

Industrial Water Systems Virtual INPLT Training & Assessment

Session 7 Tuesday – July 27th, 2021

10 am – 12:30 pm

11111111

Water Virtual INPLT Agenda

- Week 1 (June 15) Introduction to Industrial Water Assessment and Plant Water Profiler
- Week 2 (June 22) Understanding System Level Water use
- Week 3 (June 29) True Cost of Water
- Week 4 (July 6) Plant Water Profiler Working Session
- Week 5 (July 13) Identifying Water Savings Opportunity
- Week 6 (July 20) Virtual Treasure Hunt
- Week 7 (July 27) Estimating Water Savings Opportunities
- Week 8 (August 3) Industrial Water System VINPLT Wrap-up Presentations

Agenda – Session Five

Today's Content:

- Resources for Treasure Hunt
- Resources to estimate savings
- Q&A

U.S. Department of Energy

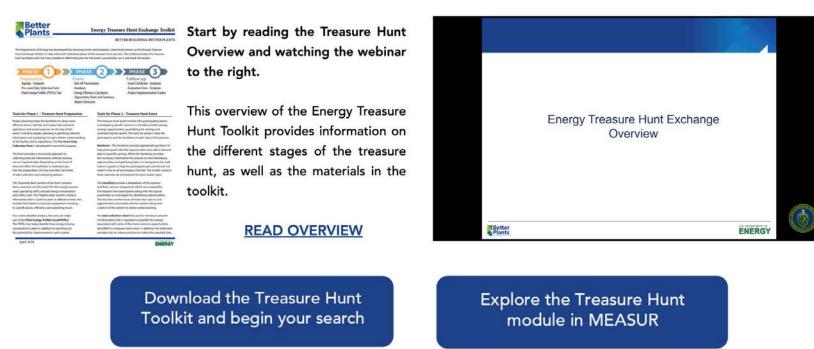
Treasure Hunt Event

Energy Star – Treasure Hunt Guidance Document

FOUR PHASES FOCUSED ON RESULTS: A comprehensive Energy Treasure Hunt has four distinct phases:

- Preparation: Schedule discussions with your organization or facility's leadership to obtain their support. Gather data on current energy usage and costs, equipment specifications, and operating parameters.
- Pre-Training: Meet with facility team leaders to confirm roles and responsibilities and Energy Treasure Hunt agenda. Pre- training should begin at least one week before the onsite event.
- Three-day Onsite Event: Teams identify and quantify energy-saving opportunities at an onsite three-day event. Summarize and present the results for management review.
- Follow-up: Develop a schedule for pursuing the energy reduction opportunities identified during the Energy Treasure Hunt.

U.S. Environmental Protection Agency Energy Treasure Hunt Guide: Simple Steps to Finding Energy Savings JANUARY 2014



DOE Treasure Hunt Toolkit

READY TO START YOUR OWN TREASURE HUNT?

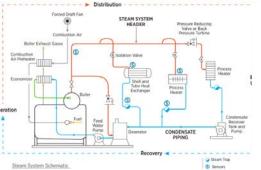
The Department of Energy has developed the necessary tools and materials, collectively known as the Energy Treasure Hunt Toolkit, to help with each individual phase of the treasure hunt process. This toolkit provides the treasure hunt facilitator with the tools needed to effectively plan and prepare for the event, successfully run it, and track the results. **Explore the resources listed below to prepare for your Treasure Hunt and execute the three phases**.

https://betterbuildingssolutioncenter.energy.gov/better-plants/energy-treasure-hunts

DOE Tools for Treasure Hunt

WHAT DOES AN ENERGY TREASURE HUNT LOOK LIKE?

PREPARATION	EVENT	FOLLOW-UP
Phase 1 and 2	Phase 3	Phase 4
 Event Logistics Save the Date (template) Event Agenda (template) 	Treasure Hunt Opening Presentation	Close out presentation (template)
Facility InformationData collection sheet	System Specific Handouts Documenting Opportunity	Project Implementation Tracker
 Plant Water Profiler Plant Energy Profiler 	 MEASUR Treasure Hunt Module Excel Based tools 	
Diagnostic Equipments	Water Savings Calculators	



- System specific handout sheets are provided by DOE to help participants identify and quantify energy savings opportunities.
- Three sets of handouts for each system type is available;
 - System Checklist
 - Data Collection Sheet
 - System Cheat Sheet
- The handouts are not meant to be all encompassing
- Participants should only use the handouts as a tool to get started and not solely rely on it

Handouts

Better

Best Practices

- 1.) Reduce Steam demand and pressure
- 2.) Optimize Fuel/Air Ratio
- 3.) Fix Steam Traps
- 4.) Insulate Pipes and Tanks
- 5.) Recover condensate/ flash steam and capture water & heat
- **Steam System Data Collection Sheet**

6.) Preheat boiler feed water

sections of steam header)

8.) Optimize deaerator vent rate

7.) Install automated blowdown controls

9.) Adjust steam system based on production

10) Identify and close off dead legs (unused to

Energy Treasure Hunt

Measure	Data to Collect	Data	How to Collect
	How many boilers?		
	How many boilers are running?		Interview the operators
	Boiler capacity(s) (BTU or lbs./hour)		From panel
	Total generation capacity (lbs./hour)		From panel
Common System Data	Average steam generation rate (lbs./hour)		From panel
common system bata	Average boiler blowdown rate		Interview the operators
	Current System Pressure		From pressure gauge in header line
	Highest Pressure on header		Interview the operators
	Highest Pressure Required at floor		Interview manager/ personnel on the floor
	Stack Temperature		
	How many leaks/ defective traps		Approximation based on the ones found
	Diameter of the leak		Ultrasonic Leak Detector / visual determination
Steam Leaks	Pressure on line		From nearby pressure gauge
	Hours of operation of the leak(or boiler)		

Rule of Thumb

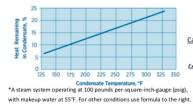
- Average efficiency of a steam boiler is 80%.
- ٠ 10PSI drop in header pressure is 1% energy reduction
- Every 10.7 F rise in boiler feedwater temperature yields ~1% steam energy savings

Improve Boiler Combustion Efficiency

		Combustion Efficiency Flue gas Temperature minus combustion air Temperature, F								
Exce	ess, %									
Air	Oxygen	200	300	400	500	600				
9.5	2.0	85.4	83.1	80.8	78.4	76.0				
15.0	3.0	85.2	82.8	80.4	77.9	75.4				
28.1	5.0	84.7	82.1	79.5	76.7	74.0				
44.9	7.0	84.1	81.2	782.2	75.2	72.1				
81.6	10.0	82.8	79.3	75.6	71.9	68.2				

 Unmaintained steam system - 15% to 30% of traps failed. • Ideal, maintained steam system - 5% of traps failed.

Operating Pressure,	Feed water Temperature, F							
psig	50	100	150	200	250			
150	1178	1128	1078	1028	977			
450	1187	1137	1087	1037	986			
600	1184	1134	1084	1034	984			


Insulate Steam and Condensate Lines

ine Diameter,		Steam Pre	ssure, psig	
Inches	15	150	300	600
1	140	285	375	495
2	235	480	630	840
4	415	850	1120	1500
8	740	1540	2030	2725
12	1055	2200	2910	3920

Steam Trap Failure

Obvious Signs	Less Obvious signs
 Steam flashing 	 Higher than necessary pressure
• Water	 Excessive condensate & Chemical
Hammer	losses
Pump	 Condensate water too hot
cavitation	 Boilers running continuously

Return Condensate to Boiler

Steam System - Cheat Sheet

Energy Treasure Hunt

Calculatina Steam Cost

Operating Pressure,	Feed water Temperature, F								
psig	50	100	150	200	250				
150	1178	1128	1078	1028	977				
450	1187	1137	1087	1037	986				
600	1184	1134	1084	1034	984				
\$/1000 lbs	of steam		TU × 1000 stion Effic						

Heating Value of Fuels

Units	LHV	HHV
Btu/CF	1,050	1,050
BTU/Gal	138,300	138,300
BTU/Gal	150,500	150,500
BTU/CF	92,000	92,000
BTU/lbs	14,100	14,100
	Btu/CF BTU/Gal BTU/Gal BTU/CF	Btu/CF 1,050 BTU/Gal 138,300 BTU/Gal 150,500 BTU/CF 92,000

eating Value (HHV): Total energy * Lower Heating Value (LHV): Assumes heat of condensation cannot be recovered

Losses with steam Trap Failure

Trap Orifice	Steam Loss, lb/hr						
Diameter (inches)	15 psig	100 psig	150 psig	300 psig			
1/32	0.85	3.3	4.8	-			
1/16	3.4	13.2	18.9	36.2			
1/8	13.7	52.8	75.8	145			
3/16	30.7	119	170	326			
1/4	54.7	211	303	579			
3/8	123	475	682	1,303			

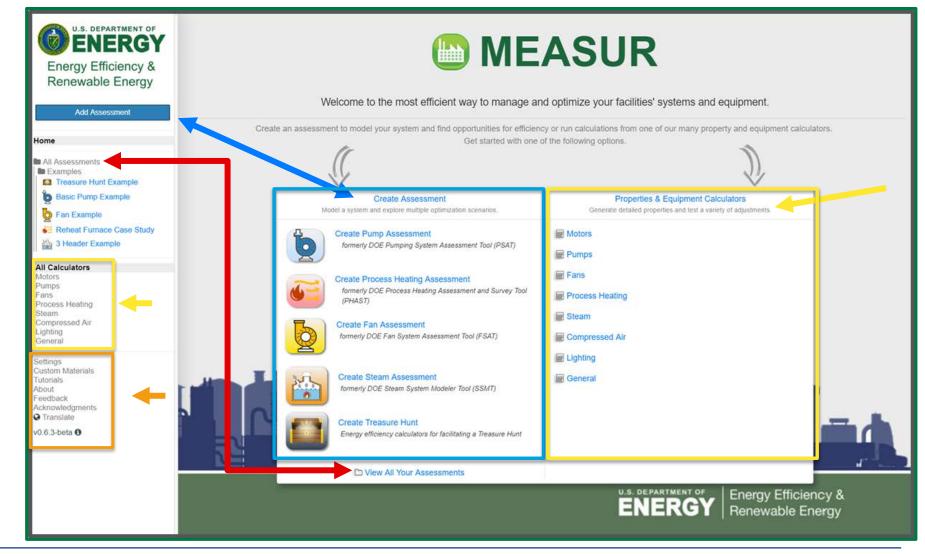
Calculating %Heat Remaining in condensate using formula

 $_{condensate} - h_{makeup water} \times 100$ Heat remaining in condensate (%) $h_{makeup water}$ *h - enthalpy Example at 180 F = 148 Btu/lb; $h_{makeup water} = 23 Btu/lb$ hsteamat 100 psig = 1,189 Btu/lb

Heat remaining in condensate $(\%) = \frac{148-23}{1189-23} = 11\%$ (as in graph)

Integrated Energy Software - MEASUR

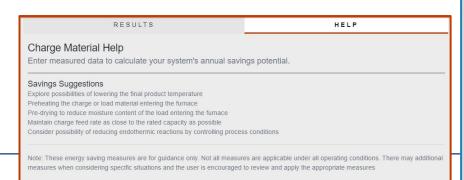
- All system level software tools will be available to through one platform
- Includes system modelers and individual calculators for field validation
- Includes built-in guides and tutorials

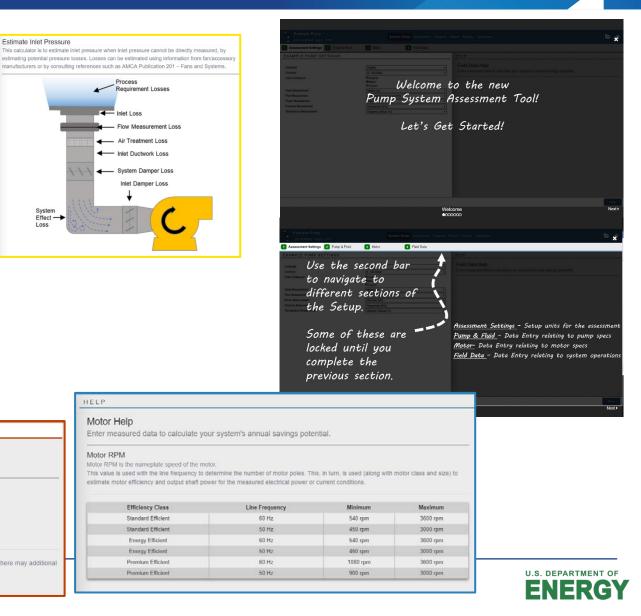


Getting Started

Start an assessment

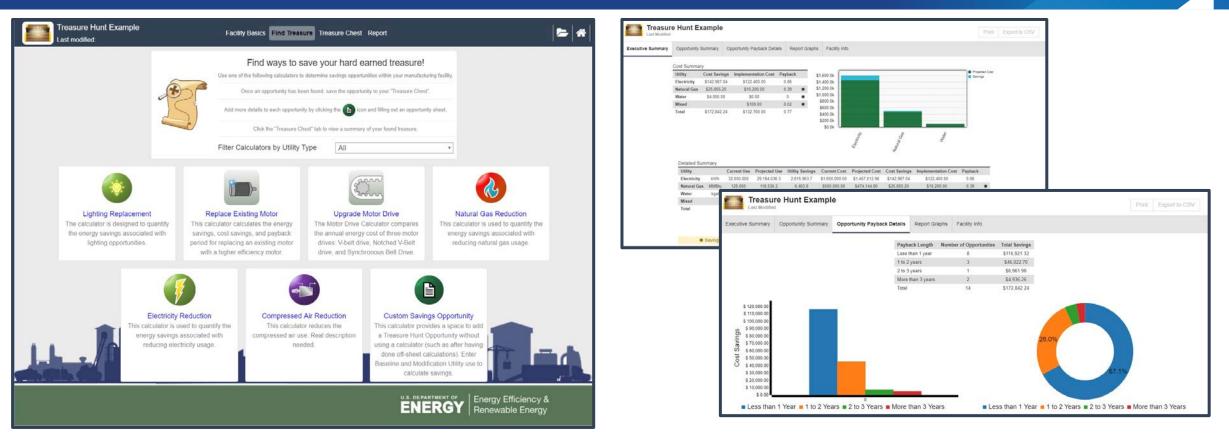
- View Assessment Dashboard
- Use Properties & Equipment Calculators
- Help and User Experience
 - Change Settings
 - View Tutorials
 - Manage Custom Materials
 - Provide Feedback
 - Translate


Key Features - Help Text & Tutorials

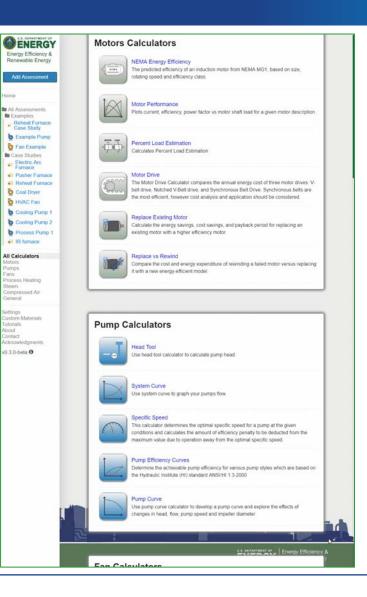

Estimate Inlet Pressure

System

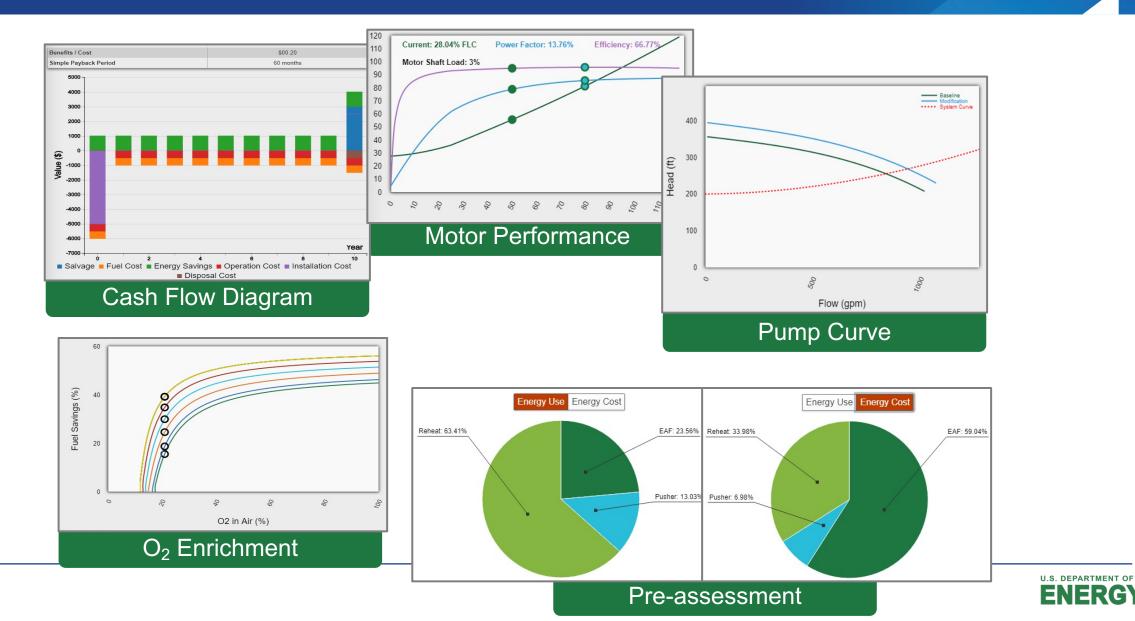
Effect -


- Tutorials
 - Help to get started using tool
- Help text for each data entry field
 - Diagrams to help understand where to obtain data
 - Can switch between help or results being shown by default

Treasure Hunt Module


 Find low/no cost energy savings opportunities in motor systems, process heating, compressed air, lighting, etc.

Calculators


- 50+ Stand alone Calculators
 - Motors
 - Pumps
 - Fans
 - Process Heating
 - Steam
 - Compressed Air
 - Lighting
 - General
- Most have graphical results

Example Calculators

GY

Treasure Hunt Calculator for Water

WATER/WASTEWATER REDUCTION

ASELINE	+Ad	d Equipment	MODIFICATION	-	Add Equipment	RESU	LTS	HELP
			Carlo and			1	Baseline	Modification
Equipment #1			Equipment #1			Water Use	15,768 kgal/yr	10,512 kgal/y
Annual Operating Hours	8760	hrs/yr	Annual Operating Hours	8760	hrs/yr	Water Cost	\$78,840 /yr	\$52,560 /yr
Calculator Type	Water	\$	Calculator Type	Water	\$	Annual Water	5,256	kgal/yr
Water Cost	0.005	\$/gal	Water Cost	0.005	\$/gal	Savings		
Measurement Method	Bucket Method		Measurement Method	Bucket Met		Cost Savings	\$26,2	280 /yr
Bucket Volume	10	gal	Bucket Volume	10	gal		Copy Table	
Bucket Fill Time	20	Sec	Bucket Fill Time	30	sec			•
Water Consumption	15,768 kg	al/yr	Water Consumption	10,512	kgal/yr			
		_						
	ite Example Re	eset Data						

To estimate the savings associated with typical operational opportunities, e.g. Scheduling the equipment, reducing the load on the equipment etc.

Excel Version of Treasure Hunt Tools

Opportunity detail sheet helps document the projects and the calculators helps quantify the savings

Step 2 - Determine Electricity Consump	tion						
Identify the method to be used: Electricity consumption can be determin The methods are listed starting with the			e calculator sheets provide three options t accurate.	to determine o	consumption.		
a. Power Meter Method The best way to measure electrical consumption is with a power meter. Manufacturer's data on lights can be entered as if the measurements were done with a power meter.							
b. Multimeter Reading	ter Reading Multimeter measurements are the second most accurate means of measuring electrical consumption and are accurate for DC and for AC (When combined with the plant's uncorrected power factor).						
Name Plate Data Motor nameplate data can provide a reasonable estimation of the energy that motors are consuming but are not as accurate as a power meter. Nameplate data does not tell the user how heavily loaded the motor is.							
d. Offsheet/Other Method Choose this option if you are using a different method to find the electricity use							
Choose Method of Measurement			b. Multimeter Reading				
Option 2: Multimeter Readings							
Current Situa	ation		Projected Situa	tion			
Determine the voltage, current, and p equipment.	ower factor of the		Determine the voltage, current, and po equipment.	wer factor of	the		
Data Item	Value Unit		Data Item	Value	Unit		
Voltage	volts		Voltage		volts		
Current	amps		Current		amps		
Power Factor	-		Power Factor] -		
Determine the power consumption.			Determine the power consumption.				
Three Phase?	Yes		Three Phase?	Yes	1		
Power	0.00 kW		Power	0.00	kW		
Units	Each		Units		Each		
Determine the energy usage.			Determine the energy usage.				
Energy	0 kWh		Energy	0	kWh		

Treasure Hunt Calculators

Infe	Process /						Originator:	
	Equipment:						Date:	Set to Today
Description	Current Situation (Before Energy Treasure Hunt) Annual Operating Hours Hours /Day Hours /Day Days/Month Number of leaks, Numb			Projected Situation (After Energy Treasure Hunt) Annual Operating Hours Hours /Day Number of losis, Number of equipment to be				
	Days/Month Iturned off etc.					Days/Mon Months * This section is		turned off etc.
2	Energy units Energy Electricity - kWh		Use Before TH (Energy units/yr)	Energy Use After TH (Energy Units/yr)			Energy Savings (Energy Units/yr)	
Energy								0.0
E	Gas - Mi	MBTU						0.0
		Implementation Cost		\$/unit		Projected Annual Savings		
	Engineering Services:				\$ 0.10	Electricity	\$	
	Material:	\$			\$ 6.50	Gas	s	-
	Labor: Contract				\$ -	Compressed Air	s	
1gs	Labor: In House				\$ -	Other Fuel	s	-
Cost / Savings	Other:	\$	-	Cost Description:	\$ -	Steam	\$	
Si	Other:	\$						
t	Other:	s - s -			\$ 20.00	Water	\$	-
õ	Other:				5 -	WWT	5	
~	Other:	S	-					
						Other Savings	2	
	Total:	\$				Total:	\$	-
						Simple Payba	ck Period (yrs):	

Plant: Business Unit

Opportunity Sheets

Calculators

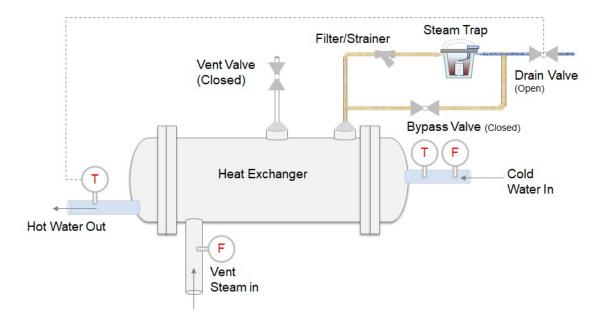
- To quantify the savings associated with an identified opportunity
- The results from the calculator are used to populate the opportunity sheets.

Two types of Energy Efficiency Calculators are available

- I. Treasure Hunt Calculators
 - To estimate the savings associated with typical operational opportunities, e.g. Scheduling the equipment, reducing the load on the equipment etc.

II. Opportunity Specific Calculators

• Available for some common opportunities that cant be easily quantified using the treasure hunt calculator e.g. cooling tower, boiler etc.


Participants can use their own method or tool to quantify savings, however, the result of the calculation and description still needs to be captured in the standard opportunity sheet provided.

Vent Steam to Heat Exchanger

- Calculates energy and water cost saving when vent steam is used to heat hot water.
- The steam source can be deaerator water tanks, flash steam from condensate return tank or any other equipment / process that vents steam into the atmosphere.

Savings from

- Elimination of energy used to heat water that will be heated by using vent steam.
- Returning condensate back to boiler reducing makeup water and treatment costs

Blowdown Rate Calculator

BLOWDOWN RATE CALCULATOR

BASELINE			MODIFICATION	١		RESULTS	HELP	
Conductivity Readings			Conductivity Readings			-	Baseline	Modification
Feedwater Conductivity	400	µS/cm	Feedwater Conductivity	200	µS/cm	Blowdown Rate (%)	7.84 %	3.45 %
Blowdown Conductivity	5500	µS/cm	Blowdown Conductivity	6000	µS/cm	Blowdown Rate (klb/hr)	85.11	35.71
Boiler		-	Boiler			Feedwater Rate (klb/hr)	1,085.11	1,035.71
Steam Flow	1000	klb	Steam Flow	1000	klb	Fuel Cost	\$1,894,827	\$833,071
Steam Temperature	500	°E	Steam Temperature	500	۴F	Makeup Water Cost	\$223,402	\$93,749
Boiler Efficiency	85	%	Boiler Efficiency	85	%	Total Cost	\$2,118,229	\$926,820
Operations	00		Operations	00	70	Fuel Savings	\$1,061,757	
	D 0700	[D 0700	[Makeup Water Savings	\$129,653	
Operating Hours	8760	hrs/yr	Operating Hours	8760	hrs/yr	Total Savings	\$1,191,410	
Fuel Cost	4.99	\$/MMBtu	Fuel Cost	4.99	\$/MMBtu			
Water Cost	0.0025	\$/gal	Water Cost	0.0025	\$/gal	Co	py Table	
Makeup Water	50	°F	Makeup Water	50	°F	0		
Temperature			Temperature					
Generate	Example	leset Data						

Calculate Costs associated with boiler blowdown

Cooling Tower Water Use Calculator

Analyze the effect of drift eliminators/cycles of concentration on cooling tower water consumption and estimate the resulting water savings.

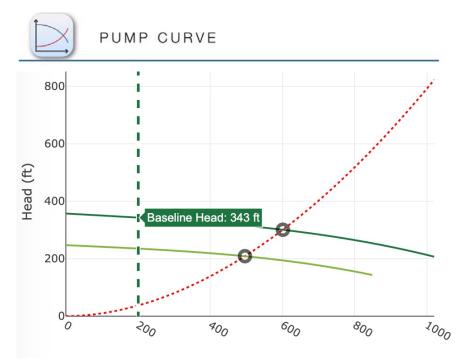
Case #1	+Remove Case
Water Flow Rate	1000 gpm
Cooling Load Calculate Cooling Load	100 MMBtu/h
Annual Operating Hours	8760 hrs/yr
Cycles of Concentration	2
Drift Eliminator	No 🖨
Drift Loss Factor	0.2 %
Evaporation Loss Correction Factor	85 %
Results	
Water Consumpt	ion 179,755.2 kGal

Boiler and Cooling Tower Calculator from PWP

	Feedwater Makeup Water Blowdown		Dlaurdaum	Million Gallon per Year (% of Gross Water Use)									
Boiler	Hours of Operation per Year	Boiler Horsepower (BHP)	Load Factor (Fraction of BHP)	Steam Generation Rate (lb/h) per BHP	Conductivity	Conductivity	Conductivity	Feedwater	Makeup Water	Blowdown	Steam Lost	Condensate Return	
	TDS ppm	TDS ppm	TDS ppm		Incoming	Out	going						
Boiler for:	8,000	100.0	0.8	34.5				-	-	-	-	-	
									-	-	-	-	
									-	-	-	-	
								-	-	-	-	-	
								-	-	-	-	-	

	Hours of Operation per Year	Cooling Tower	Load Factor	Evaporation Rate	Town David Amount	Makeup Water	Blowdown	Million Gallon per Year (% of Gross Water Use)					
Cooling Tower			(Fraction of	ner 10°F Temn	Temp. Drop Across	Conductivity I	Conductivity	Gross Water Use	Incoming	Out	going		
		Tonnage	Tonnage)	Drop (%)	Cooling Tower (°F)				Makeup Water	Blowdown	Evaporation	Recirculated Water	
					//			-	-	-	-	-	
								-	-	-	-	-	
					//			-	-	-	-	-	
								-	-	-	-	-	

Calculators in MEASUR are similar and follow the same principals



Pumping System

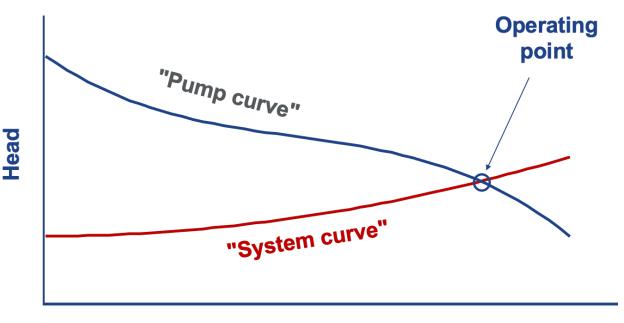
Pumping system characteristics can be estimated by using the Pump Head Calculator and Pump Curves

римр н	EAD TOOL			
	Suction tank elevation	Suction gauge elevation		
	K _s represents all suction loss		-	
K _d	K _s represents all suction loss represents all discharge loss		-	
			-	
Fluid Specific Gravity		es from the pump to the gaug	-	gpm
Fluid Specific Gravity Flow Rate		es from the pump to the gaug	-	gpm
Fluid Specific Gravity Flow Rate Suction		es from the pump to the gaug 1.002 3000	-	gpm
Fluid Specific Gravity Flow Rate Suction Pipe diameter (ID)	12 in	es from the pump to the gaug 1.002 3000 Discharge	ge P _d	
Fluid Specific Gravity Flow Rate Suction Pipe diameter (ID) Tank gas overpressure (Pg)	12 in 0 psi	es from the pump to the gaug 1.002 3000 Discharge Pipe diameter (ID)	12	in
K _d I Fluid Specific Gravity Flow Rate Suction Pipe diameter (ID) Tank gas overpressure (P _g) Tank fluid surface elevation (Z _s)	12 in 0 psi	es from the pump to the gaug 1.002 3000 Discharge Pipe diameter (ID) Gauge pressure (Pd)	12 124	in psi

Given a measured pressure, elevation, flow rate, and line size data calculate the head for a pump

Use pump curve calculator to develop a pump curve and explore the effects of changes in head, flow, pump speed and impeller diameter.

U.S. DEPARTMENT OF



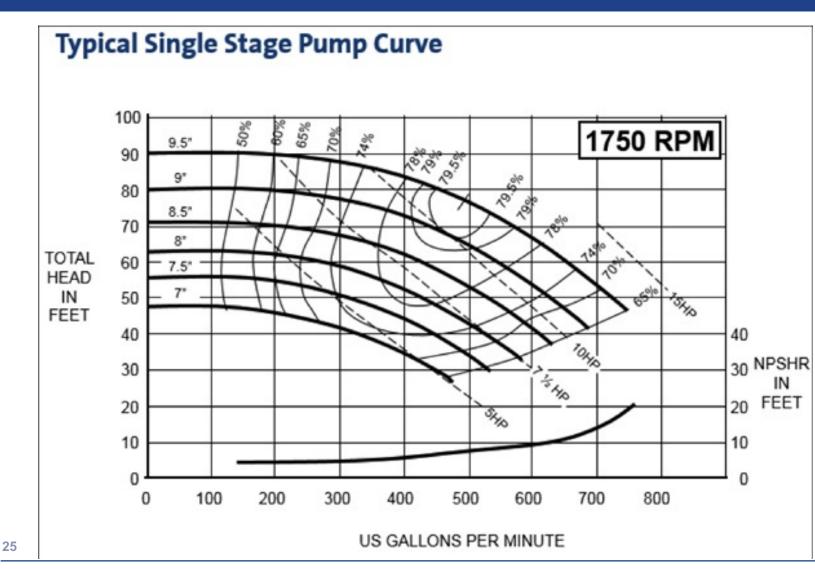
Pump Curves & System Curves

The system curve represents the energy required to move fluid through the system.

If anything in the system changes – including valve positions, flow paths, tank levels, etc., the system curve will change.

A pump curve gives the performance of a pump when working against a given system pressure to produce a flow

Flow rate

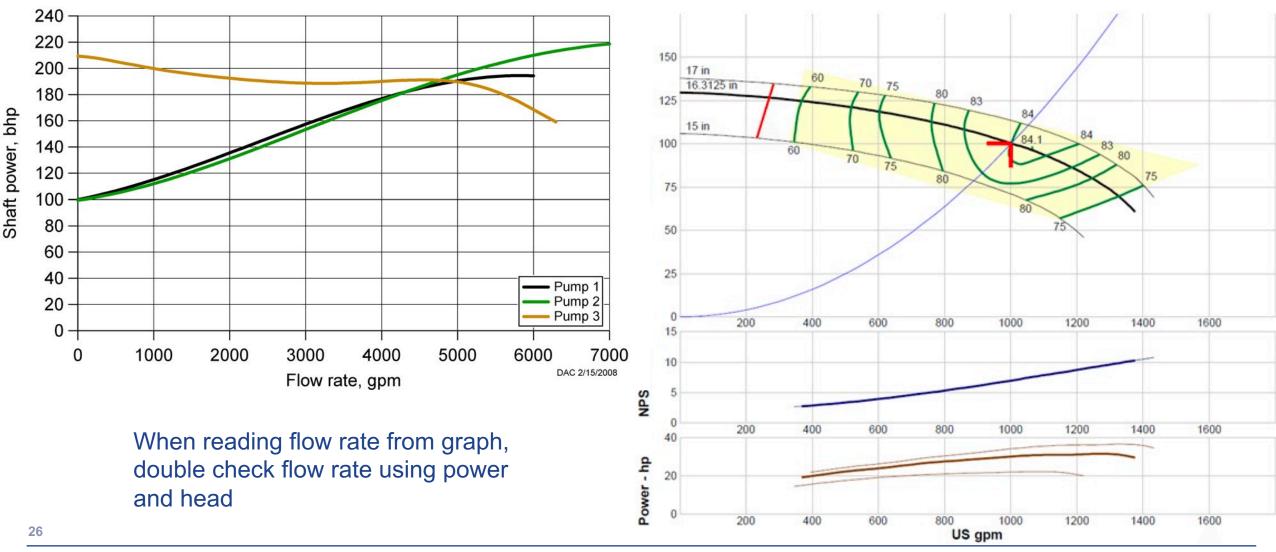

Knowing the system and pump curves can help optimize the flow though a pumping system

24

Pump performance characteristics

Identifying the right pump curve requires knowing the following

- Manufacturer
- Model Number
- Diameter of impeller
- Associated motor system


In addition to head, pump curves are also drawn against

- Shaft power
- Efficiency
- Net positive suction head required (NPSHR)

Reading Flow from power curves

U.S. DEPARTMENT OF

C \

ENE

Steam Leaks

- Steam leaks occur everywhere but most common places are:
 - Flanges and gasketed joints
 - Pipe fittings
 - Valves, Stems and packings
 - Steam traps
 - Relief valves
 - Pipe failures, etc.
- An "order of magnitude" steam loss estimate can provide enough information to determine if the repair must be made immediately, during a future shutdown, or online
- Pipe failures (steam leaks) often present a "safety issue" that demands immediate attention

241°F

ε=0.95

\$FLIR

Steam Leaks

Orifice			Le	ak Rate	[lb/hr]						
Diameter		Steam Supply Pressure [psig]									
[inch]	20	50	100	150	300	400	500				
1/16	3	6	11	16	30	39	49				
1/8	13	25	43	62	119	157	195				
3/16	30	55	98	140	268	353	439				
1/4	53	98	174	249	477	628	780				
5/16	82	153	271	390	745	981	1,218				
3/8	118	221	391	561	1,073	1,413	1,754				
7/16	161	300	532	764	1,460	1,924	2,388				
1/2	210	392	695	998	1,907	2,513	3,118				
	3	18	43	68	143	193	243				
			Discharg	e Pressi	ure [psig						
Discharge coeffic	ient	0.6	dimensic	nless							

Third party Tools - Steam Trap Loss Calculator

- The calculator will give you the cost of steam losses associated with a failed trap.
- Leak rate calculated from size of orifice and pressure

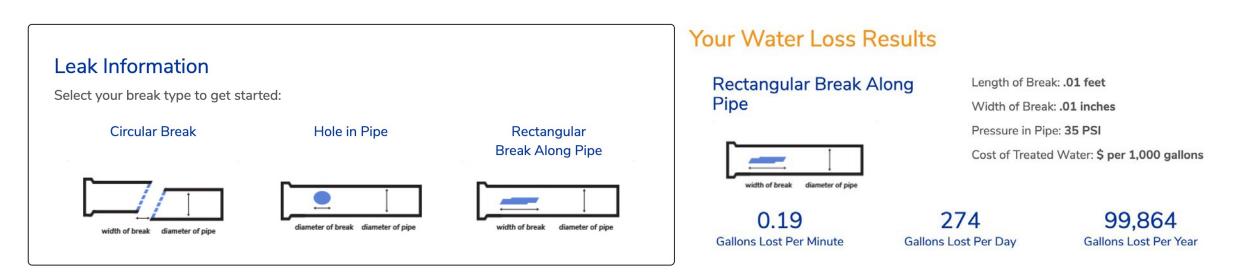
STEAM LOSS THROUGH A FAILED TRAP

All too often, steam traps are selected and installed, only to be forgotten. All steam traps fail with time. On average, plants without a regularly scheduled maintenance program experience failure in about 15-25 percent of their traps at any given time.

When failed traps are ignored, hundreds to thousands of dollars worth of steam can be wasted. The following calculator will give you the cost of steam losses associated with a failed trap.

Inlet Pressure (psig)	100	
Outlet Pressure (psig)	50	
Orifice diameter	1/16"	\$
Application	Coil/Process	\$
Reset	CALCULATE	

- 7 pounds/hour
- 61320 pounds/year
- \$307/year

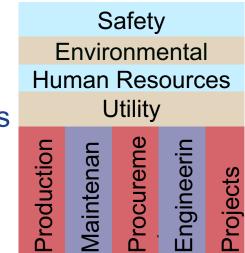


Third party Tools - Water Leak

Water cost calculator tool to show how much water and cost associated with a leak

Leak rate calculated from size of leak and pressure

Water Leak Calculator



Treasure Hunt – Best Practices

- Include participants from across all operations and from outside the host facility
- Operational opportunities can be ideally identified when facility is ideal. Treasure hunts should ideally start on Sundays which typically a non-production day for many facilities
- Target 3 teams of 5 participants, select focus areas based on your facility
- Energy and water treasure hunts can be done together
- Have an effective follow through
 - Have a closing meeting with all stakeholders including management
 - Assign specific tasks to people

Presenting the Results – Event Debrief

Presenting the Results

- Present results in the language of the management
 - Tie it to facility/ organizational priorities
- Include next steps for each measure
- Include the best practices that you found along with opportunities
- Keep it brief and visual

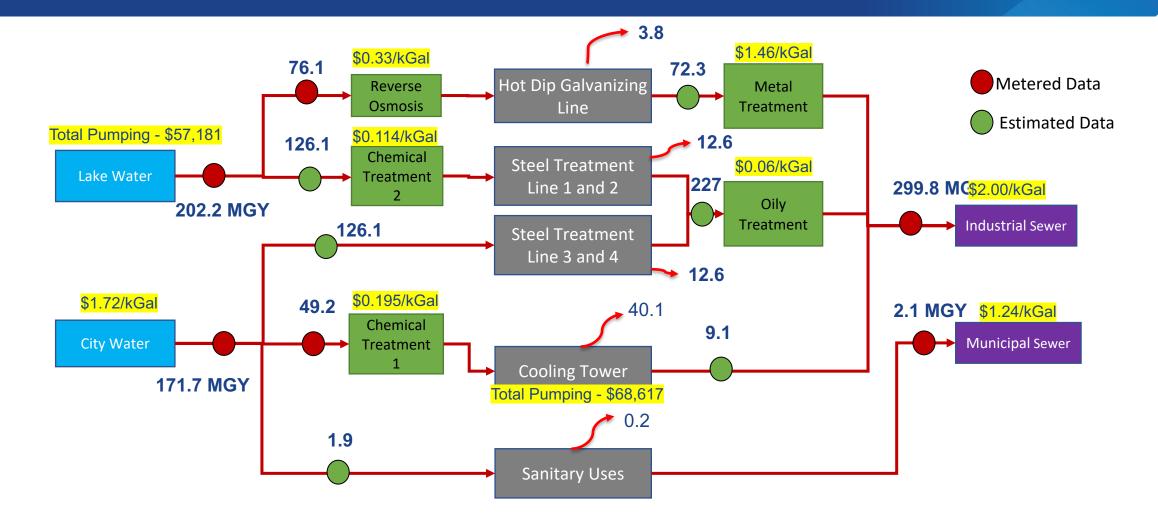
Closeout presentations helps make immediate discissions and identify steps of actions

Example Presentation

Best Practices

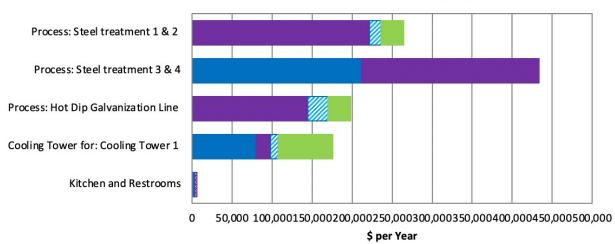
Water flow Metering

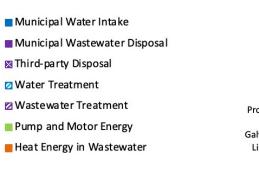
Recirculation System



High Cycles on Tower

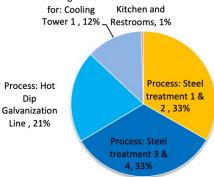
Plant Water Flows




Assessment Results - True Cost of Water

Annual Water Use and Cost Summary by System

Water-Using System	Source Water Intake	Gross Water Use		Direct Co	osts	True Cost of Water*		True Cost/Direct	
	Million Gall	Million Gallon per Year		\$/Year \$/kGal		\$/Year	\$/kGal	Cost	
Process: Steel treatment 1 & 2	123.19	123.19	\$	221,742 \$	1,800 \$	\$ 264,376 \$	2,146	1.192	
Process: Steel treatment 3 & 4	123.19	123.19	\$	433,629 \$	3,520	\$ 433,629 \$	3,520	1.0	
Process: Hot Dip Galvanization Line	76.1	76.1	\$	144,590 \$	1,900	\$ 198,293 \$	2,606	1.371	
Cooling Tower for: Cooling Tower 1	46.4	4,727.131	\$	98,008 \$	2,112	\$ 175,673 \$	3,786	1.792	
Kitchen and Restrooms	1.916	1.916	\$	5,672 \$	2,960	\$ 5,672 \$	2,960	1.0	
PLANT TOTAL	370.796	5,051.527	\$	903,641 \$	2,437	\$ 1,077,644 \$	2,906	1.193	



True Cost of Water by System

Percent Source Water Intake by System

Water Assessment – Key Conclusions

- Metering production water will help understand water flows better
- Water used in steel treatment is most expensive
- RO brine water needs to be investigated
- Pumping energy and recirculation can be reduced with better controls

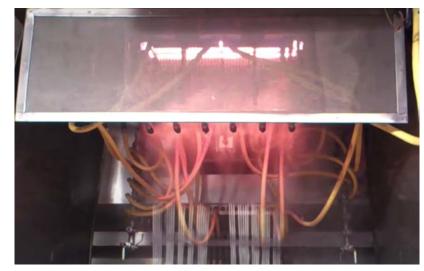
Water Savings Opportunity

- Water Treasure Hunt approach to find savings
- Two teams where formed to identify opportunities
 - Team 1 Production
 - Team 2 Facility

Reduce Number of Spray Nozzles per Position

It was observed that majority of nozzles spraying water at the end of positions lack contact with the glass

Opportunity:


40 MGY used in forming tunnels (from sub metering) 90% of water used in forming is from nozzle spraying (from water balance)

Water used in nozzles = 36 MGY (90% of 40 MGY)

20% reduction of nozzles can be reduced (1 per position) – by comparing it to industry standards

True cost of water = \$3.5 /kgal

Potential Cost Savings = \$27,527

Automated water nozzles

Low Flow Nozzles for Wash Bay

- The wash bay uses warm pressurized water for cleaning
- The flow through the nozzle is determined to be 3GPM
- Using Low flow nozzles this can be cut down by half

Reduction in Water = 1.06 MGY Estimated Cost savings = \$12,000 Implementation Cost = \$100 Payback = Immediate

Additional Water Savings Opportunity

- Splash out around dip stands
- Cooling Tower replacement
- Use wireless meters to evaluate leaks, drains left open etc.

Prepare summary slides for next weeks wrap-up presentation

1 on 1 calls can be setup anytime this week to help with finalizing water baselining, determining true cost ,quantifying savings from projects etc.

Review – Typical Opportunities

- Eliminating non-contact city water cooling
 - Using chillers/cooling tower recycling
 - Reusing the warm water for cleaning/ boiler make up
- Evaporation credits for sewer
- Redesigning/ reconfiguring process water use
 - Reduce number of nozzles ; sprays for cleaning instead of fill and drain
- Operational changes
 - Automation using solenoids to shut water use between product changes
 - Shutdown Procedure during weekends
- Opportunity in sanitary use and irrigation
 - Low flow nozzles, fountain heads etc.
 - Using local plants

Meeting Goal: Review opportunities from walkthrough and identify projects to pursue further

List of all opportunities identified and separate them in two categories

- 1. Most promising opportunities identified
 - What additional data is needed to quantify savings
 - Cost and payback of each measure.
 - Make a slide for management presentation
- 2. Additional opportunities that may require large capital expenditures, or opportunities that require more analysis and should be completed later.

Thank You all for attending today's webinar. See you all on next Tuesday – Aug 3rd, 2021 – 10 am ET If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at thirumarank@ornl.gov

