

Industrial Water Systems Virtual INPLT Training & Assessment

Session 4 Tuesday – July 6th, 2021

10 am – 12:30 pm

1111/1/1

Review – Session 1 - 2

- Water Risks
- Industrial Water Assessment
 - Step 1 Water Baselining
 - Step 2 True Cost of Water
 - Step 3 Identifying water savings opportunities
- Water Baselining
 - Plant Water Flow diagram
 - Data Collection (system level and facility level)
- True Cost of Water
 - Data Collection (water intake, discharge, treatment and embodied energy)

Example Facility – With Data (From Session 3)

Agenda – Session Four

Today's Content:

- Introduction to PWP Tool
- Benchmarking Overview
- PWP Working Session
- Kahoot Quiz Game
- Q&A

Better Buildings is an initiative of the U.S. Department of Energy

Plant Water Profiler Tool - Overview

Plant Water Profiler (PWP) Tool

The Plant Water Profiler (PWP) tool is a comprehensive excel-based tool designed for use by manufacturing plants to help perform a facility level water assessment

https://www.energy.gov/eere/amo/plant-water-profiler-tool-excel-beta-version-pwpex-v01

Plant Water Profiler Tool

Language:	English	Netes The Diant Weter Drofiles Tool is surroutly surjudiable in the English language only. It
Water Measurement Unit:	Million Gallons	Note: The Plant water Profiler 1001 is currently available in the English language only. It
Currency:	USD	

Disclaimer

This tool was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PWP Tool Concept

GY

PWP Tool – Map

*Tab 9 and 10 associated with finding water savings opportunities

Step 1. Baselining water use

Step 1. Baselining water use (water balance)

 Total of all water used by individual Systems should equal Plant Water Intake

Plant Water Intake

Water outflows

should equal Plant

Better

Step 1 - Baseline Water Use and Water Balance

Tab 3 provides calculators to estimate system water consumption

Tab 2 – Plant Water Intake Table

Part 2.1 - Plant's So	ource Water Intake	2			Municipal Wate	5		Municipal Sewer	
Please select the da	ata interval (i.e., m	onthly or annual) a	and provide an estin	nate of water	River/Lake Wate	River/Lake Water			
ntake in your plant	t from applicable w	ater sources. You r	may also select a wa	ater source that is	Ocean/Tide Wate	n s× PL	ANT	To River	
not listed in the tab	ole, such as rainwa	ter, desalinated wa	ter, or other. Select	the quality of					
water from the dro	p-down list.				Groundwate	S S		To Ground	
/ear	2018				Othe	er		Onsite Disposal	
Data Interval	Monthly							ensite erspessi	
		I	Pla	nt's Source Water	Intake (Million Galle	on)	1		
Month	Municipal Water	Municipal Water	Municipal Water	River or Lake	Ocean or Tide	Groundwater	Other	Total	
	Potable	Nonpotable		Nonpotable					
lanuary	0.95			0.15				1.1	
February	0.95			0.15				1.1	
March	0.95			0.15				1.1	
April	0.95			0.15				1.1	
May	0.95			0.15				1.1	
June	0.95			0.15				1.1	
July	0.95			0.15				1.1	
August	0.95			0.15				1.1	
September	0.95			0.15				1.1	
October	0.95			0.15				1.1	
November	0.95			0.15				1.1	
December	0.95			0.15				1.1	
Annual								-	
ANNUAL TOTAL	11.4	-	-	1.8	-	-	-	13.2	

Tab 3 – Example System Level Calculator

Yellow	Please input data ONLY in the yellow cells.
Orange	Please select from the drop-down menu in the orange cells.
Tan	Please DO NOT enter any data or delete values in the tan cells. They contain formulae.
Purple	Please DO NOT enter any data in the purple cells. They show values calculated elsewhere for guiding user input and cross-checking results.
Gray	Please DO NOT enter any data in the gray cells. They are not applicable to your plant.

Part 3.2 - Cooling Tower Water Use

This table calculates cooling tower water use in the plant. Please select the applicable cooling/condensing system and enter required data in the highlighted cells. For "Load (Fraction of Chiller Tonnage)," the typical range is 0.5-0.8. For "Evaporation Rate per 10°F Temp. Drop," 0.85% is a typical value, and the typical range is 0.65% for moist climate to 1.0-1.2% for dry climate. For "Temp. Drop Across Cooling Tower," typical range is 10-15°F. For conductivity, first select "Conductivity Unit" from the drop-down list on the right and then enter data below.

Conductivity Unit: µS/cm

				. Evaporation T		Makeup Blowdown		Million Gallon per Year (% of Gross Water Use)					
Cooling Tower	Hours of Operation	Cooling Tower	Load Factor (Fraction of	Rate per	Across	Water Conductivity	Conductivity	Gross Wate	Incoming	Out	going	Recirculated	
	per Year Tonnage	Tonnage)	Drop (%)	Tower (°F)	μS/cm	μS/cm	Use	Makeup Water	Blowdown	Evaporation	Water		
Cooling Tower for: Process 1	2,912	250	0.8	0.85%	10	600	1,800	105 (100%	1.34 (1.28%)	0.446 (0.425%)	0.891 (0.85%)	103 (98.7%)	
Cooling Tower for: Air Conditioning	2,000	75	0.78	0.85%	10	600	1,800	21.1 (100%	0.269 (1.28%)	0.0895 (0.425%)	0.179 (0.85%)	20.8 (98.7%)	

Tab 4 – System Level Water Balance

Part 4.1 - System Gross Water Use For EACH water-using system, please provide an estimate of water in the purple cells, which were calculated in previous tabs, as a * Use calculated Incoming Water (Source Water + Water From C From Other Systems. * Use calculated Recirculated Water for user estimate for Recir * Use calculated Gross Water Use to cross-check TOTAL of Use	Source Water Water from Other Systems	WATER-USING SYS GROSS WATER USE = Source Water + Recycled from Other Sy Recirculated Water Recirculated Water	ter Consumptive Consumptive (Evaporatio Water Used Products Wastewater Discharge to Othe System	e Loss n/ Irrigation) in er er es			
	Wate (er Flows Calculated on Million Gallon per Year	Tab 3 r)		Water Use (Meas (Million Gal	ured or Estimated) Ion per Year)	
Water-Using System	Incoming Water			Incomi	ng Water		
Water-Oshig System	(Source Water + Recycled From Other Systems)	Gross Water Use	Source Water	Recycled Water From Other Systems	Recirculated Water	Total (Gross Water Use)	
Process: Process 1	6.84	0.96	7.8	6.8		0.96	7.76
-	-	-	-				-
-		-	-				-
Cooling Tower for: Process 1	1.337	103.495	104.832	1.3		100.0	101.3
Cooling Tower for: Air Conditioning	0.269	20.791	21.06	0.3		20.79	21.09
-	<u> </u>	-	-				-
Boiler for: Facility Needs	3.841	1.28	5.121	3.85		1.28	5.13
-	-	-	•				-
Kitchen and Restrooms	1.399	-	1.399	1.4			1.4
Landscaping and Irrigation	1.849	-	1.849		1.85		1.85
- TOTAL	15.533	126.527	142.06	13.65	1.85	123.03	138.53
Note: System-level TOTAL for Source Water should closely n	13.2						

Step 2. Determine True Cost of Water

Tab 5 - Define Unit Cost of all components – Typical Valuesare Provided

Tab 6 & 7 - Match unit cost with water flow volumes identifiedthrough water baselining

Tab 8 - Define the embodied energy components – Pumps,Fans and Heating

15

Tab 7 – Cost of Water and Wastewater Treatment

Recirc. within System

Part 7.1 - Onsite Water Treatment Please select water treatment processes from the drop-down list for your plant. Enter a percent estimate of water that is treated for applicable incoming water categories. For example, if "Process A" receives water from "River," all of which undergoes "Water Treatment Process 1" and "Water Treatment Process 2," enter 100% in both cells of that row.			Water Water Water dwater Other water mer ms	Red	WATER-USING SYSTEM	Wastewater Treatmen	Municipal Sewer Third-party Disposal To River To Ocean To Ground Onsite Disposal
Water-Using System	Water from:		Quantity (Mil Gallon per Ye	llion- ear)	% of Water Use Underg Water Treatn Reverse Osmosis	goir nen	ig Water Treatment t Process Lime Softening
	Municipal Water: Potable		6.8		100%		
Process: Product Cooling	River or Lake: Nonpotable		-				
Process: Product Cooling	Water from Other Systems		-				
	Recirc. within System		-		100%		
	Municipal Water: Potable		-				
Cooling Tower for: Process 1	River or Lake: Nonpotable		1.3				100%
Cooling tower lor. Flocess I	Water from Other Systems		-				

100.0

Step 3. Identify water opportunities – Tab 9 & 10

Checklist of plant and system level measures

User answers questions to evaluate water efficiency status on system-level and to identify potential opportunities.

System Water Efficiency Status	Response
Process	
Cooling/condensing for process	
Has once-through cooling water been eliminated with the use of chillers, cooling towers, or air-cooled equipment?	No
Has blow-down/bleed-off control on cooling towers been optimized?	No
Is treated wastewater (or other sources of water for cooling tower make-up) reused where possible?	No
Are cycles of concentration for cooling towers maximized through efficient water treatment?	No
Cooling/condensing for air conditioning	
Boiler for Facility	
Kitchen and Restrooms	
Landscaping	

PWP results

Comparison with Industry Average

Water Imbalance by System

	Incoming Wate	er Outgoing Water	Wate	ce	
Water-Using System	Million Ga	illon per Year	Million Gallon Per Year	% of Incoming Water	% of Total Loss
Process: Process 1	6.8	6.405	0.395	5.8%	87.2%
Cooling Tower for: Process 1	1.3	1.3	-	-	-
Cooling Tower for: Air Conditioning	0.3	0.27	0.03	10.0%	6.6%
PLANT TOTAL	15.5	15.047	0.453	16.5%	100.0%

Acknowledgement

Industry Partners

- Saint-Gobain North America #, ⊗
- Ford Motors *
- KYB *
- ArcelorMittal [⊗]
- Owens Corning [®]
- ALCOA
- Arconic
- General Motors

* Provided beta testing feedback
Provided case study
⊗ Hosted Water INPLT Pilot Training

Sponsor

Advanced Manufacturing Office US Department of Energy

Development, Advising and Outreach

Mini Malhotra, Sachin Nimbalkar, Kristina Armstrong, Thomas Wenning, Sujit Das, Daryl Cox, and Wei Guo *Oak Ridge National Laboratory*

Joe Cresko, Eli Levine, Bruce Lung, Andre Defontaine, and Sandy Glatt *US Department of Energy*

William Morrow and Prakash Rao, Lawrence Berkeley National Laboratory

Alberta Carpenter and James McCall *National Renewable Energy Laboratory*

Diane Graziano, Sarang Supekar, and Nwike Iloeje *Argonne National Laboratory*

Benchmarking in PWP Tool

Review from session 1-Nationally, water intake is reported by aggregated sectors (NAICS)

US Manufacturing Estimated Water Intake by Sector (MGD)

Source: P Rao et.al. "Evaluation of US Manufacturing Subsectors at Risk of Physical Water Shortages

Water use by NAICS

The North American Industry Classification System (NAICS) is the standard used by federal statistical agencies to classify businesses in US, Canada, and Mexico

We have participants from:

NAICS	Sector
311	Food Manufacturing
322	Pulp, paper
325	Chemicals
326	Plastics
327	Clays
331	Iron & Steel
333	Machinery
335	Appliances and equipment
336	Motor vehicle & aerospace
337	Furniture

Canadian water use data

Canada has been collecting data through surveys and reports water use by 3-digit NAICS code. This can help facilities benchmark their water consumption

Researchers have used regression models to estimate water intake at 6-digit NAICS code for the U.S. economy. (Values used in PWP tool)

Estimates based on:

Blackhurst, B. Y. M., Hendrickson, C., & Vidal, J. S. I. (2010). Direct and indirect water withdrawals for U.S. industrial sectors. *Environmental Science & Technology*, **44**(6), 2126–2130.

Statistics Canada also provides a general overview of process level uses by sector

Sanitary service and domestic use of water Other initial uses of intake water

Key points to remember about benchmarking

Remember there is high variability and uncertainty in the estimates because of lack of data. Use estimates and average with caution.

We are aware that facilities in water-stressed regions may be already implementing water saving strategies. Their water intake may be much lower than the averages. (e.g.: facilities in Western U.S. or Mexico).

Your facility may decide to use a different metric than gallons/\$. (e.g.: gallons/tons, gallons/employee*day, gallons/hours of operation).

For our participants in Brazil:

Facilities outside of North America may check NAICS codes in <u>www.naics.com</u>.

You may find your local water intake estimates through your local water agency ("Agua na Industria – Uso e coeficientes tecnicos" Agencia Nacional de Aguas).

PWP – Working Session

Example Facility – With Data

Data Collection Sheet

Helps collect all the necessary data to complete the Plant Water Profiler Tool

Open Discussion

Reading Meters

Both reading 316,426 gallons

Analog meters are read by reading the rolling tick dial which records to the tens place.

The value in the red box fixed and the last whole digit is read by reading the sweeping hand

Thank You all for attending today's webinar.

See you all on next Tuesday – July 13th, 2021 – 10 am ET

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at thirumarank@ornl.gov

