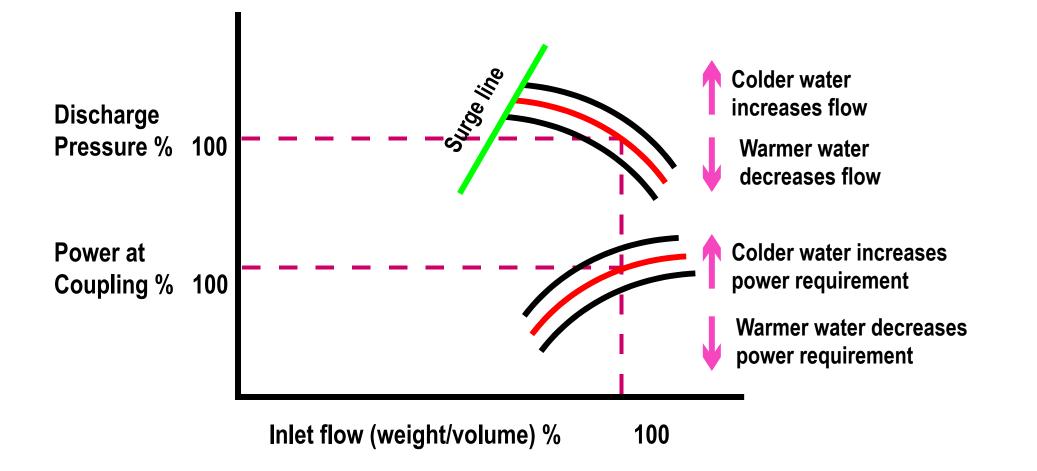
Centrifugal Compressor Control

The relationship of flow and pressure for dynamic compressors is different from that of positive displacement machines.

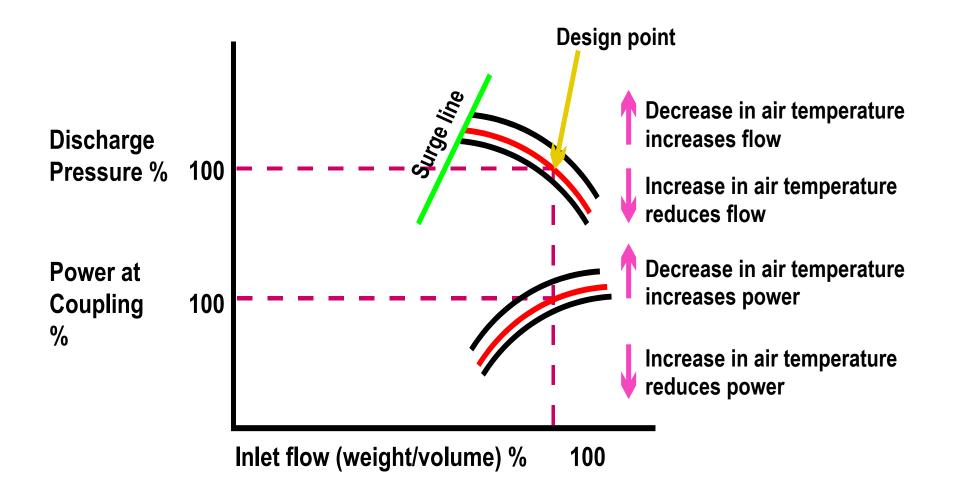

Effects on dynamic compressor performance

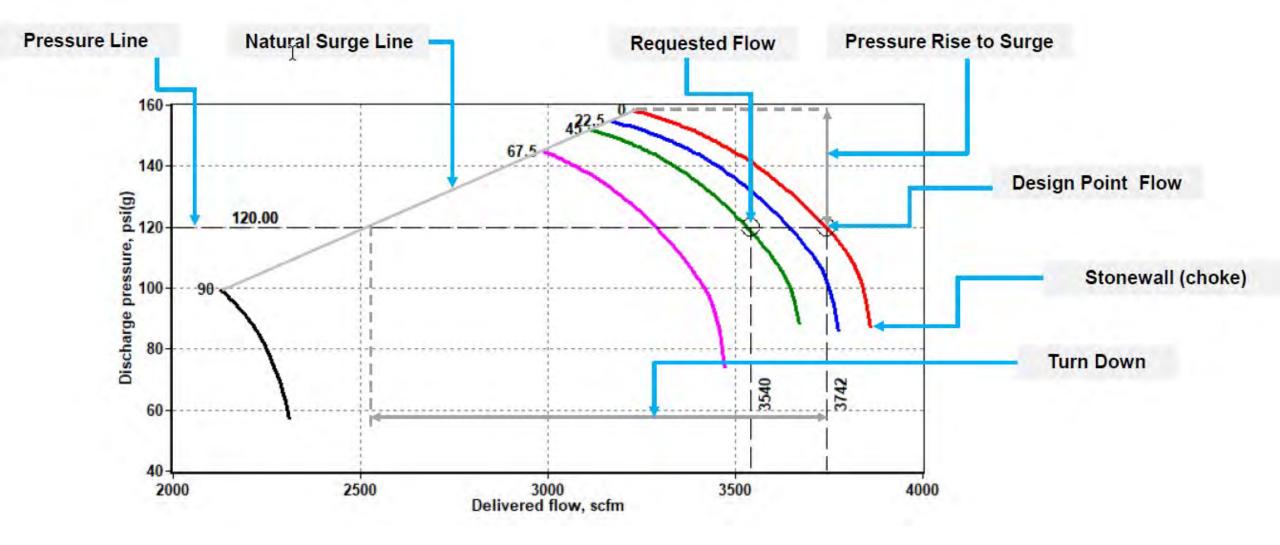
- Inlet pressure
- Inlet air temperature
- Cooling water temperature

Inlet Pressure

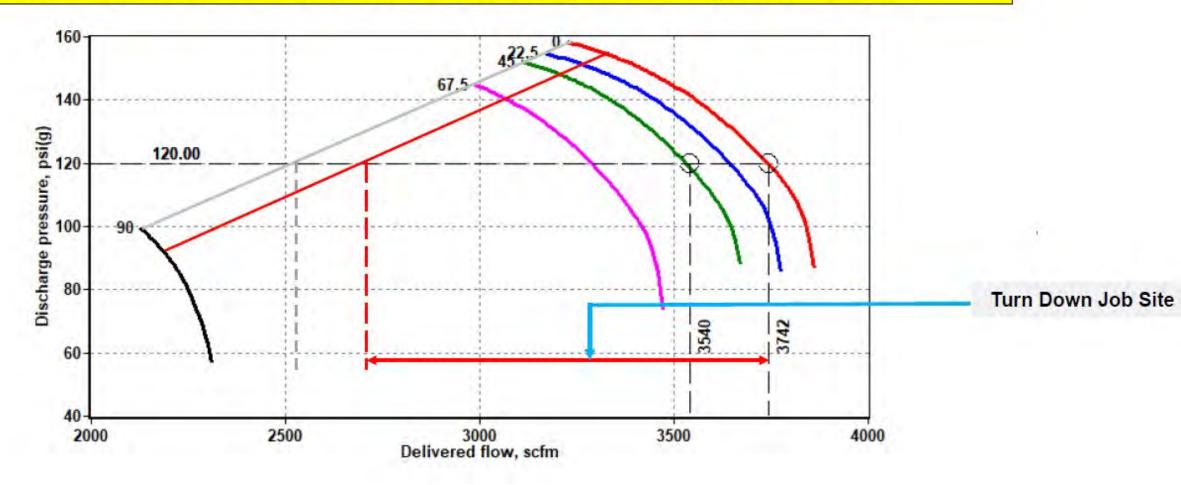


Inlet flow (weight/volume) percent 100

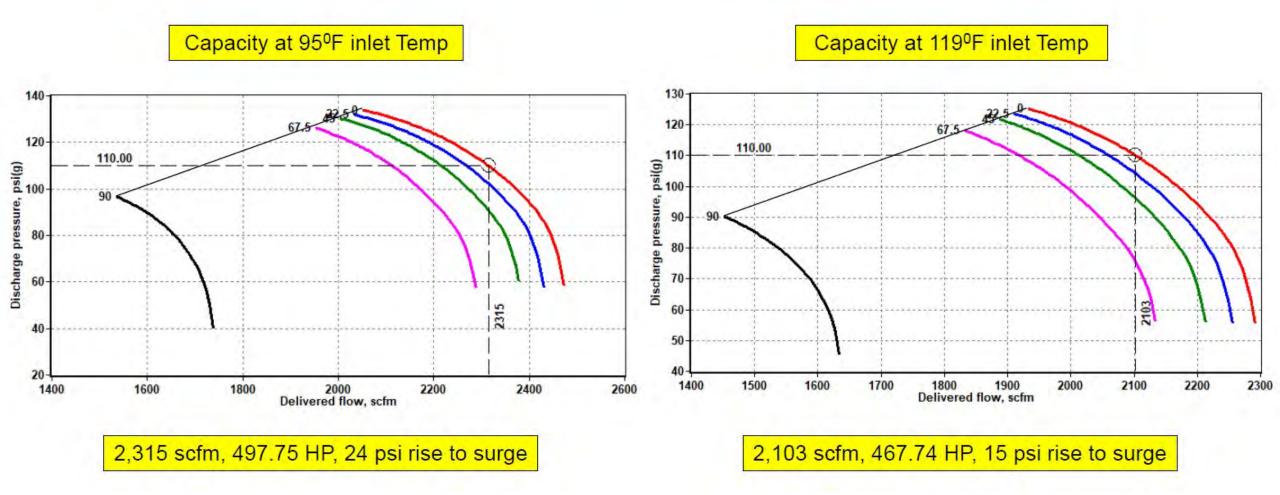

Cooling Water Temperature

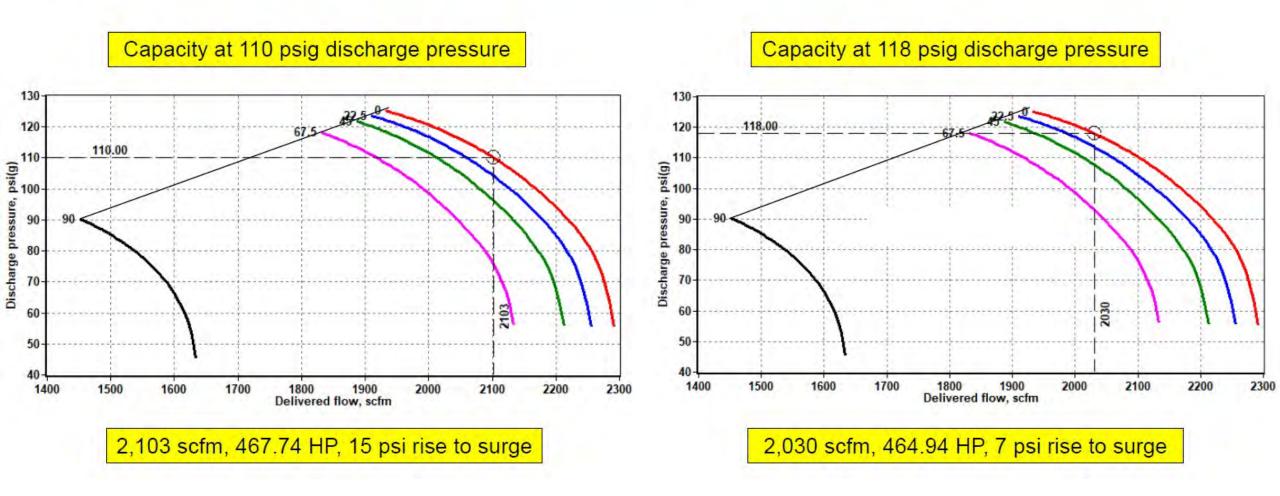

Inlet air temperature influence

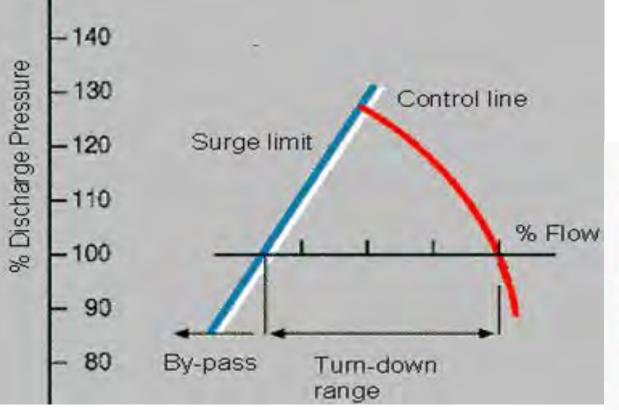
Centrifugal Performance

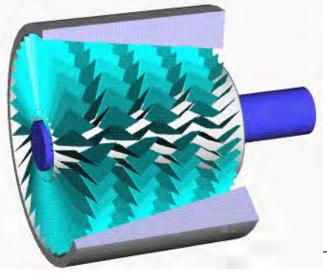


Centrifugal Performance


Installation site control line turn down - protecting natural surge. Blow-off point


INLET TEMPERATURE CHANGE – EFFECT ON AIR OUTPUT


DISCHARGE PRESSURE CHANGE – EFFECT ON AIR OUTPUT

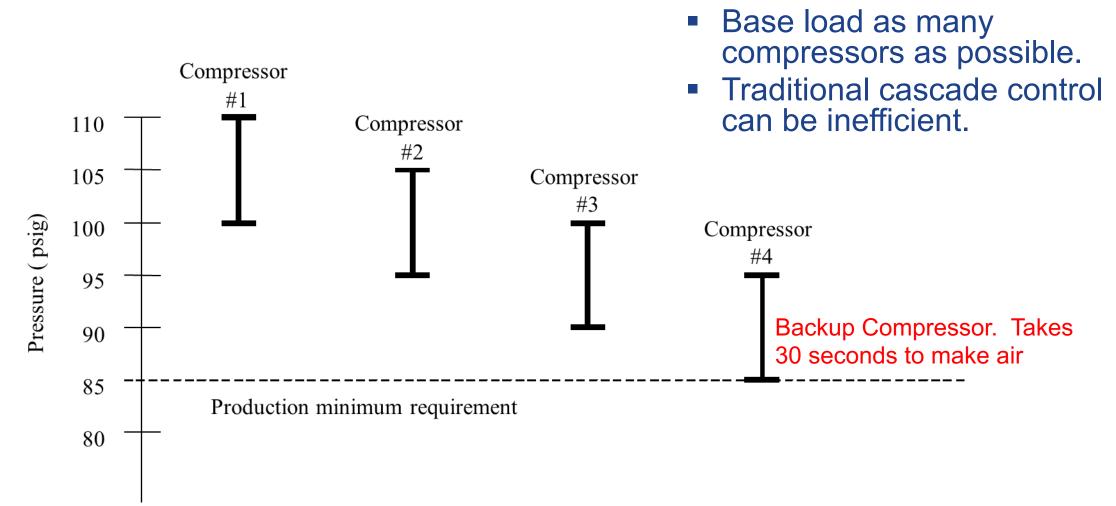


Inlet Guide Vanes - Open

Inlet Guide Vanes - Closed

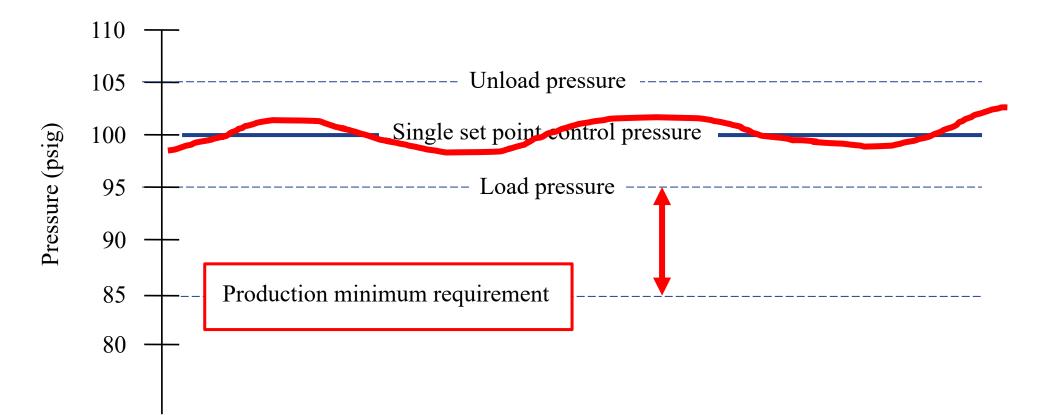
Multiple Compressor Control

- Holds constant air pressure in the distribution piping within narrow limits.
- Connectable to all kinds of compressors.
- Priority selection : old versus new machines.
- Delayed start : NEVER start two machines or more at the same time => high current peaks are avoided.
- Base load compressors can fill distribution piping in advance, to avoid load peaks.


Multiple Compressor Control

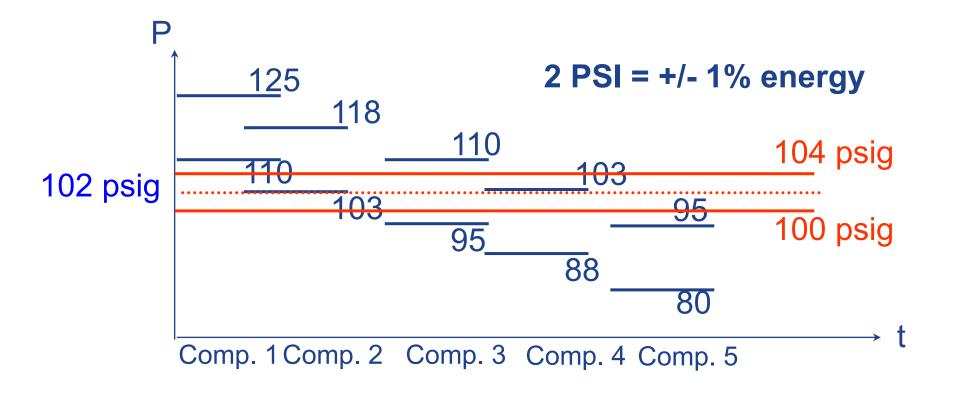
- Very simple user interface = minimum user training.
- Machines are used more efficiently.
- Energy reduction = immediately saves money.
- Full compressor & network status feed- back.
- Programmable pressure schedule.
- PC monitoring & analysing possibilities.

Multiple Compressor Control with Manual Cascade



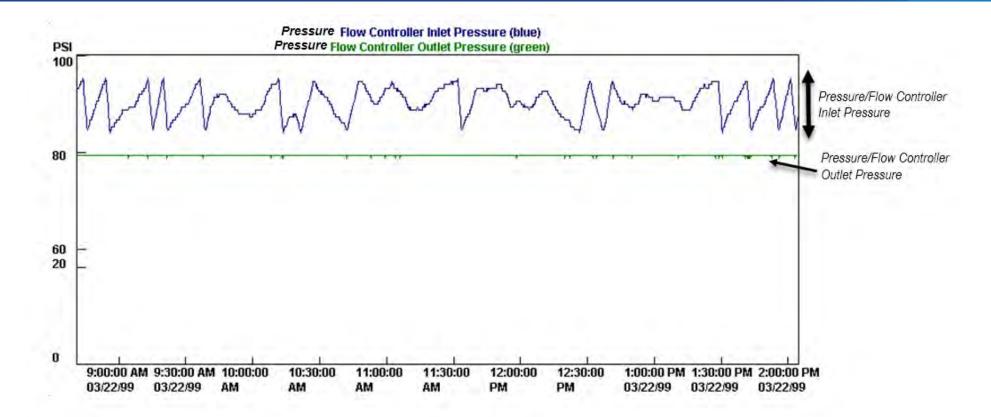
169

Master Controls


Basic single set point control scheme

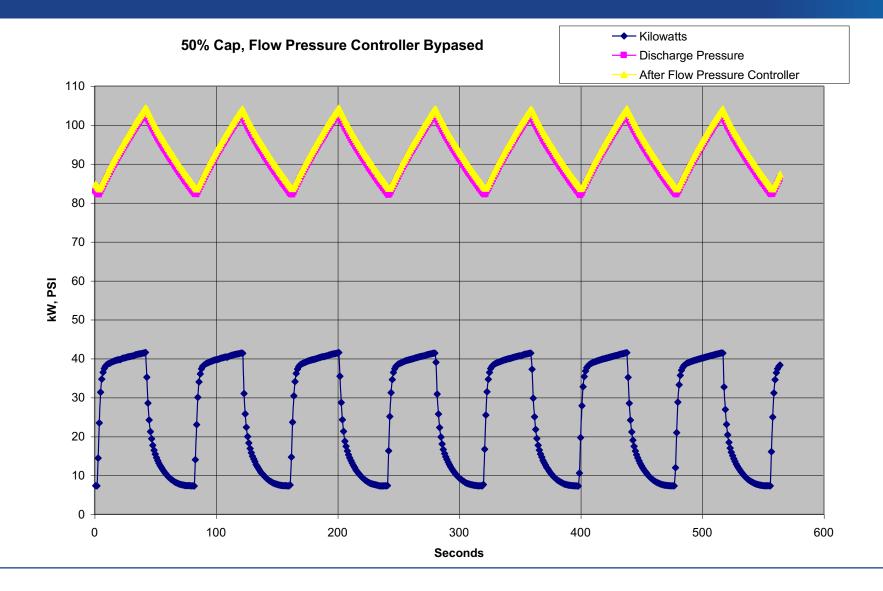
Master Control Basics

Cascaded Pressure Switches Vs Master

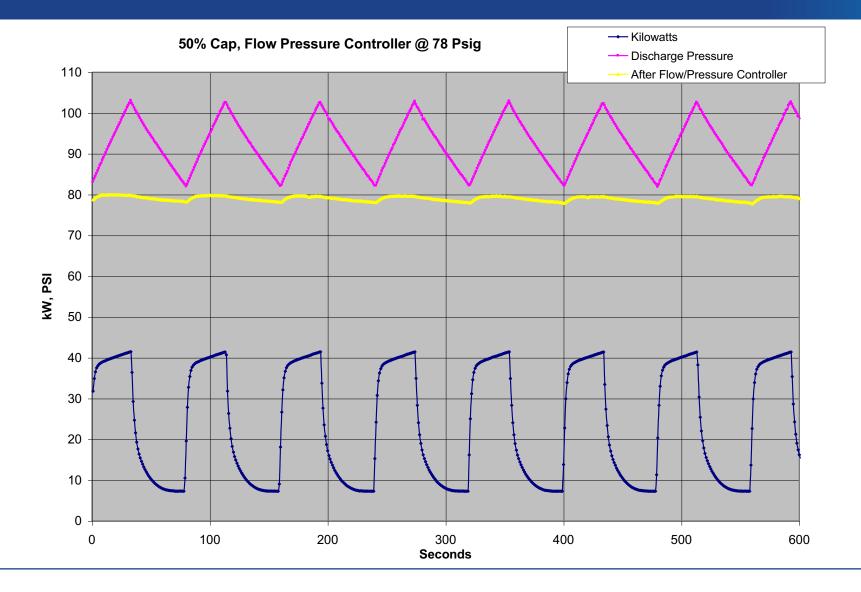

Pressure/Flow Controllers

- Primary function: Stabilize pressure regardless of demand
- Most compressor controls cause 3-10 psi swings
- Multiple compressors can compound the system pressure swings
- Pressure/flow controllers typically hold pressure to production within ± 1% of set point
- The following graph is from a system with 9 compressors totaling over 6,000 hp – pressure is set at 79 psig

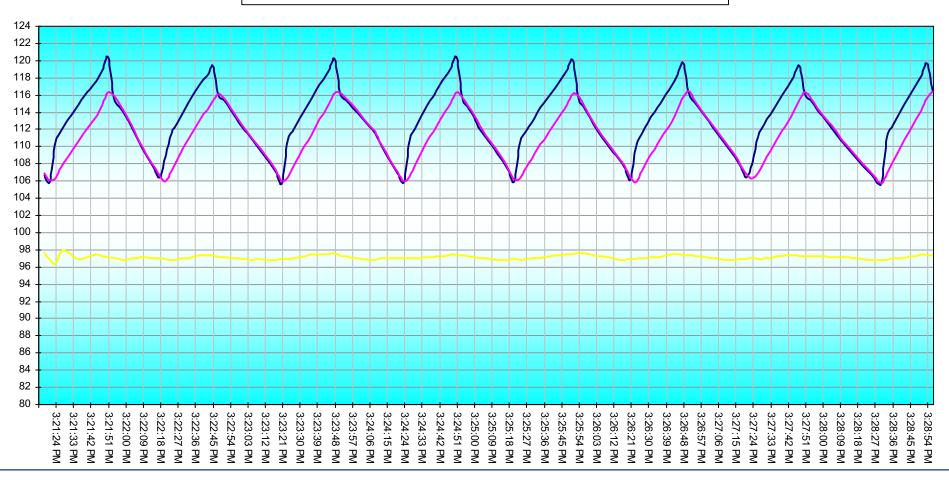
Pressure/Flow Controllers

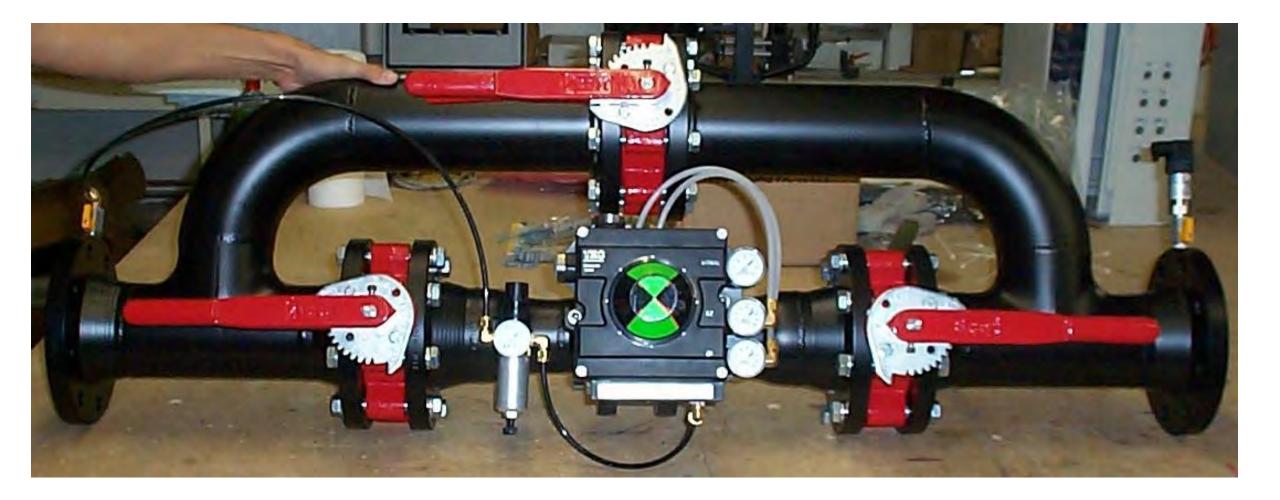


- The compressor discharge pressure varies about 10 psi as the trim compressor loads and unloads to meet plant demand.
- The pressure to the plant is kept at a constant 79 psig.

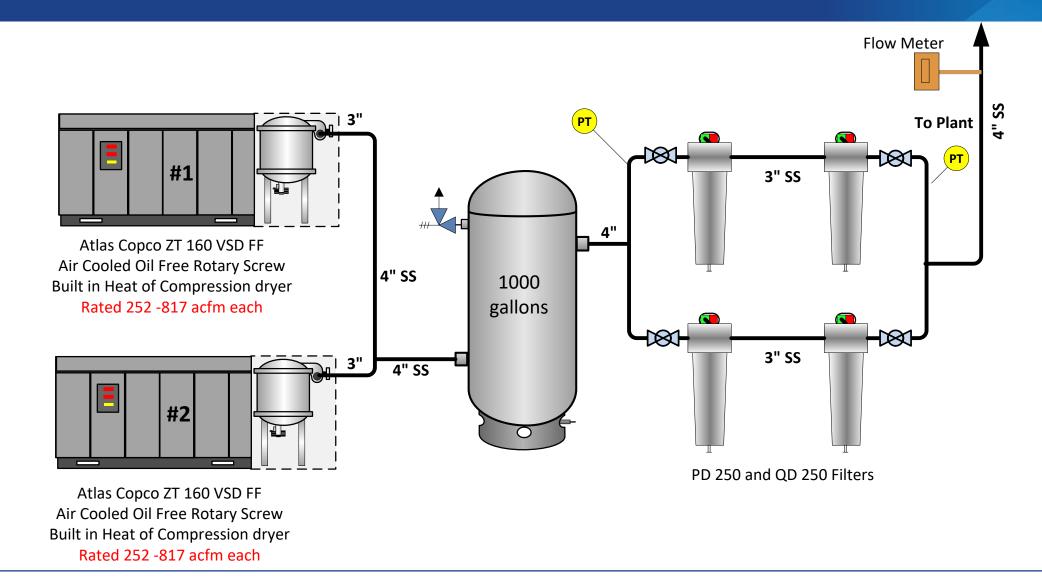


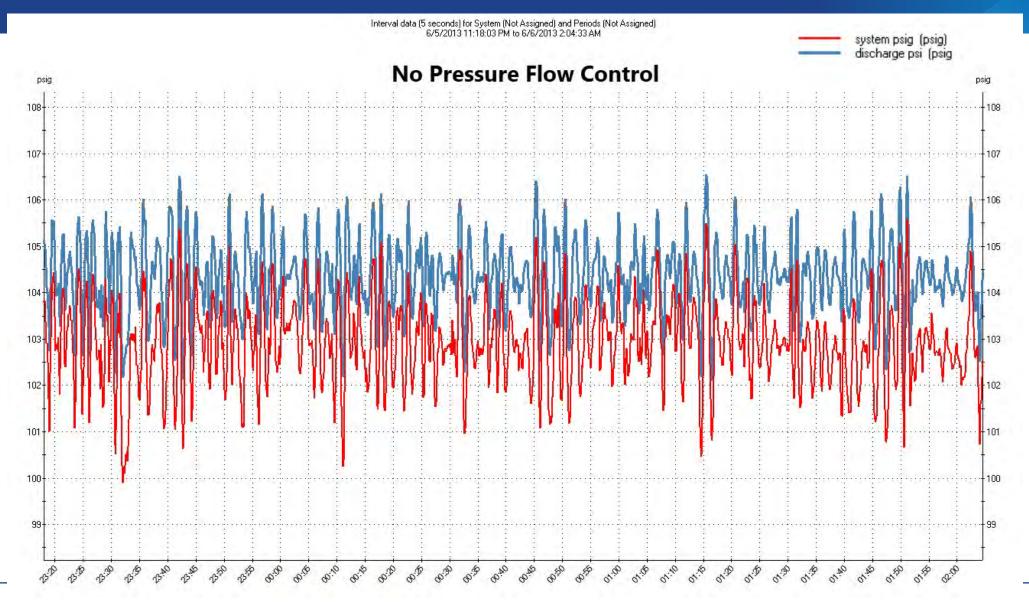
Pressure/Flow Controllers

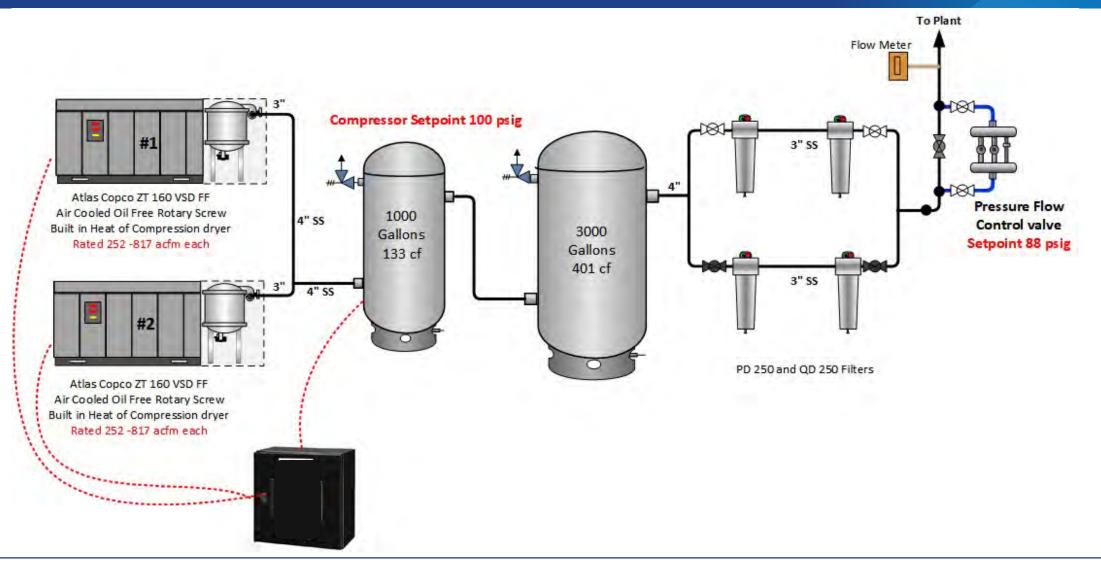



South Compressor Room psig comparisons

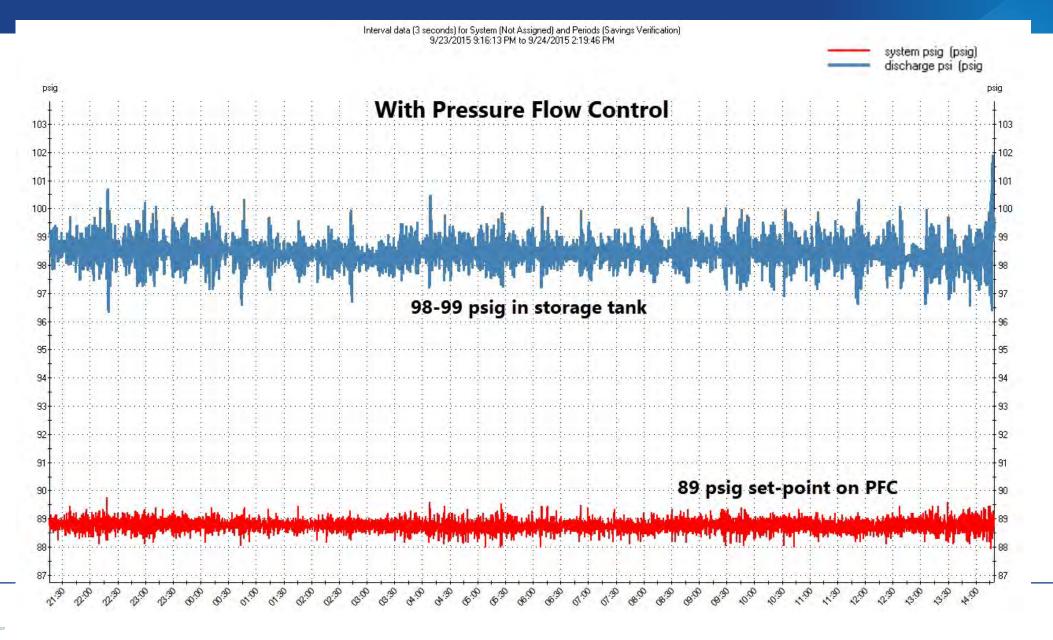
—— psig at Compressor —— psig into Flow Controller —— psig out of flow controller

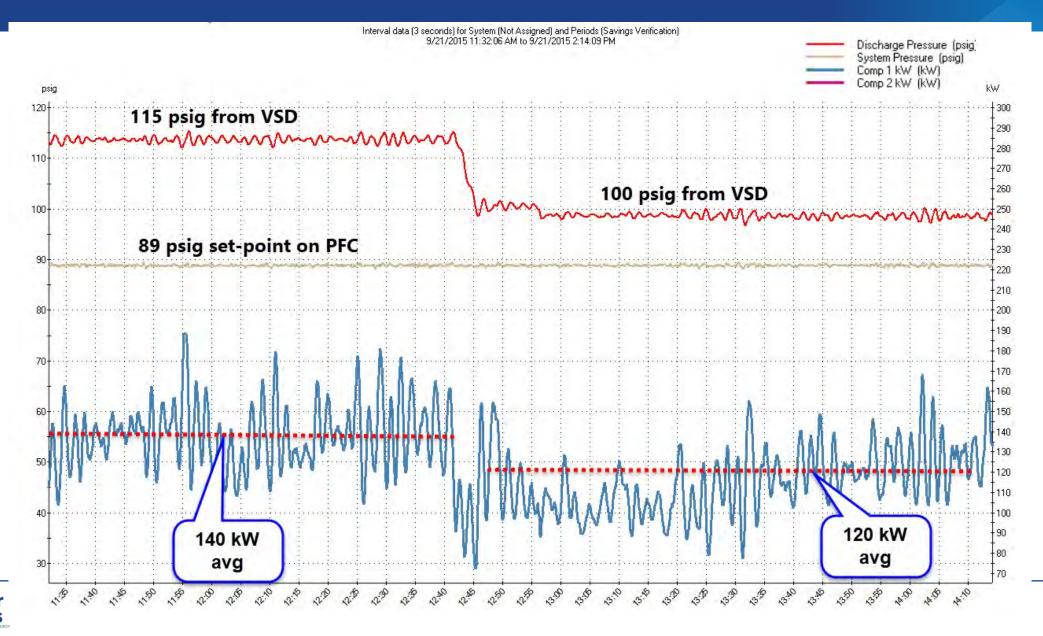



Example Pre PFC

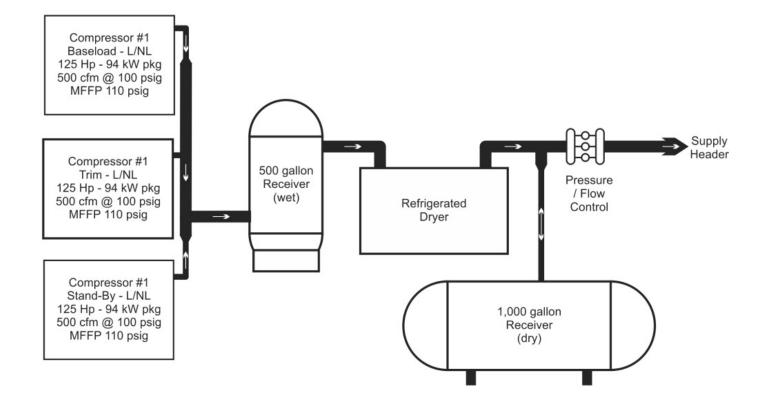

Pressure Fluctuates

Example Post PFC

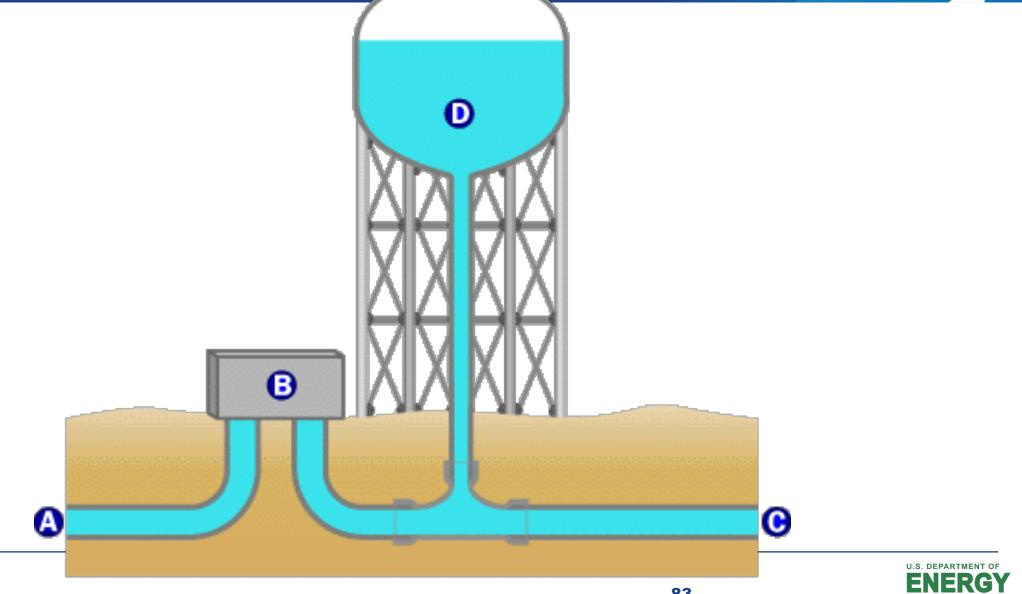



Stable Pressure

Better Plants



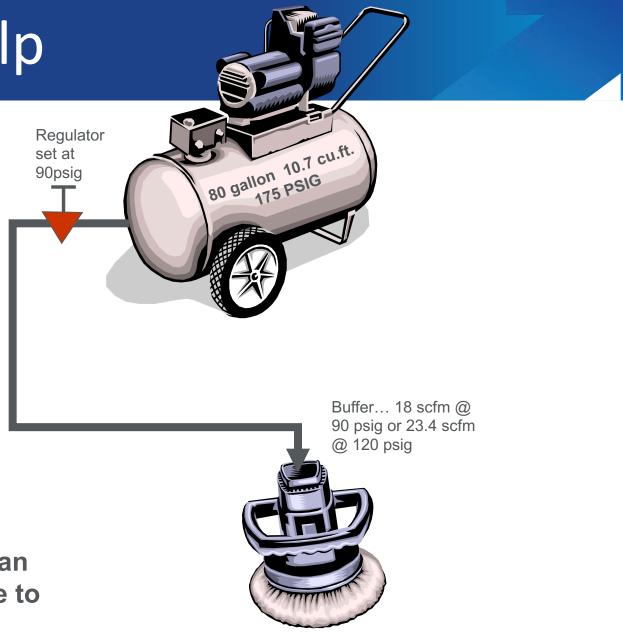
Pressure Stable



 A typical block diagram of a pressure/flow controller in a compressed air system with one point of entry (single compressor room)

Primary Storage

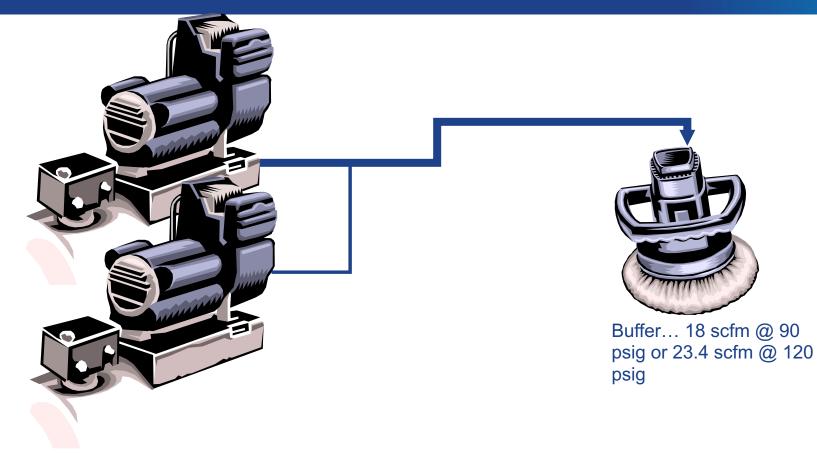
How does Volume Help


A paint area in a body shop has a 5 HP compressor mounted on an 80-gallon air receiver. This receiver is pumped up to 175 psig. The air flow to the buffer which uses 18 SCFM at 90 PSIG, is regulated to 90 PSIG outflow from the regulator.

The compressor delivers 12-13 SCFM at 90 psig but yet it runs the 18 SCFM sander OK.

How can this work???

The buffer uses more volume(scfm) than the compressor can deliver !!


If there were no regulation and receiver, you can be sure that the compressor would not be able to run the tool

How does Volume Help

With no receiver, the painter must install a second 5 hp compressor and therefore use twice the energy as before

Controls Summary

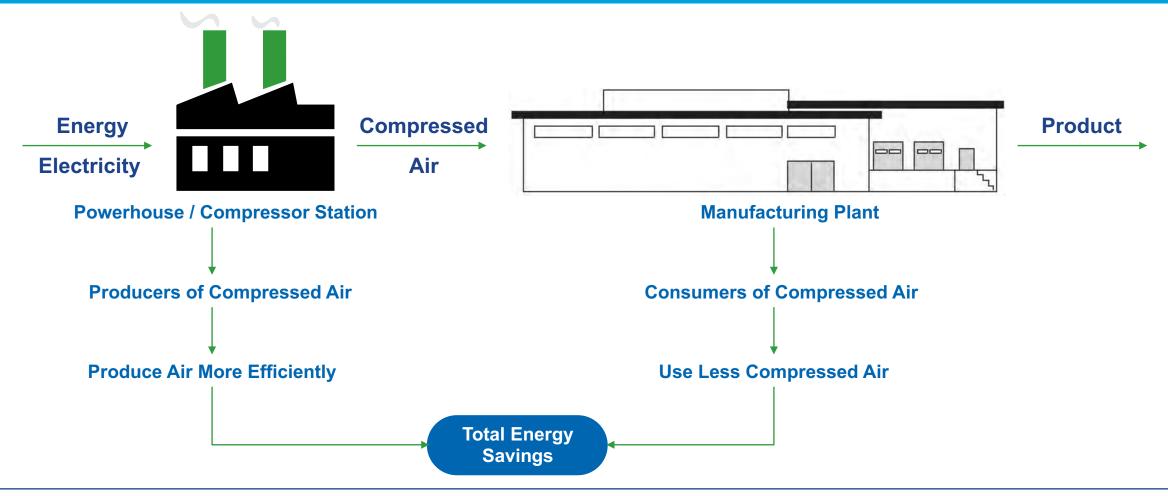
Create a control strategy:

- Know how your controls work
- Realize the pros and cons of different controls
- Recognize how controls affect part load efficiency
- Understand how storage affects the effectiveness of control strategies

CAS Assessment Module and the MEASUR Tool

Airmaster+ and LogTool

Why AIRMaster+?


- ~90% of energy input to compressor never reaches tools (waste heat, drying, etc.)
- Leaks +pressure drops remove air energy before reaching tools-sometimes >50%
- Poor or improperly adjusted controls leave several compressors operating a part load.
- System assessments can be an arduous task using spreadsheets that must be modified for each job.
- AIRMaster+ provides a systematic approach to assessing compressed air systems, analyzing collected data, and reporting results.

Compressed Air Systems Approach plant efficiency: energy >> product

There are two basic ways to reduce the energy consumption of a compressed air system: produce compressed air more efficiently; and consume less compressed air.

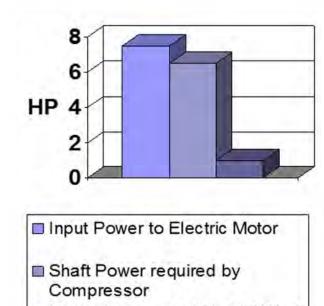
What Can This Tool Help Me With?

Produce more efficiently

- Improve Compressor Control
- Type of Compressor Control

Use less compressed air

- Reduce System Pressure
- Reduce Air Demand
- How does compressed air support production?



Compressed Air Versus Other Energy Sources

- I hp air motor = 7-8 hp of electrical power
 - 30 scfm @ 90 psig is required by the air motor
 - 6 7 bhp at compressor shaft required for 30 scfm
 - 7 8 hp electrical power required for this
- Annual energy cost for a 1 hp air motor versus a 1 hp electric motor, 5day per week, 2 shift operation, \$0.05/kWh
- \$1,164 vs. \$194

Power Losses and Usefull Work

AIRMaster+ Features

- AIRMaster+ is a Windows-based software tool used to analyze industrial compressed air systems.
- Simulates existing and modified compressed air system operation.
- Models part load system operation.
- Assigns electrical utility energy schedules.
- Enters 24-hour metered airflow or power data.
- Is not a substitute for an experienced auditor!

Energy Efficiency Measures

- 1. Reduce Air Leaks
- 2. Improve End Use Efficiency
- 3. Reduce System Air Pressure
- 4. Use Unloading Controls

- 5. Adjust Cascading Set Points
- 6. Use Automatic Sequencer
- 7. Reduce Run Time
- 8. Add Primary Receiver Volume

Why LogTool?

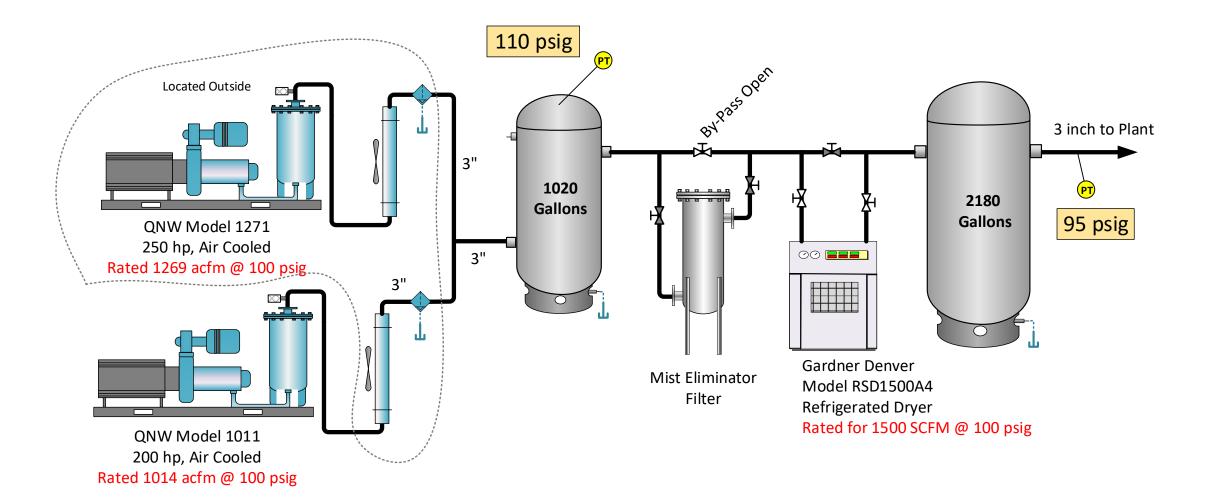
- LogTool is a public domain tool developed by SBW Consulting with support from the Compressed Air Challenge[™].
- It is designed to assist in the analysis of compressed air system performance measurements.
- It is a companion tool for Airmaster+ available from the US DOE and CAC.

LogTool is Designed To:

- Import data which is exported from different types of data loggers.
- Select logger data channels and modify their properties.
 - e.g., name, type, units, etc.
- View data values for one or more logger channels.
- Display trend plots on one or two Y axis.
- Display scatter plots.
- Display Daytype plots in the format that is needed for AIRMaster+

Enter LogTool Data Into AIRMaster

- Enter Utility and rate information
- Enter System information including Day Types
- Enter compressor Information
- Enter recorded data to establish the baseline
 - This data comes from LogTool
- Experiment with different EEM's


AIRMaster+ Main Menu

Box Plant Company Example

Baseline Info

- 200 hp baseloaded compressor rated 1014 acfm using modulated inlet control
- 250 hp trim compressor rated 1269 acfm using modulated inlet control operating at 40% output
- Production is 24/6 with Sundays off
- Average flow during Monday to Saturday is 1500 cfm
- Baseline energy is 2,587,516 kWh or \$174,657 using \$.0675/kWh
- Leakage is estimated to be about 600 cfm based on leak down test

Baseline Info

- Air Operated Diaphragm Pumps (AOD) are in use and can be replaced with electric driven pumps made to pump heavy viscous fluids such as glue
- 3-inch pipe is used in the compressor room to handle almost 1500 scfm of flow. This is borderline undersized and is creating additional pressure drop.
- Both compressors must run to support production. Neither one by itself can run production. There is no redundancy at this plant for compressed air.

Flow by Pipe Size and Velocity

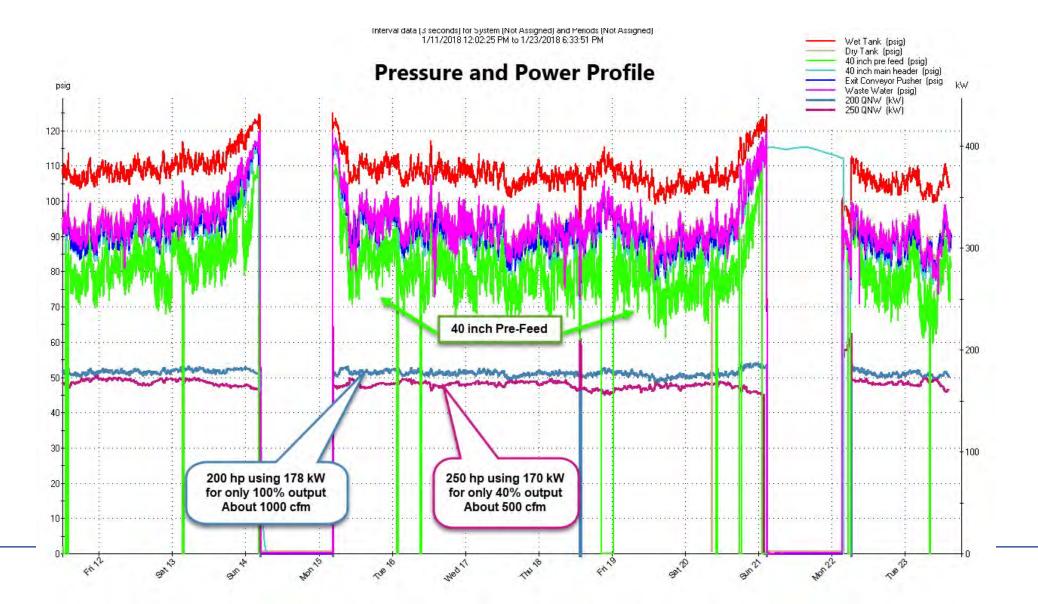
PROJECT	AIR VELOCITIES									
DATE:	August 26, 2021									
NPUTS										
NITIAL PRESSURE	100	PSIG								
LOW RATE		SCFM								
LOWING	1000	COT III								
									HEADERS	FEEDERS
	104 CT 107 CT 10					GAL				
	NOMINAL SCH 40	PIPE ID,			X AREA	STORAGE	VELOCITY	VELOCITY	MAX CFM	MAX CFM
	PIPE SIZE	INCHES	CFM	PSIG	SQ FT	PER FOOT	FT/SEC	MPH	@20'/SEC	@30'/SEC
	0.5	0.500	1,600	100.00	0.0014	0.0102	2,506.430	1,708.93	12.8	19.2
	0.75	0.75	1,600	100.00	0.0031	0.0229	1,113.969	759.52	28.7	43.1
	1	1.04	1,600	100.00	0.0059	0.0441	579.334	395.00	55.2	82.9
	1.5	1.610	1,600	100.00	0.0141	0.1057	241.737	164.82	132.4	198.6
	2	2.067	1,600	100.00	0.0233	0.1743	146.661	100.00	218.2	327.3
	2.5	2.469	1,600	100.00	0.0332	0.2487	102.791	70.08	311.3	467.0
	3	3.068	1,600	100.00	0.0513	0.3840	66.571	45.39	480.7	721.0
	4	4.026	1,600	100.00	0.0884	0.6613	38.659	26.36	827.8	1,241.6
	5	5.047	1,600	100.00	0.1389	1.0392	24.600	16.77	1,300.8	1,951.2
	6	6.065	1,600	100.00	0.2006	1.5007	17.035	11.61	1,878.5	2,817.8
	8	7.981	1,600	100.00	0.3474	2.5986	9.837	6.71	3,252.9	4,879.3
	10	10.020	1,600	100.00	0.5476	4.0960	6.241	4.26	5,127.3	7,691.0
	12	11.938	1,600	100.00	0.7773	5.8142	4.397	3.00	7,278.1	10,917.1
	14	13.13	1,600	100.00	0.940	7.033	3.635	2.48	8,804.1	13,206.1
	16	15.00	1,600	100.00	1.227	9.179	2.785	1.90	11,490.4	17,235.7
	18	16.88	1,600	100.00	1.554	11.624	2.199	1.50	14,551.2	21,826.8
NOTE	: THE COMPRESSED						A VELOCITY	FOR HEADE	RS AND	
	A 30'/SEC MAXIMUI	M VELOCITY	Y FOR F	EEDERS A	ND DROPS					

E

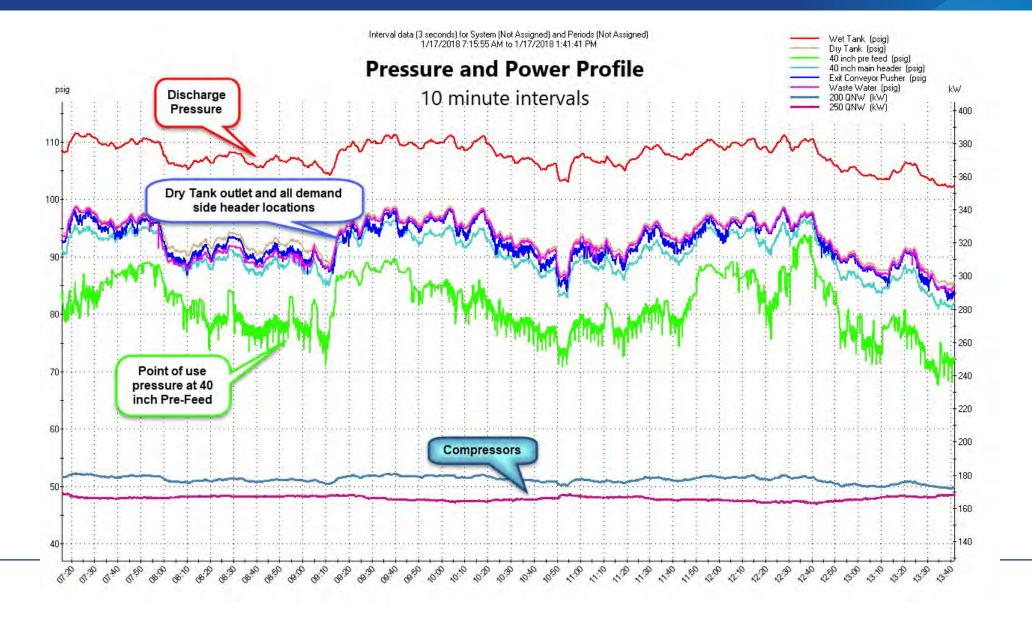
CHAPTER 4

Compressed Air Distribution (Systems)

Table 4.7 Loss of Air Pressure Due to Friction

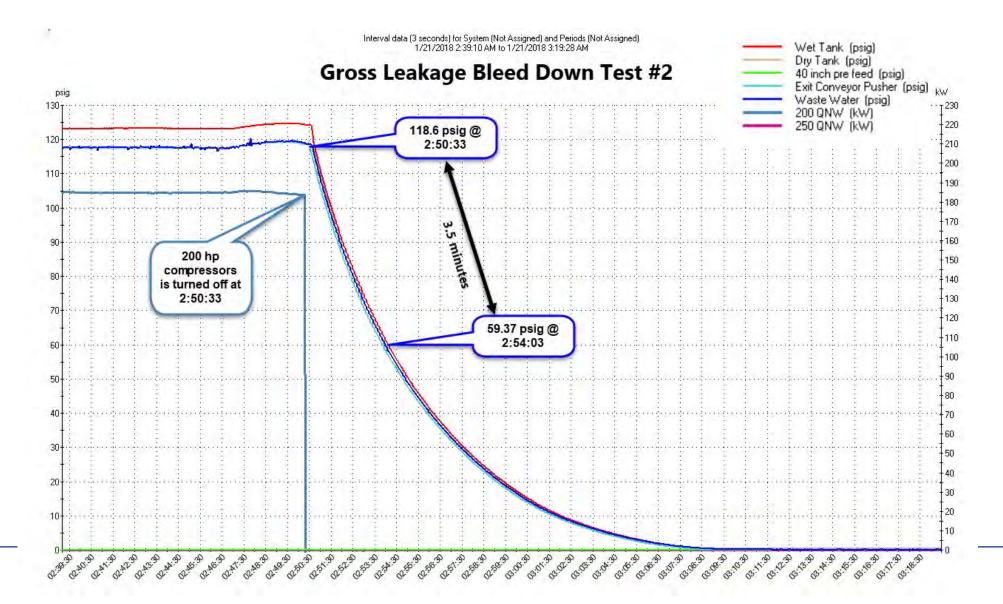

Cu ft Free Air Per Min	Equivalent Cu ft Nominal Diameter, In.												
	Air Per Min	1/2	3/4	1	1 1/4	1 1/2	2	3	4	6	8	10	12
10	1.28	6.50	0 .99	0.28	100			-					
20	2.56	25.9	3.90	1.11	0.25	0.11							
30	3.84	58.5	9.01	2.51	0.57	0.26							
40	5.12		16.0	4.45	1.03	0.46							
50	6.41		25.1	9.96	1.61	0.71	0.19						
60	7.68		36.2	10.0	2.32	1.02	0.28						
70	8.96		49.3	13.7	3.16	1.40	0.37						
80	10.24		64.5.	17.8	4.14	1.83	0.49						
90	11.52		82.8	22.6	5.23	2.32	0.62						
100	12.81			27.9	6.47	2.86	0.77						
125	15.82			48.6	10.2	4.49	1.19						
150	19.23			62.8	14.6	6.43	1.72	0.21					
175	22.40		0000	1010	19.8	8.72	2.36	0.28					
200	25.62			1011	25.9	11.4	3.06	0.37					
250	31.64				40.4	17.9	4.78	0.58					
300	38.44			1011	58.2	25.8	6.85	0.84	0.20				
350	44.80					35.1	9.36	1.14	0.27				
400	51.24					45.8	12.1	1.50	0.35				
450	57.65					58.0	15.4	1.89	0.46				
500	63.28					71.6	19.2	2.34	0.55				
600	76.88			1010			27.6	3.36	0.79				
700	89.60			1010			37.7	4.55	1.09				
800	102.5						49.0	5.89	1.42				
900	115.3	1011		1021	1110		62.3	7.6	1.80				
1 000	128.1			1011	1110		76.9	93	2.21				
1,500	192.3							21.0	4.9	0.57			
2,000	256.2			1001	1110			37.4	8.8	0.99	0.24		

LogTool Trend Plot


Better Plants

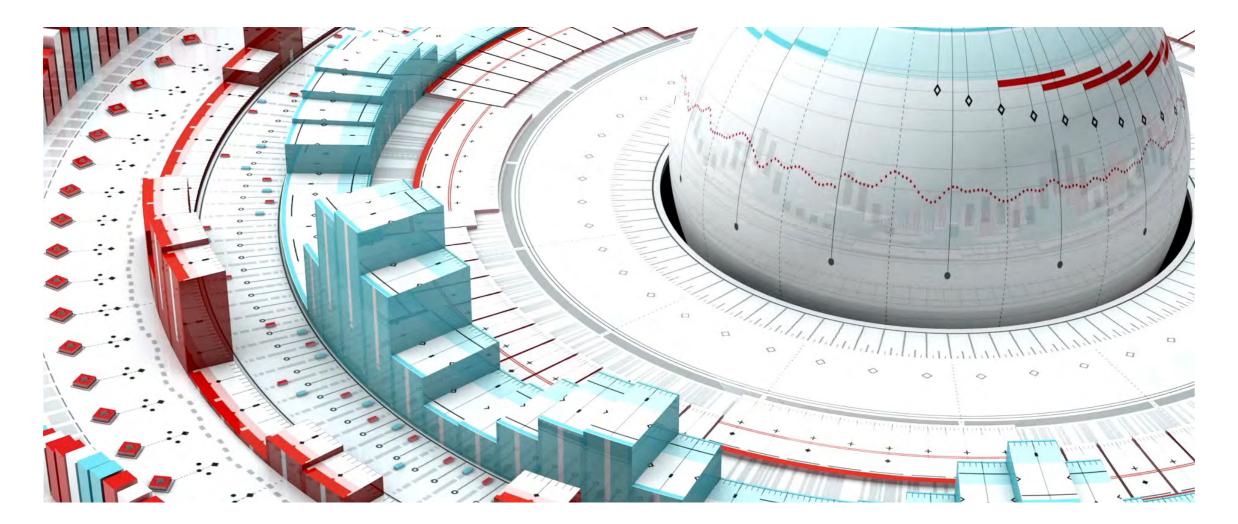
U.S. DEPARTMENT OF

LogTool Trend Plot

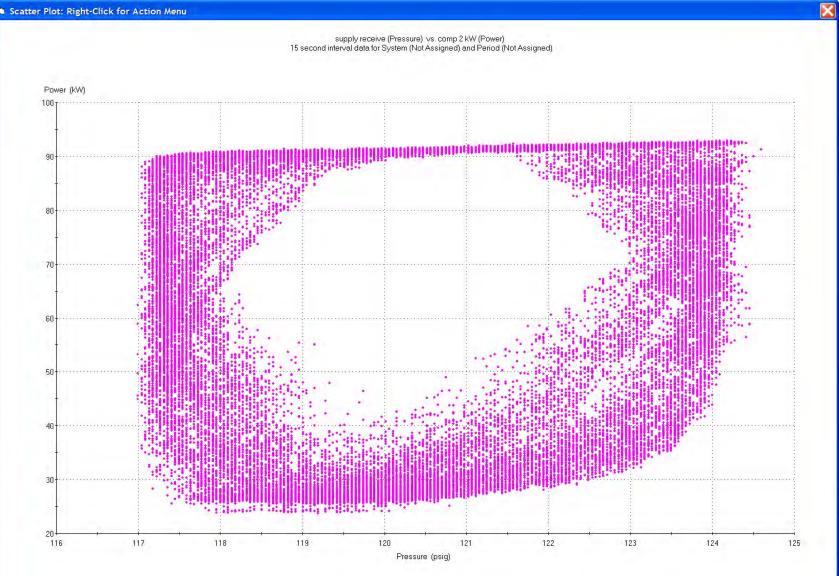

Better Plants

LogTool Trend Plot

Better Plants


Cfm Leakage =	[V x (P1 - P2) x 1.25]/(T x 14.7)								
Where	V=	453.9	Cu ft						
	P1=	118.66	Psig						
	P2 =	59.33	Psig						
	T =	3.50	Minute						
Cfm Leakage =	654.34								
% Leakage =	Measured cfm leakage/total cfm output of plant compressors								
% Leakage =	32.3% Assuming 4cfm/hp and total HP of 450								

LogTool Scatter Plot

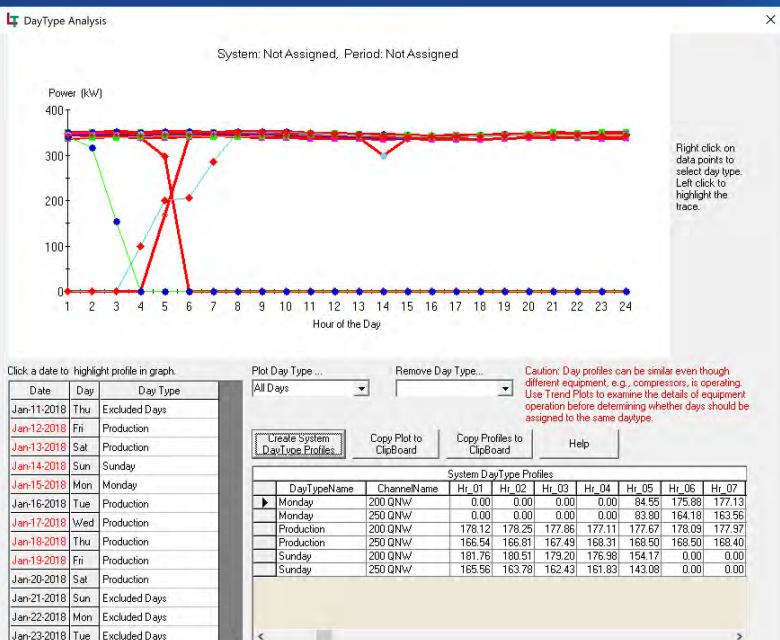


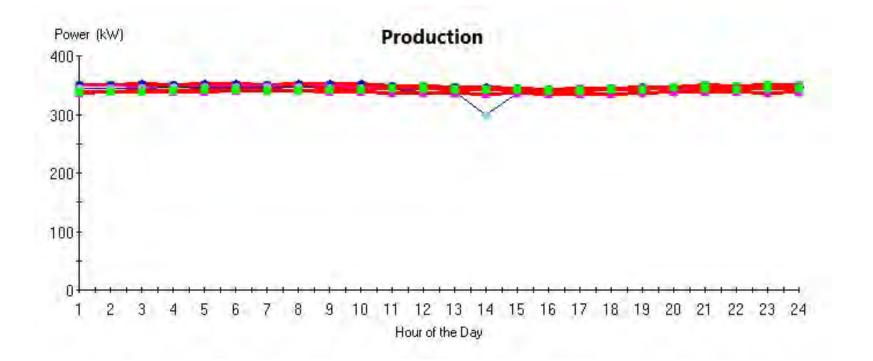
LogTool Scatter Plot

Scatter Plot: Right-Click for Action Menu

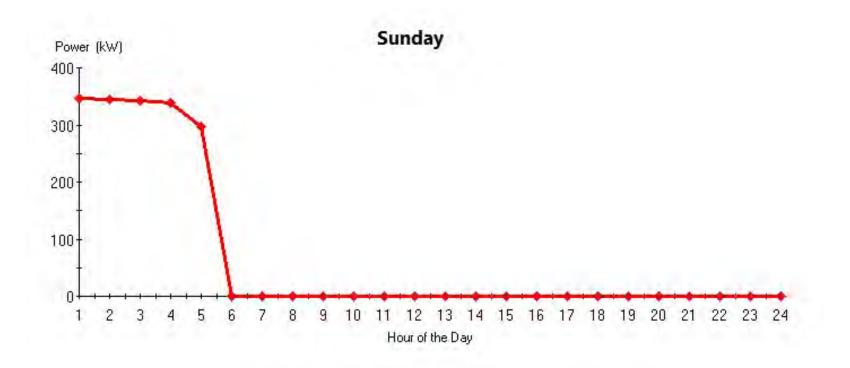
Logger File Type			*						Help
H	ace Pocket Log DBOware for W .UKE Hydra Log	'indows	~		D 1 F1				
Import File Name D SI R. W	P 3000 Configur JLLAIR LogAir ! anger Pronto Fo onderware Acti 1known Logger	ration Softwar Software or Windows iveFactory		-	r Data Files tart		End Interval	(sec.) File S	tatus
		7		Files	: Checked for In	nort			
Import File Name	Logger ID	Logger N	the second s		Name		Type Units	Period	System
Checked Channels	Check All Char		Jncheck All Ch						
			Logger Channe		nported to this M	DB File			
Delete Name	Type	Units	Logger Channe Period	els Im T	nported to this M System		Start	End	Interval (sec.)
Delete Name	Type Pressure 🚽	Units psig – N	Logger Channe Period lot Assigned	els Im	nported to this M System Not Assigned	-	Start 1/11/2018 11:46:51	1/23/2018 14:40:00	3
Delete Name Wet Tank Dry Tank	Type Pressure + Pressure +	Units psig - N psig - N	Logger Channe Period lot Assigned lot Assigned	els Im +	nported to this M System Not Assigned Not Assigned	E E	Start 1/11/2018 11:46:51 1/11/2018 11:43:14	1/23/2018 14:40:00 1/23/2018 14:36:23	3
Delete Name Wet Tank Dry Tank 40 inch pre feed	Type Pressure - Pressure - Pressure -	Units psig → N psig → N psig → N	Logger Channe Period lot Assigned lot Assigned lot Assigned lot Assigned		nported to this M System Not Assigned Not Assigned Not Assigned	NO	Start 1/11/2018 11:46:51 1/11/2018 11:43:14 1/11/2018 12:12:03	1/23/2018 14:40:00 1/23/2018 14:36:23 1/23/2018 15:05:12	3 3 3
Delete Name Wet Tank Dry Tank 40 inch pre feed 40 inch main heade	Type Pressure + Pressure + Pressure + Pressure +	Units psig - N psig - N psig - N psig - N	Logger Channe Period lot Assigned lot Assigned lot Assigned lot Assigned	els Im + + +	nported to this M System Not Assigned Not Assigned Not Assigned Not Assigned	11111	Start 1/11/2018 11:46:51 1/11/2018 11:43:14 1/11/2018 12:12:03 1/11/2018 12:15:25	1/23/2018 14:40:00 1/23/2018 14:36:23 1/23/2018 15:05:12 1/23/2018 15:08:34	3 3 3 3
Delete Name Wet Tank Dry Tank 40 inch pre feed 40 inch main heade Exit Conveyor Push	Type Pressure - Pressure - Pressure - Pressure - Pressure -	Units psig + N psig + N psig + N psig + N psig + N	Logger Channe Period lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned	els Im	nported to this M System Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned	H H H H H	Start 1/11/2018 11:46:51 1/11/2018 11:43:14 1/11/2018 12:12:03 1/11/2018 12:15:25 1/11/2018 12:22:10	1/23/2018 14:40:00 1/23/2018 14:36:23 1/23/2018 15:05:12 1/23/2018 15:08:34 1/23/2018 15:15:19	3 3 3 3 3 3
Delete Name Wet Tank Dry Tank 40 inch pre feed 40 inch main heade Exit Conveyor Push Waste Water	Type Pressure + Pressure + Pressure + Pressure + Pressure + Pressure +	Units psig + N psig + N psig + N psig + N psig + N psig + N	Logger Channe Period lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned		nported to this M System Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned	111111	Start 1/11/2018 11:46:51 1/11/2018 11:43:14 1/11/2018 12:12:03 1/11/2018 12:15:25 1/11/2018 12:22:10 1/11/2018 12:05:48	1/23/2018 14:40:00 1/23/2018 14:36:23 1/23/2018 15:05:12 1/23/2018 15:08:34 1/23/2018 15:15:19 1/23/2018 14:58:57	3 3 3 3 3 3 3
Delete Name Wet Tank Dry Tank 40 inch pre feed 40 inch main heade Exit Conveyor Push Waste Water	Type Pressure + Pressure + Pressure + Pressure + Pressure + Pressure + Pressure +	Units psig + N psig - N	Logger Channe Period lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned	els Im + + + + + + + + + + + + + + + + + + +	ported to this M System Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned	H H H H H	Start 1/11/2018 11:46:51 1/11/2018 11:43:14 1/11/2018 12:12:03 1/11/2018 12:15:25 1/11/2018 12:22:10	1/23/2018 14:40:00 1/23/2018 14:36:23 1/23/2018 15:05:12 1/23/2018 15:08:34 1/23/2018 15:15:19	3 3 3 3 3 3 3 3 3
Delete Name Wet Tank Dry Tank 40 inch pre feed 40 inch main heade Exit Conveyor Push Waste Water 200 QNW	Type Pressure + Pressure + Pressure + Pressure + Pressure + Pressure + Pressure +	Units psig + N psig - N	Logger Channe Period lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned lot Assigned	els Im + + + + + + + + + + + + + + + + + + +	nported to this M System Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned Not Assigned	111111111	Start 1/11/2018 11:46:51 1/11/2018 11:43:14 1/11/2018 12:12:03 1/11/2018 12:15:25 1/11/2018 12:22:10 1/11/2018 12:05:48 1/11/2018 11:35:38	1/23/2018 14:40:00 1/23/2018 14:36:23 1/23/2018 15:05:12 1/23/2018 15:08:34 1/23/2018 15:15:19 1/23/2018 14:58:57 1/23/2018 14:29:59	3 3 3 3 3 3 3 3 3

LogTool Main Menu


Fold		mpor	-	iger D		nal Paper Company										
	5110	-	000			PS			Loc	ider	Data in: IP Log	Tool.	mdb			
		end	Sca		DayType				-							
/iew)ata	N N	Y2	NX	Y	Include	Name Wet Tank	Туре	*	Unit	_	Period Not Assigned	-	System Not Assignec 🔻	Start 1/11/2018 11:46:51	End 1/23/2018 14:40:00	Interval (sec. 3
ata	N N					Dry Tank	Pressure Pressure	_	1.000		Not Assigned	-	Not Assigned 💌	1/11/2018 11:48:51	1/23/2018 14:36:23	3
ata	M M		-			40 inch pre feed	Pressure	_	1		Not Assigned	-	Not Assigned +	1/11/2018 12:12:03	1/23/2018 14:36:23	3
ata	N N					40 inch pie leeu 40 inch main head		_		-	Not Assigned	-	Not Assigned 💌	1/11/2018 12:15:25	1/23/2018 15:08:34	3
ata	N V					Exit Conveyor Pusl	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	_	psig	_	Not Assigned	_	Not Assigned •	1/11/2018 12:22:10	1/23/2018 15:15:19	3
ata	N					Waste Water	Pressure	_			Not Assigned	_	Not Assigned -	1/11/2018 12:05:48	1/23/2018 14:58:57	3
ata	Ē	1				200 QNW	Power	_			Not Assigned	-	Not Assigned 👻	1/11/2018 11:35:38	1/23/2018 14:29:59	3
lata	E		-		N	250 QNW	Power	_			Not Assigned	-	Not Assigned 👻	1/11/2018 11:31:38	1/23/2018 14:24:47	3

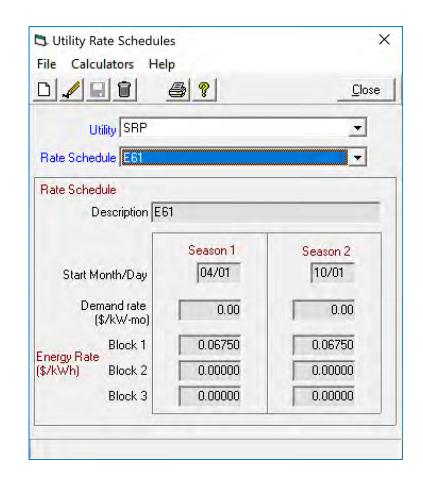

Better

Plants


DayType Profiles

DayType Profiles

DayType Profiles


- Enter Utility and rate information
- Enter System information including Day Types
- Enter compressor Information
- Enter recorded data to establish the baseline
 - This data comes from LogTool
- Experiment with different EEM's

Utility and Rate Information

🕽 Utility File Calculators Help	×
	<u>C</u> lose
Utility SRP	Rate Schedules
Utility Data	
Utility name SRP	
Utility code	
Address 1	
Address 2	
City	
State/Zip	
Contact	
Phone () -	

System Information

<u>/ 9 8 8 8</u>		<u></u> lose
Facility 🗾	System Production	<u> </u>
System Data Sequencer Data	Daytypes	End Uses
System name Production	Calculated airflow capacity (sum of compressors), acfm	3800
Contact	Nominal system pressure, psig 🗍	115.0
Phone () -	System elevation, feet	1000
Sequencer used 🥅	Air storage capacity (receivers + distribution pipe) , ft3 *	448.0
Sequencer type 🗧 Cascade pressures Target pressure		r Storage Calculator
* Air st	torage capacity refers to unregulated (prir s required to run Add Receiver Volume el	

System Information Day Types

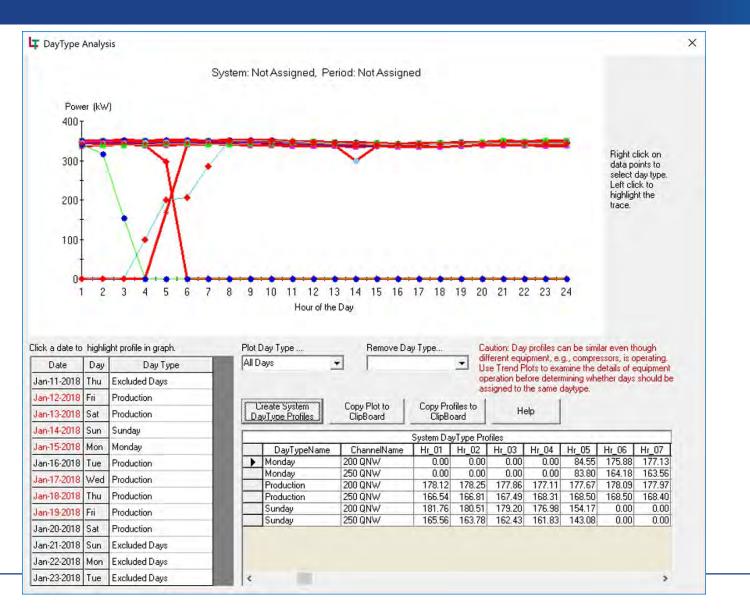
sility		Sys	tem Production	1
System Data	Sequencer	Data	Daytypes	End Uses
Daytype Description	Operating Days - Season 1	Operating Days - Season 2	Season 1 demand months Season 2 r	6
Monday	52	0	demand months	6
Week Day	261	0		
Sunday	52	0	Total annual days	365
•			Total down days	0

Compressor Information

Compressor Catalog					>
Search Select Clear Add	Сору			a ?	<u>C</u> ancel
earch Criteria					
Compressor type Single stage lubricant-injec	cted rotary screw	Motor po rating, hp	wer Al	· • [User- created on
		Desired capa			-
Control type Inlet modulation without ur	nloading		acfm	+/-	%
-All- Manufacturer Telet modulation without up		Desired full I	oad 🕅	+/-	%
		pressure,	psig I	+/-]	10
Inlet modulation with unloa earch results - 12 Variable displacement with					
Scroll right for me Load/unload	(annough ing			Compress	or Details
Start/Stop		-			T T T T T T
Proprietary	Manufacturer	Model	Motor	Cauted Tura	_
Compressor Type	Manufacturer	Model	hp hp	Control Type	
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	<generic></generic>	200 hp/150 kW	200	Inlet modulation with	nout un
Charles at a set balance to be a set of a set of the se	<generic></generic>	250 hp/185 kW	250	Inlet modulation with	nout un
Single stage lubricant-injected rotary screw	Kuenencz	E00 lipr 100 km			To div di T

Compressor Information

	opy Compressor	Query Inv	entory	Сору Т	o Catalog		Close
Facility International Paper System Production	Con		00 hp QNW Single Stag	e Rot	ary Scre	w, 10	J5 acfm
User- ssigned ID Description 200 hp QNW	Com	pressor disc control Sequencer	charge range used 「	- 120.	0 psig		anufacturer ompressor Details
Nameplate	Controls	Per	formance	Ì	Totals (from Pr	ofile module
nlet Conditions Avg. temperature, °F 85 Atmos. pressure, psia 14.2	Performance P (actual, not rate Full le Max full flow (m	ed) oad (cut-in)	Discharge Pressure psig 110.0 110.0	A Chit?] 지	acfm 1005	F Dfilt? [] 지	Power kW 175.0
Jnloading Blowdown Time For lubricant-injected rotary screws, sec. 40	Unload poi No load	nt (cut-out) (unloaded)	120.0	「 [図	406 0] प] प	138.5 35.8


Compressor Information

Create the baseline from the Data

																										1
System Type		Na Channel Name	Hr_01	Hr_02	Hr_03	Hr_04	Hr_05	Hr_06	Hr_07	Hr_08	Hr_09	Hr_10	Hr_11	Hr_12	Hr_13	Hr_14	Hr_15	Hr_16	Hr_17	Hr_18	Hr_19	Hr_20	Hr_21	Hr_22	Hr_23	Hr_24
Not Assigne Power	Not Assigne Monday	200 QNW	0.0	0.0	0.0	0.0	84.6	175.9	177.1	181.6	182.2	180.8	177.2	177.7	177.0	178.6	178.7	178.7	176.9	177.0	178.2	177.2	178.7	179.6	180.1	179.
Not Assign(Power	Not Assigne Monday	250 QNW	0.0	0.0	0.0	0.0	83.8	164.2	163.6	164.5	165.0	166.7	171.6	169.9	168.1	164.9	163.3	162.5	163.6	164.8	165.6	167.1	167.1	167.0	166.2	166.
Not Assign(Power	Not Assigne Production	on 200 QNW	178.1	178.3	177.9	177.1	177.7	178.1	178.0	177.9	177.7	178.1	177.3	177.2	177.2	168.0	174.9	175.7	175.7	175.8	177.5	177.4	178.4	179.0	179.1	179.
Not Assign(Power	Not Assigne Production	on 250 QNW	166.5	166.8	167.5	168.3	168.5	168.5	168.4	168.0	168.1	167.1	166.4	166.1	165.0	167.1	165.9	164.7	164.5	165.2	165.0	165.8	165.3	164.5	164.2	164.
Not Assign(Power	Not Assign Sunday	200 QNW	181.8	180.5	179.2	177.0	154.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Not Assigne Power	Not Assigne Sunday	250 QNW	165.6	163.8	162.4	161.8	143.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Date Day	Day Type																									
Jan-11-201 Thu	Excluded Days																									
Jan-12-201 Fri	Production																									
Jan-13-201 Sat	Production																									
Jan-14-201 Sun	Sunday																									
Jan-15-201 Mon	Monday																									
Jan-16-201 Tue	Production																									
Jan-17-201 Wed	Production																									
Jan-18-201 Thu	Production																									
Jan-19-201 Fri	Production																									
Jan-20-201 Sat	Production																									
Jan-21-201 Sun	Excluded Days																									
Jan-22-201 Mon	Excluded Days																									
Jan-23-201 Tue	Excluded Days																									

											<u>C</u> l
ct sility I tem Production		▪ ► Da	ytype W	/eek Day	,		Sys	tem pres control ra	sure <mark>10</mark> inge <mark>10</mark>	0.0 - 120).0 psig
Data Entry		T		Profile S	bummary		Y		Ť	otals	
Cascade Order - click	cell to to	ggle stage	#/'off'					Co	py Prev	Col	<u>G</u> raph
Compressor		1 1	2	3	4	5	6	7	8	9	10
200 hp QNW		1	1		1	1	1	1	1	1	1
250 hp QNW		2	2	2	2	2	2	2	2	2	2
New 250 hp VSD		Off	Off	Off	Off	Off	Off	Off	Off	Off	Off
•			1							ļ	
Profile data type: Pou	wer, kW		-		Ea	ste From	n Clipboar	d Co	opy Prev	Col	Graph
Compressor	Units	1	2	3	4	5	6	7	8	9	10
200 hp QNW	kW	178.1	178.3	177.9	177.1	177.7	178.1	178.0	177.9	177.7	17
250 hp QNW	kW/	166.5	CINES IN STOR	-							
New 250 hp VSD	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

et ility em Production		▼ Day	itype Si	unday		ļ	- Sys	tem pres control ra	sure 100 ange 100).0 - 120).0 psi
Data Entry		T		Profile S	Summary		Y		Τc	otals	
Cascade Order - clici	k cell to to	ggle stage	#/'off'					C	opy Prev	Col	<u>G</u> rapi
Compressor		11	2	3	4	5	6	7	8	9	10
200 hp QNW		1	1	1	1	1	1	1	1	1	1
250 hp QNW		2	2	2	2	2	2	2	2	2	2
New 250 hp VSD		Off	Off	Off	Off	Off	Off	Off	Off	Off	Off
•			1								•
Profile data type: Po	ower, kW		-		Ea	aste From	ı Clipboar	d Co	opy Prev	Col	Grap
Compressor	Units		2	3	4	5	6	7	8	9	1(
200 hp QNW	k₩	181.8					0.0				
250 hp QNW	kW	165.6					0.0				_
New 250 hp VSD	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1

6												<u>C</u> lo
	t lity em Production		▼ ▼ Da	ytype M	onday			Sys	tem pres control ra	sure 100 ange 100	0.0 - 120	1.0 psig
	Data Entry				Profile S	Summary		T		To	otals	
	Cascade Order - click	cell to to	ggle stage	#//off					C <u>o</u>	opy Prev	Col	<u>G</u> raph
	Compressor		1 1	2	3	4	5	6	7	8	9	10
ſ	200 hp QNW		1	1	1	1	1	1	1	1	1	1
	250 hp QNW		2	2	2	2	2	2	2	2	2	2
	New 250 hp VSD		Off	Off	Off	Off	Off	Off	Off	Off	Off	Off
						-				-	-	
	•									1		ЪГ
	Profile data type: Po	wer, kW		•		Ea	iste From	Clipboar	d Co	opy Prev	Col	<u>Gr</u> aph
	Compressor	Units	1	2	3	4	5	6	7	8	9	10 -
	200 hp QNW	kW	0.0	0.0	0.0	0.0	84.6	175.9	177.1	181.6	182.2	18
	250 hp QNW	kW/	0.0					164.2	163.6	164.5	165.0	16
	New 250 hp VSD	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

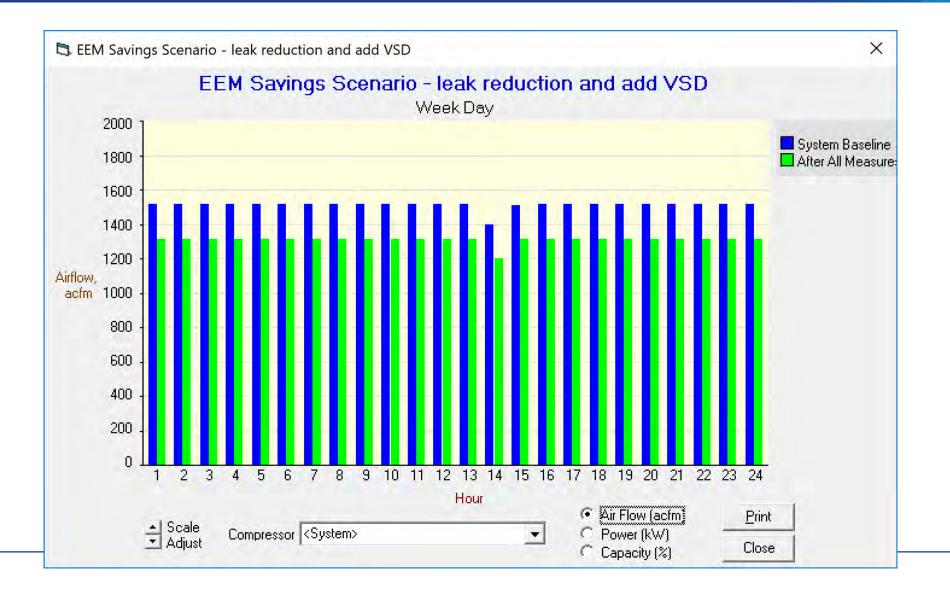
The Baseline

cility		• Dayty	pe		Ţ SJ	ystem pressure control range	<u>C</u> 100.0 - 120.0 psi
Data Er ystem Summary —	itry	Y	Prof	ile Summary	Ţ		Totals
Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Annual Energy Cost,
Monday	1,040	1,459	38.4	348.8	51.3	349,102	23,564
Week Day	6,264	1,509	39.7	346.6	52.5	2,151,606	145,233
Sunday	260	1,434	37.7	347.4	51.0	86,809	5,860
System Totals ∢	7,564	1,500	39.5	348.8	52.3	2,587,516	174,657
						Сору	To Clipboard
					Tota	I demand cost,	\$ \$0
					Table	perating costs,	\$ \$ 174,657

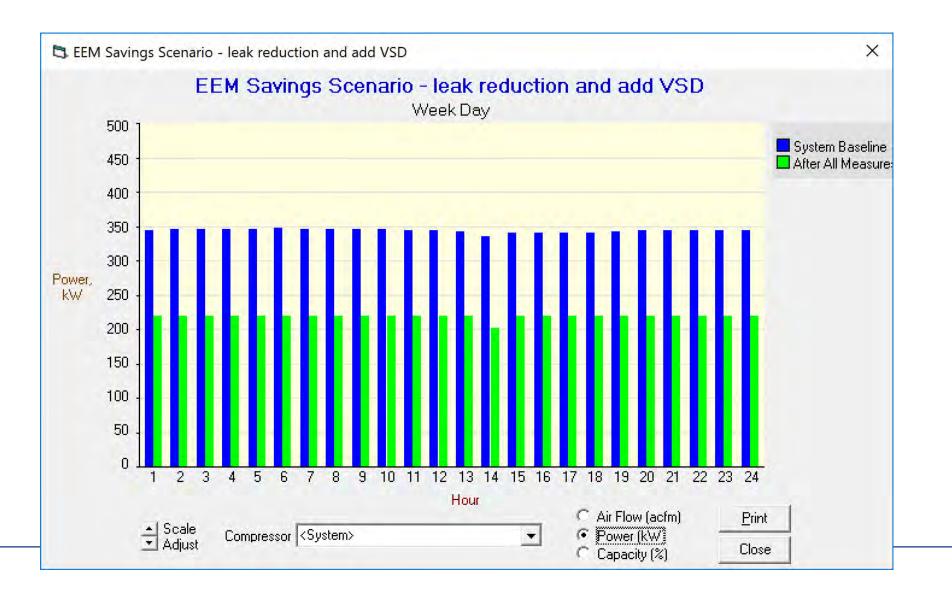
🛱 Energy Efficiency Measures File Calculators Help						
	Copy <u>E</u> EM Scenario		Life Cyc	le R	esults <u>C</u> los	se
Facility System Production	EEM Scenario	leak reduc	ction and a	dd VSD	•	
Data Entry	ľ		Savings S	ummary		
Description leak reduction and add	VSD	Include	Order	Edit/ Review	Data Needs Review	
DEMAND SIDE	Reduce Air Leaks	V	1 -		Г	
	Improve End Use Efficiency	Г	-		Г	
	Reduce System Air Pressure	Г	-		Г	
SUPPLY SIDE	Use Unloading Controls	Г	-		Г	
	Adjust Cascading Set Points	Г	-		Г	
	Use Automatic Sequencer	Г	•		Г	
	Reduce Run Time	•	2 🕶		~	
	Add Primary Receiver Volume*	Г	-		Г	
	city was entered in the system modu ew compressors with unloading contr					

		_		Results	<u>C</u> lose
Facility	-	Sy	stem Production		
Description Reduc		-	Measure cost, \$	5000	
	To Feed Leaks		- Leak Airflow Values		
Lompressor Uperations					
Compressor Uperations	Lupite Airl	flow, 📥	Airfl Peak system	ow, acfm	% Cs.
200 hp QNW	Units Airl acfm	ofm 0	Airfl	1514	39.8
Compressor 200 hp QNW 250 hp QNW	Units Airl acfm acfm	cfm 0 200	Airfl Peak system		
Compressor 200 hp QNW	Units Airl acfm	ofm 0	Airfl Peak system requirement + leaks	1514	39.8

🖏 EEM - Reduce Run T	ime									×
File Calculators Help	0									
19 39								R	es <u>u</u> lts	<u>C</u> lose
Facility System Production							1	ata View C Existin Propo		lestore
Measure Description Description Redu	ce Run Time			-	Meas	sure cost	,\$ 10	06700		_
- Proposed Run Time Data Daytype Monday		·				npressor :e a comr				
Compressor	Airflow Cap.,acfm	1	2	3	4	5	6	7	8	9 📥
200 hp QNW	1,006									
250 hp QNW	1,266									
New 250 hp VSD	1,527	2	R	V	×	Z	V	2	×	<u></u>
Available Airflow, acfm	_	1527	1527	1527	1527	1527	1527	1527	1527	
Required Airflow, acfm		0	0	0	0	220	1314	1014	a of all	102
								- PR		



Calculators Help	?	CopulEEM	l Scenario	1	1	ife Cycle	Resul	ts <u>C</u> los
Facility International Par System Production				i cenario lea				<u> </u>
	ata Entry				Sav	ings Sum	mary	
Description	Energy Savings, KWh	Energy Savings, \$	Energy Savings, %	Demand Savings, KW	Demand Savings, \$	Installed Cost, \$	Total Savings, \$	Simple Payback, years
Reduce Air Leaks Reduce Run Time	457,487 484,848	30,880 32,727	17.7 18.7	64.1 64.9	0	5,000 106,700	30,880 32,727	0.2
10741.0	040.005			100.0		111 700		
TOTALS ◀	942,335		36.4	129.0	U	111,700		1.8


Bar Graphs

Bar Graphs

Calculators

Atmospheric pressure, psia 13.17 14.50 psia Ambient temperature, *F 90 68 *F Relative humidity, % 50 0 %	Actual Conditions			Conditions thod
Ambient temperature, *F 90 68 *F Relative humidity, % 50 0 %	Elevation, ft.	3000	C ASME	CAGI/ISO Pneurop
Relative humidity, % 50 0 %	Atmospheric pressure, psia	13.17	14.50	psia
Results	Ambient temperature, *F	90	68	*F
	Relative humidity, %	50	0	%
(Enter: acfm to calculate scfm OR scfm to calculate acfm)		¢ scfm to ca	1	scfm

Calculators

Measured Test Conditions		Actual Conditions	
Elevation, ft.	3000	Elevation, ft.	3000
Atmospheric pressure, psia	13.17	Atmospheric pressure, psia	13.17
Compressor capacity, acfm	500	Compressor capacity, acfm	500
Full load or cut-in pressure, psig	100.0	System airflow requirement, acfm	400
Unload or cut-out pressure, psig	110.0	System volume, cubic feet	109.0
Pump-up time, sec.	30	Full load or cut-in pressure, psig	100.0
Drain-down time, sec.	15	Unload or cut-out pressure, psig	110.0
Results Air storage capacity (receivers + distribution pipe), ft3	109.8	Results Pump-up time, sec. Drain-down time, sec.	50.0 12.0
-	Close	Total cycle time, sec.	62.0
U.S. Department of Energy	30	1	Close

X

Performance Profile Graph

VSD Performance Graph

Another Airmaster+ Example Profile Data

is data
m?

Another Airmaster+ Example Day Type From Log Tool

Oper	/Cie	ate D	atab	ase f	ile to store l	ogger data										
opor	in Oro	u.u. u	0.00				enti	~							100	
-			-	-		ing Database (.MDB	Filej	Lre	eate a	Net	w Database (.M	UB FI	lej.		Hel	P
					Data LogTo											
Fold	er D):\Au	dit Re	elate	d\Boehring	er Ingelheim										
_					in the											
	1	Impor		-	-	1.11										
To	end		Scal	tter	DayTy	pe										
					-		Lo	gge	er Dat	a in:	Boehringer Full	Data	LogTool,mdb			
View	 Y1	end Y2	X	atter Y	DayType Include	Name	Туре	-	Un	ite	Period	-	System	Start	End	Interval (se
Data	M	Г		П		100 psi regulator	Pressure		psig		Baseline	*	Not Assigned 💌	6/28/2021 11:45:07	7/14/2021 15:35:59	4
Data			Ē	Г	V	AC7400	Power		k₩	*	Baseline	*	Not Assigned 💌	6/28/2021 12:04:21	7/14/2021 15:55:13	4
Data		V	E	Г	M	AC7401	Power		k₩	•	Baseline	*	Not Assigned 💌	6/28/2021 12:37:45	7/14/2021 16:28:37	4
Data	\Box			J	N	AC7402	<u>। 'व</u>	٠	k₩	٠	Baseline	*	Not Assigned 💌	6/28/2021 13:04:29	7/14/2021 16:55:21	4
Data		Г	E	Г		Bio Reactor 1330	Pressu.	9	psig	•	Baseline	*	Not Assigned 💌	6/29/2021 09:31:22	7/15/2021 13:22:14	4
Data	\Box	Г	П	Е		Bio Reactor 1730	Pressure			*	Baseline	*	Not Assigned 💌	6/29/2021 09:27:22	7/15/2021 13:18:14	4
Data	9		Г	Г		Dry Tank	Pressure		psig		Hine	*	Not Assigned 💌	6/28/2021 11:35:29	7/14/2021 15:26:21	4
Data	2	Г	П			Pl 1390 Top Floor	Pressure		psig	*		-	Not Assigned 💌	6/29/2021 09:35:19	7/15/2021 13:26:11	4
Data	9	Г	M	П		Wet Tank	Pressure		psig	*	Baseln.		Not Assigned 💌	6/28/2021 12:00:32	7/14/2021 15:51:24	4

Another Airmaster+ Example

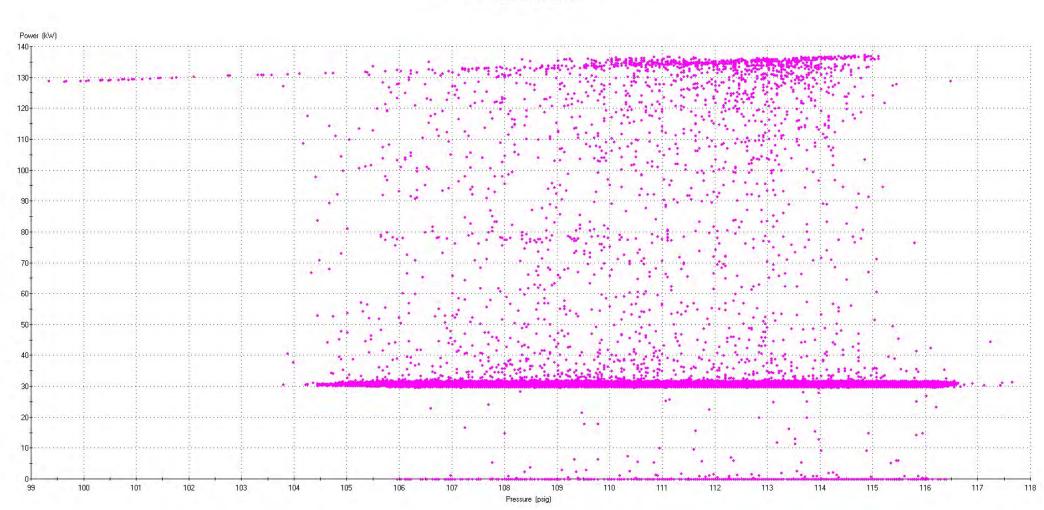
ystem	Туре	Period	DayTypeName	ChannelName	Hr_01	Hr_02	Hr_03	Hr_04	Hr_05	Hr_06	Hr_07	Hr_08	Hr_09	Hr_10	Hr_11	Hr_12	Hr_13	Hr_14	Hr_15	Hr_16	Hr_17	Hr_18	Hr_19	Hr_20	Hr_21	Hr_22	Hr_23	Hr_24
lot Assign	Power	Baseline	Production	AC7400	31.3	31.1	31.2	31.1	31.1	31.3	31.2	31.3	31.5	31.7	31.4	31.1	30.6	31.3	30.9	30.8	31.6	32.4	31.6	31.2	30.9	31.1	31.3	31.7
lot Assign	Power	Baseline	Production	AC7401	33.8	33.3	34.9	34.7	34.7	34.9	34.2	34.3	34.8	34.1	33.9	34.5	33.4	34.0	34.0	34.5	34.0	33.5	32.7	34.1	33.7	34.0	35.0	34.6
lot Assign	Power	Baseline	Production	AC7402	105.9	106.0	104.6	104.1	104.6	106.4	107.0	107.0	104.9	107.7	107.7	107.1	107.1	106.4	106.2	105.1	107.1	108.6	107.5	105.9	105.0	104.9	104.3	106.8
ate	Day	Day Type									_																	
un-28-20:		Productio	n																			-						
un-29-20:		Productio								S	System:	NotAs	signed	Period	l:Base	line												
un-30-20:		Productio																										
ul-01-202	Thu	Productio	n			Power (kW)																					
ul-02-202	Fri	Productio	n		2	210 T																						
ul-03-202	Sat	Productio	n									-																
ul-04-202	Sun	Productio	n		2	200-						N					Λ											
ul-05-202	Mon	Productio	n			t						1				1	1											
ul-06-202	Tue	Productio	n		1	90-							1.			1	1	-										
ul-07-202	Wed	Productio	n			1	25			20			44	1		1	11	1			1							
ul-08-202	Thu	Productio	n		1	80	~	-	-	0		1	A	.X	1-	the	K	IN		1	/							
ul-09-202	Fri	Productio	n			t	5	-		-	5	2-1	63	62	No.	A	2	X-	12	1	-							
ul-10-202	Sat	Productio	n		1	70									-4-						-							
ul-11-202	Sun	Productio	n			-	-							-			-											
ul-12-202	Mon	Productio	n		1	60++	++++	++++						42 44	45	10 17	111	1 1 1		0.00								
ul-13-202	Tue	Productio	n			1	2 3	4	5 6	1	8 9	10 1	1 12	13 14	15	16 17	18	19 20	21 2	2 23	24							
ul-14-202	Wed	Productio	n										Houroft	he Day														

Another Airmaster+ Example

	acility ystem Production		▼ Dayty	pe Produc	tion	± s	ystem pressure control range	107.0 • 118.9 p
Ē	Data Ent	ſŷ	γ	Prof	ile Summary	Y		Totals
	System Summary					_		_
	Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Energy Cost, \$
	Production	8,760	490	19.1	174.5	33.2	1,503,143	150,314
					-			
	System Totals	8,760	490	19.1	174.5	33.2	1,503,143	150,314

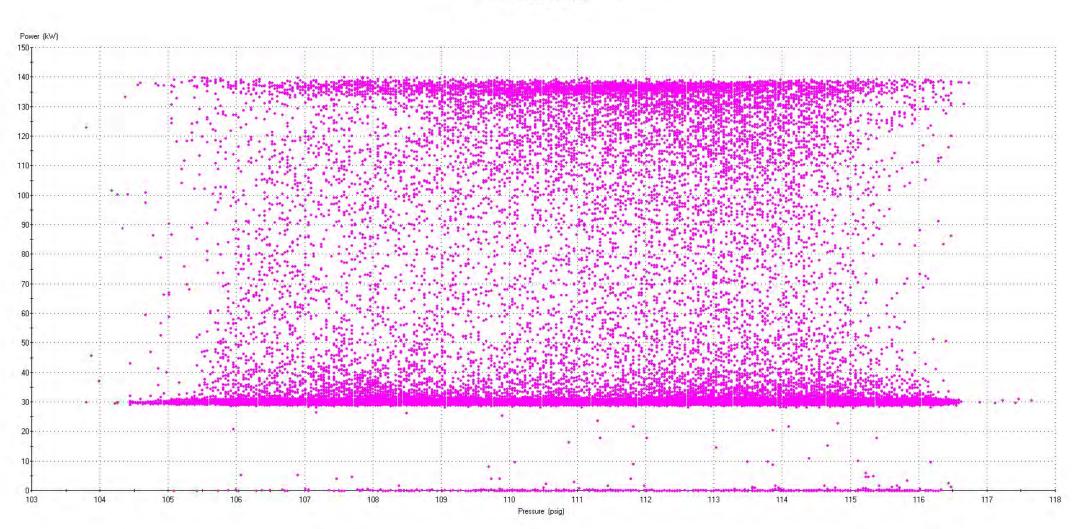
	Compressed Air Baseline Energy using \$0.10/kWh													
Daytype	Total OpHrs	Avg Airflow, acfm	Avg Airflow, %Cs.	Peak Demand, kW	Load Factor, %	Annual Energy, kWh	Annual Energy Cost, \$							
Production	8,760	490	19.1	174.5	33.2	1,503,143	\$150,314							
System Totals	8,760	490	19.1	174.50	33.2	1,503,143	\$150,314							

Another Airmaster+ Example


Energy Efficiency Measures File Calculators Help 3 ? Copy EEM Scenario Life Cycle Results Close Facility • EEM Scenario EEM 2 -System Production Data Entry Savings Summary Energy Energy Savings, ٠ Demand Demand Total Simple Energy Savings, \$ Installed Savings, Savings, Savings, Payback Description Savings, Cost. \$ kWh kW years \$ 570,410 57,041 37.9 57,041 Use Automatic Sequencer 65.3 32,600 0.6 Add AD 400 dryer 104,541 10,454 7.0 11.9 26,351 10,454 2.5 0 . TOTALS 674,950 67,495 77.2 0 58,951 67,495 0.9 44.9 4 1 Copy To Clipboard Double-click row to view corresponding measure input data

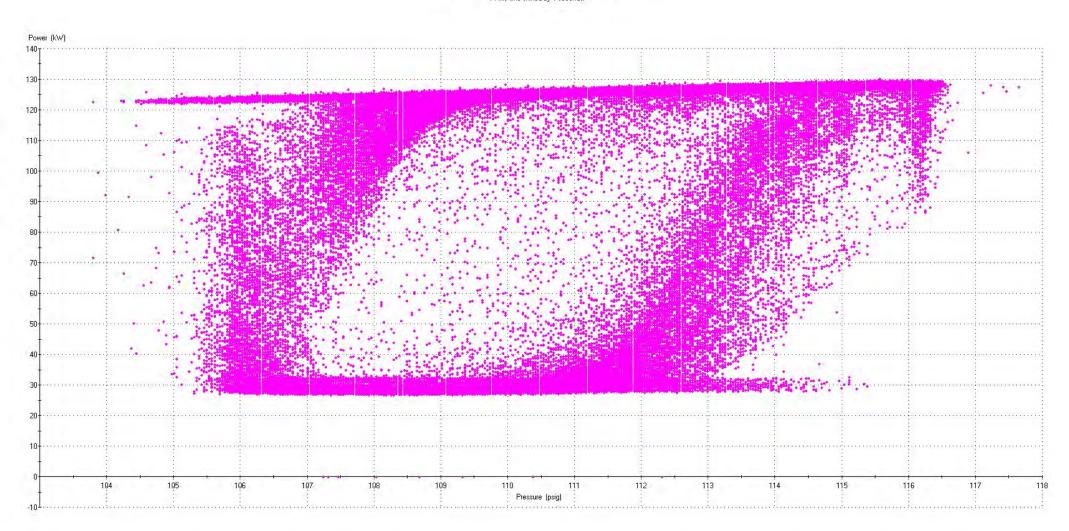
	EEM Sequence Compressors purchase AD400 dryer												
Description	Energy Savings, kWh	Energy Savings, \$	Energy Savings, %	Demand Savings, kW	Installed Cost, \$	Total Savings, \$	Simple Payback, years						
Use Automatic Sequencer	570,410	\$57,041.00	37.9	65.3	\$32,600.00	\$57,041.00	0.6						
Add AD 400 dryer	104,541	\$10,454.00	7	11.9	\$26,351.00	\$10,454.00	2.5						
TOTALS	674,950	\$67,495.00	44.9	77.2	\$58,951.00	\$67,495.00	0.9						

LogTool Scatter Plot


Wet Tank (Pressure) vs. AC7400 (Power) 4 second interval data for System (Not Assigned) and Period (Baseline) Y-Axis time shifted by 1 seconds.

LogTool Scatter Plot

Wet Tank (Pressure) vs. AC7401 (Power) 4 second interval data for System (Not Assigned) and Period (Baseline) Y-Axis time shifted by 1 seconds.



LogTool Scatter Plot

Wet Tank (Pressure) vs. AC7402 (Power) 4 second interval data for System (Not Assigned) and Period (Baseline) Y-Axis time shifted by 1 seconds.

MEASUR Tool

	Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.
Energy Efficiency & Renewable Energy Add New •	Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators. Get started with one of the following options.
ome	Create Assessment Properties & Equipment Calculators Model a system and explore multiple optimization scenarios. Generate detailed properties and test a variety of adjustments.
All Assessments New Assessment Examples Reheat Furnace Case Study Basic Pump Example Fan Example	Create Pump Assessment formerly DOE Pumping System Assessment Tool (PSAT)
3 Header Example Treasure Hunt Example treasure Hunt Example	Create Process Heating Assessment formerly DOE Process Heating Assessment and Survey Tool (PHAST) Image: Comparison of the process Heating Assessment and Survey Tool (PHAST)
Calculators eneral mpressed Air ins	Create Fan Assessment formerly DOE Fan System Assessment Tool (FSAT)
hting tors occess Cooling occess Heating mps	Create Steam Assessment formerly DOE Steam System Modeler Tool (SSMT)
aam ste Water ttings	Create Treasure Hunt Energy efficiency calculators for facilitating a Treasure Hunt
stom Materials orials out edback rnowledgments Translate	Create Waste Water Assessment Based on the Bio-Tiger Model for Wastewater Treatment Plants
9.2-beta 🚯	D View All Your Assessments

ENER

GY

MEASUR Tool

Compressed Air Calculators

Compressed Air Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air usage.

Compressed Air Pressure Reduction

This calculator is used to quantify the energy savings associated with reducing compressed air system pressure.

Actual to Standard Airflow

The calculator converts ACFM (Actual cubic feet per minute) to SCFM (Standard cubic feet per minute) and vice versa for the given conditions using either ASME standard conditions or CAGI/ISO standard conditions.

Leak Loss Estimator - Bag Method

Estimates the leakage losses in a compressed air system using the bag method

Pneumatic Air Requirement

Estimate the quantity of air required by a specific single acting or a double acting piston cylinder compressor

Used to quantify the energy savings associated with reducing compressed air leaks.

MEASUR Tool

Receiver Tank Sizing

Calculate the required size of the receiver tank

Usable Air Capacity

Estimate the quantity of compressed air that is available for use

Pipe Sizing

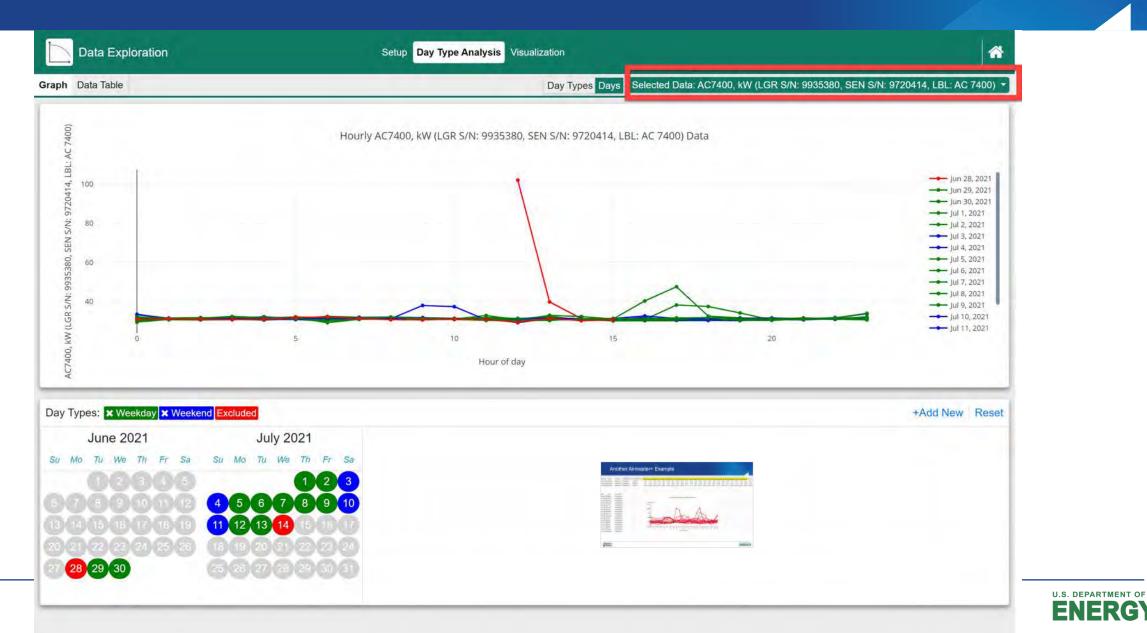
Determine pipe diameter when the volumetric flow velocity, pressure, and design velocity are known

Velocity in the Piping

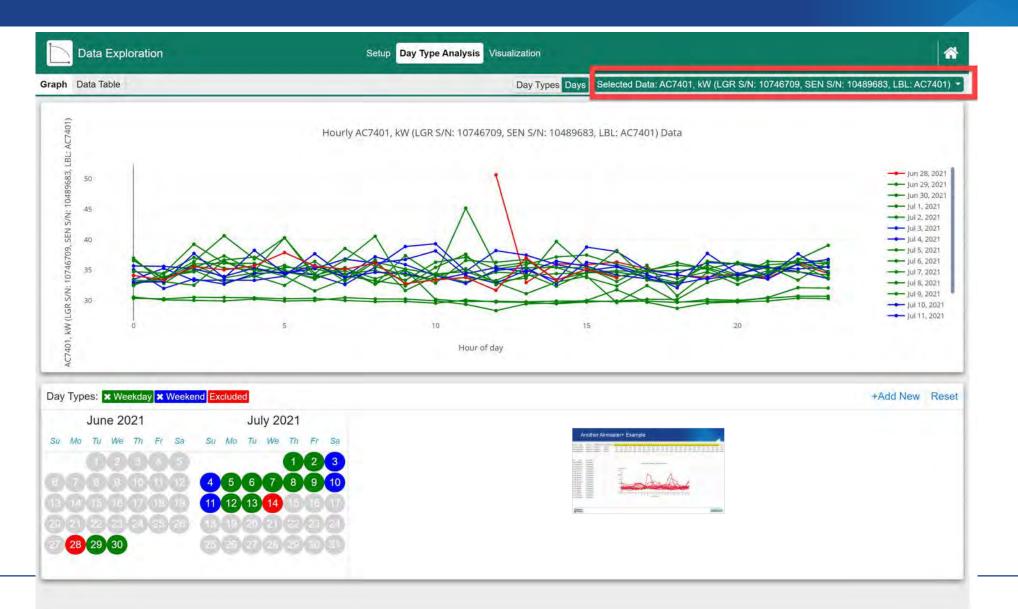
Estimate the velocity of compressed air throughout system piping

System Capacity

Determine total capacity of compressed air system or specific pipes and receiver tanks

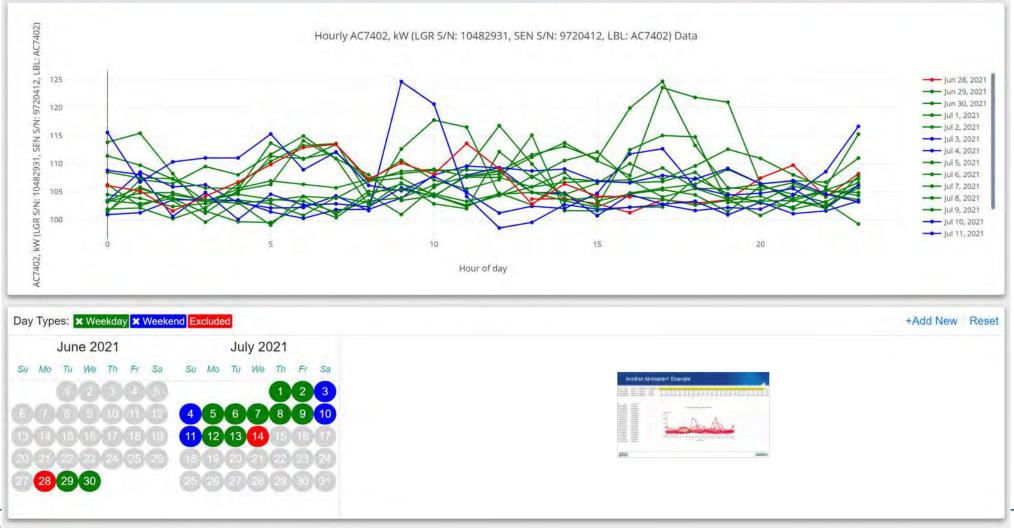


Operation Costs

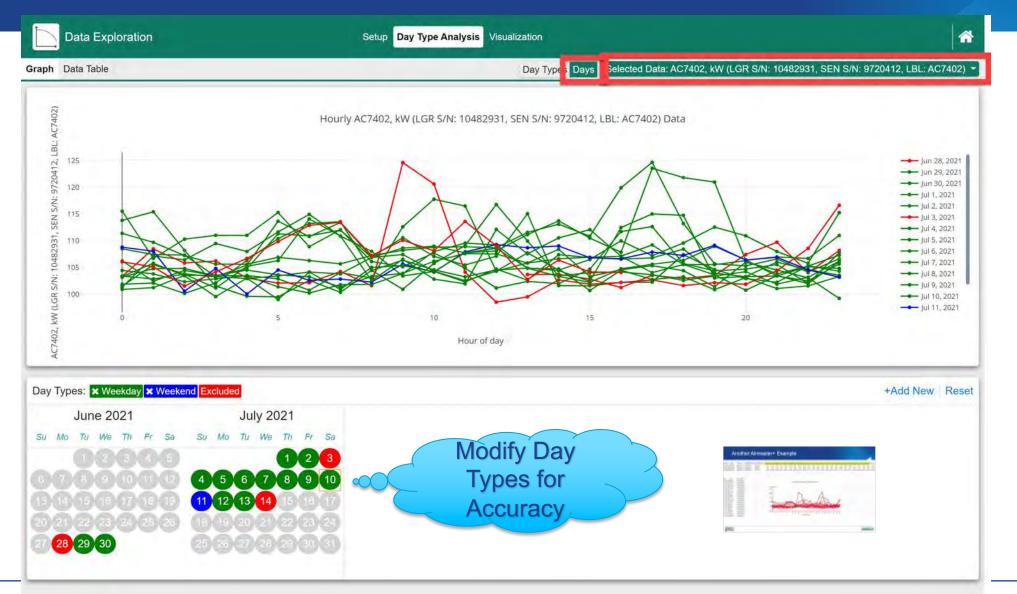

Estimate the cost of operation of the compressor in both fully and partially loaded instances

GY

Setup Day Type Analysis Visualization

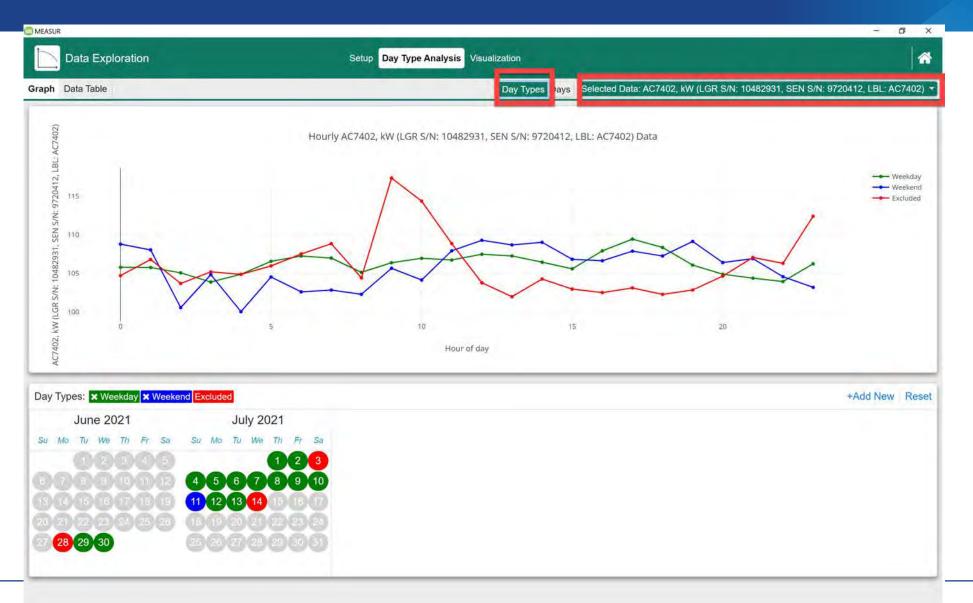

Graph Data Table

Day Types Days Selected Data: AC7402, kW (LGR S/N: 10482931, SEN S/N: 9720412, LBL: AC7402)


U.S. DEPARTMENT OF

CY

ENER



Data Exploration * Setuc Day Type Analysis Visualization Display Selected Display All Day Types Days Graph Data Table Weekday AC7400, kW (LGR S/N: 9935380, SEN S/N: 31.303 31.116 31.203 31.173 31.166 31.283 31.136 31.283 31.55 31.253 31.028 31.097 30.634 31.141 30.967 30.808 31.639 32.755 31.714 31.197 30.837 31.05 31.292 31.554 9720414, LBL: AC 7400) 33,783 33,435 34,717 34,868 34,407 34,706 34,041 34,168 34,484 33,625 33,242 34,602 33,238 33,589 33,783 33,954 33,397 33,292 32,326 33,96 AC7401, kW (LGR S/N: 10746709, SEN S/N: 33.433 33.945 34.775 34.39 10489683, LBL: AC7401) AC7402, kW (LGR S/N: 10482931, SEN S/N: 105.799 105.762 105.063 103.874 104.879 106.562 107.252 106.98 105.135 106.381 106.954 106.732 107.475 107.255 106.447 105.589 107.916 109.441 108.359 106.077 104.89 104.376 103.946 106.238 9720412, LBL: AC7402) Copy Table Weekend 0 1 2 AC7400, kW (LGR S/N: 9935380, SEN S/N: 9720414, 31.63 31.308 31.555 31.371 31.206 31.297 31.316 31.316 31.288 31.66 31.404 31.409 31.384 31.415 30.871 31.326 32.615 31.362 31.242 31.393 31.592 31.171 31.417 31.65 LBL: AC 7400) AC7401, kW (LGR S/N: 10746709, SEN S/N: 10489683, 33.019 33.065 37.74 33.694 38.244 34.431 35.282 36.799 36.14 36.744 38.152 34.097 32.839 34.999 33.307 38.779 38.053 34.985 34.936 33.534 34.226 33.532 36.01 36.755 LBL: AC7401) AC7402, kW (LGR S/N: 10482931, SEN S/N: 9720412, 108.79 108.04 100.56 104.836 100.043 104.53 102.602 102.836 102.287 105.659 104.137 107.923 109.284 108.682 109.024 106.825 106.632 107.88 107.251 109.136 106.403 106.904 104.565 103.187 LBL: AC7402) Copy Table Excluded AC7400, kW (LGR S/N: 9935380, SEN S/N: 9720414, 31.169 31.05 30.895 30.813 30.827 31.302 31.875 31.121 30.986 34.306 34.141 30.731 54.042 34.084 30.745 30.835 30.929 30.939 30.742 30.81 30.826 31.223 31.369 32.636 LBL: AC 7400) AC7401, kW (LGR S/N: 10746709, SEN S/N: 34.593 32.684 34.566 33.868 35.067 36.28 34.948 33.887 35.822 35.837 36.353 34.302 40.172 35.804 35.099 35.318 35.197 34.442 34.278 35.036 35.236 34.558 35.633 34.982 10489683, LBL: AC7401) AC7402, kW (LGR S/N: 10482931, SEN S/N: 104.704 106.798 103.689 105.197 104.867 105.96 107.515 108.846 104.42 117.36 114.356 108.863 103.781 101.982 104.264 102.963 102.506 103.115 102.281 102.843 104.645 107.059 106.302 112.405 9720412, LBL; AC7402) Copy Table

rother Alemanters Example

Day Types: X Weekday X Weekend Excluded

lune 2021 July 2021

+Add New Reset

Summary

- Know how your controls work
- Realize the pros and cons of different controls
- Recognize how controls affect part load efficiency
- Understand how storage affects the effectiveness of control strategies
- Measure power, energy, pressure and leak load
- Estimate energy consumption and correlate to production levels
- Maintain system pressure at the lowest possible levels
- Avoid part load operation, which is usually inefficient

Next Session #4, will be in two weeks on Friday September 10th We will be skipping next week September 3rd.

Review of Air Treatment

Homework for Week 3 – Compressor Controls

- Explain each of the following control methods:
 - Start/Stop
 - Load/Unload
 - Modulating
 - Variable Displacement
 - Variable Speed
 - Sequencer
 - Master Compressor Controller?
 - Pressure Flow Control?

Thank You!

