

Industrial Water Systems Virtual INPLT Training & Assessment

Session 2 Tuesday – June 22nd, 2021

10 am – 12:30 pm

11111111

Water Virtual INPLT Agenda

- Week 1 (June 15) Introduction to Industrial Water Assessment and Plant Water Profiler
- Week 2 (June 22) Understanding System Level Water use
- Week 3 (June 29) True Cost of Water
- Week 4 (July 6) Plant Water Profiler Working Session
- Week 5 (July 13) Identifying Water Savings Opportunity
- Week 6 (July 20) Virtual Treasure Hunt
- Week 7 (July 27) Estimating Water Savings Opportunities
- Week 8 (August 3) Industrial Water System VINPLT Wrap-up Presentations

Agenda – Session Two

- Today's Content:
 - Day 1 Review
 - Comments on homework
 - Data Collection for baseline
 - Facility level data
 - Systems level data
 - Diagnostic equipment
- Kahoot Quiz Game
- Q&A

U.S. DEPARTMENT OF

Better Buildings is an initiative of the U.S. Department of Energy

Day 1 – Review

- Overview of Industrial Water Use and Water Risks
- Industrial Water Assessment
 - Step 1 Water Baselining
 - Step 2 True Cost of Water
 - Step 3 Identifying water savings opportunities

- Water Baselining
 - Plant Water Flow diagram
 - Data Collection

Example Facility – Water Flow Diagram

Some common comments on the Homework

- Blowdown from cooling tower and boiler should be added to flow they can be significant
- Cooling towers and Boilers with similar intake and discharge can be combined if it makes data collection easier
- Some facilities had missing process flows any process/equipment that has water make-up should be added.
- Process with non-contact cooling can be ignored if makeup water is considered as part of cooling tower/boiler

Data Confidentiality and homework assignments

- Option 1: I am fine sharing the information submitted as part of the homework publicly – Ideal; the data from the facility will help others learn
- Option 2: I am fine sharing the information submitted as part of the homework only to participants of this workshop – We will discuss the homework during the sessions but remove it from any publicly available information
- Option 3: The data is completely confidential, and the homework information is only for workshop hosts – homework will to be discussed offline in private calls.

Water Baseline

The information required to complete the water baseline can come from the following

- Metering (ideal)
- Engineering estimates (when metering is not feasible)

The Water Balance activity can also be used to determine the water flow when appropriate

Determining flow from Metering

Permanent Metering

Using facility meters, submeters and utility bills (most reliable data)

Short-Term Monitoring

 Data logging for few weeks (estimates depend on how well the monitoring period represents annual operation)

Instantaneous Measurements

Spot measurements using hand-held devices (estimates may have high uncertainty)

Facility Level Data Collection

Facility Water Intake

- Municipal City Water:
 - Potable, Non-Potable
- Surface water:
 - River, Lake, Pond
- Ground water
 - Wells

Facility Wastewater Discharge

- Municipal Sewer:
 - Domestic, Industrial Sewer
- Surface discharge:
 - River, Lake, Pond
- Third Party Disposal
 - Wastewater shipped offsite
- Onsite Disposal
 - Irrigation

Facility Level Water Data

Collecting Facility Level Water Data

Utility Meter

- Municipal City Water and Sewer
- Municipal City Water: Potable, Non-Potable
- Onsite Metering
 - Surface water: River, Lake, Pond
 - Ground water: Wells
 - Third Party Disposal
 - Wastewater shipped offsite
 - Onsite Disposal
 - Irrigation

Better Plants

Water Using Systems

- Cooling Towers
- Boilers
- Process Use Direct and Indirect
- Domestic Use
- Landscaping

System Level Water Data

Cooling Tower System – Typical Use

A cooling tower is a heat rejection device brings air and water in contact with each other in order to reduce the water's temperature

- Cooling Tower connected to electric chiller can be used to provide chilled water for process or HVAC needs
- Cooling Tower can be used as a stand-alone device to provide cooling water to process

Some typical processes served by cooling towers

- Indirect cooling of process equipment and product
- Cooling of Electronics and Mechanical Equipment
- Building HVAC

Cooling and Condensing System

Cooling and Condensing System

Cooling and Condensing System

Blowdown conductivity (from conductivity meters)

Cycles of Concentration is the number of times water is recirculated within the system before being discharged to outlet (blowdown)

Cooling Tower - Estimating Water use

• If cycles/ conductivity and blowdown are known

Alternatively engineering estimations based on equipment size/load and operations can be used

Cooling Tower – Calculator 1

		о II т	Load Factor	Evaporation Rate per 10°F Temp.	T	Makeup Water	Blowdown	Million Gallon per Year (% of Gross Water Use)				
Cooling Tower	Hours of Operation		(Fraction of		Temp. Drop Across	Conductivity	Conductivity		Incoming	Out	going	Desingulated Motors
	per Year	Ionnage	Tonnage) Drop (%)	Cooling Tower ("F)			Gross water Use	Makeup Water	Blowdown	Evaporation	Recirculated Water	
								-	-	-	-	-
								-	-	-	-	-
								-	-	-	-	-
								-	-	-	-	-

Data

Evaporation \propto Gross Water Use x Delta T x Evaporation Rate

- Gross Water Use = 3 x Load factor x Tonnage
- **Evaporation Rate**
 - 0.85 Typical
 - 0.65 Moist Climate
 - 1.0 to 1.2 Dry Climate •

Cooling Tower – Calculator 2

Calculating Evaporation from Cooling Load - instead of Delta T

Evaporation \propto Cooling Load

Case #1	+Remove Case
Water Flow Rate	1000 gpm
Cooling Load Calculate Cooling Load	100 MMBtu/h
Annual Operating Hours	B760 hrs/yr
Cycles of Concentration	2
Drift Eliminator	No 🗳
Drift Loss Factor	0.2 %
Evaporation Loss Correction Factor	85 %
Results	
Water Consumpti	ion 179,755.2 kGal

Cooling Tower – Some tips

- Cooling Towers can be hard to make accurate engineering estimates
 - The system loading is hard to determine accurately and is affected by various factors : number of fans running, speed of fans and pumps etc.
 - The design tonnage might be very different from the actual cooling achieved by the system
- Best practice
 - Meter either the intake (makeup water) or discharge (blowdown)
 - Calculate the missing flow from cycle of concentration which is relatively easy to measure
 - Engineering estimates based on tonnage can be used as a check to the values estimated by the above method

Polling Question 2

Polling Question

2) What is your major function of cooling tower at your facility?

- A. Product/Material Cooling
- B. HVAC
- C. Equipment Cooling
- D. Others
- E. Not used

Boiler System

Major Components

- Boiler
- Deaerator
- Condensate Tank
- Heating Loads
- Flash tank

25

Boiler System

Understand water flows

Condensate return: Steam that changes back to the liquid phase after process or heating applications, that is subsequently pumped back to the boiler feed water.

Steam rate: Steam generation from the boiler needed to meet the heating and/or process steam demand, usually expressed in pounds per time.

Boiler feedwater: Supply water directly to the boiler. It is the combination of make-up water and condensate return.

Blowdown: Water discharged from a boiler to remove high mineral content system water, impurities, and sediment.

or Other Systems)

Boiler System

Understand relevant terminologies

Makeup water conductivity Feedwater conductivity Blowdown conductivity (from conductivity meters)

Load fraction: Average heating load per BHP; typically, 70-80%

Steam generation rate: Typically, 34.5 lb/h per BHP at 212°F

Boiler horsepower (BHP): from nameplate data

Hours of operation

Makeup water conductivity Feedwater conductivity Blowdown conductivity (from conductivity meters)

Cycles of Concentration

= blowdown conductivity / feedwater conductivity

27

Boiler - Estimating Water use

Alternatively engineering estimations based on equipment size/load and operations can be used

Boiler – Calculator for engineering estimation

	Hours of Operation per Year	Boiler Horsepower (BHP)	Load Factor (Fraction of BHP)	Steam Generation Rate (Ib/h) per BHP	Feedwater Conductivity	Makeup Water Conductivity	Blowdown Conductivity	Million Gallon per Year (% of Gross Water Use)					
Boiler								Feedwater	Makeup Water	Blowdown	Steam Lost	Condensate Return	
					TDS ppm	TDS ppm	TDS ppm		Incoming	Out	Outgoing		
Boiler for:	8,000	100.0	0.8	34.5	8			-	-	-	-	-	
								-	-	-	-	-	
								•	-	-	-	-	
								-	-	-	-	-	
								-	-	-	-	-	

Specialty Equipment - Spray Dehumidifier

 Spray dehumidifiers use chilled water spray to remove atmospheric moisture

 Chiller water cools the air below its dewpoint and the water from the air condenses out

Process Water Use in Your Plant

Typical Process Water Use

- Process Cooling e.g., plastics extrusion, Glass, metal fabrication
- Cleaning/ Washing/ Rinsing
- Fabrication/processing
 - Lubrication
 - In chemical reaction
 - Sealing using water
 - Diluting
- Transportation
- Pollution control
- Inclusion in the product
- Other process

Typical Process Water Uses

Process Water Use

Process water can be Direct (contact) or Indirect (non-contact).

Direct Process Water Users

- Product cooling by contact (plastic extrusion, metal annealing ..)
- Paint mix (auto, appliances ...)
- Washing, Sealant, Material transport
- In-product

Indirect Process Water User

- Indirect product Cooling (via a heat exchanger and cooling tower ...)
- Hot water-based heating applications
- Once through indirect cooling system (inefficient)

Indirect or non-contact water that does not touch any raw material, intermediate product, waste product, or finished product. They are typically part of a closed loop system and connected to a cooling tower or boiler.

- While direct process water are used for very different applications (cooling, cleaning etc.) they usually have very similar water use and discharge profile
- Some types of water use in process
 - Automated nozzle spray to wash, cool
 - Manual spray nozzles for cleaning
 - Quench Tanks/ Water baths/ Cooking Vessels
 - Water consumed in product, dilution, sealant etc

Direct Process Use – Manual water spray

- Typically used to clean the equipment/product
- Water can be heated before use
- Water use can vary quiet a lot based on operator (can varies with shift)
 - instantaneous measurement might not be sufficient

Direct Process Use – Automated Water Spray

- Automated water spray are used in
 - Product Cooling
 - Cleaning
 - Rinsing
- Process Losses associated with evaporation (hard to estimate)
- No behavioral changes water use should be consistent between shifts
 - Instantaneous measurement might be sufficient
- Could have water recirculation within the system
 - Typically seen in cleaning systems with multiple stages

Direct Process Use – Water Spray (Discharge)

Water spray discharge can be difficult to meter

Water discharge may not be collected in a convenient fashion for metering

Simple techniques of collecting the discharge using premeasured buckets and noting the time to fill it can give a good rough estimate

Water discharge from a spray operation being drained to the ground floor

Premeasured bin placed to determine the volume of water discharged in given amount of time

Direct Process – Water Baths; Quench Tank, Cooking Vessels

Water tanks are used in

- Quench Cooling
- Product treating

- Cooking

Splash out losses (hard to estimate)

Typical have recirculation within the system

Direct Process Use – Product, Dilution, Sealant

- Consumptive use is high and can make up the entire water intake
- Examples
- Beverages
- Binder Mixing
- Paint shop
- Sealant in Vacuum pumps

A single production line can have multiple water uses

Example: Extrusion process where water sealant vacuum pumps are used to remove contaminates produced and the water bath (quench tank) is used to cool the product

Process Water – Generic Calculator

		Process Water L Consumed in (Eva Product (Process Water Losses (Evaporation/ Other)	Production Units per Year	Hours Water Used per Year	Fraction of Gross Water Use Recirculated	Total (Million Gallon per Year)						
Process Application	Water Required for Processing						Gross Water Use	Source Water + Water from Other Systems	Wastewater Discharge + Recycled to Other Systems	Process Water Consumed in Product	Process Water Losses (Evaporation/ Other)	Recirculated Water	
								Incoming	Out	going (Leaving the Sys	stem)		
							-	-	-	-	-	-	
							-	-	-	-	-	-	
							-	-	-	-	-	-	

Multiple ways of determining make up water used

- From Gallons per production unit
- From Gallons per hour

Water Intake = Gallons/unit × Number of units

Unfortunately, PWP does not have industry specific process water use calculators yet. Will be added in the future.

Indirect Process Water

- To be considered if water make -up is added
- Makeup water can be added in an indirect system to compensate for losses
- System can be ignored if water use is relatively very small

Others - Sanitary Use and Landscaping

- Typically not metered PWP has calculators to make high order estimates from number of employees (sanitary use) and land area (irrigation)
- Can be ignored if water use is relatively very small

Data for Sanitary Water Use Calculations									
N = Number of Employees D = Workdays per Year g = Water Use per Employee (Gallon per Day) Typical range is 10-35 gallon per shift									

Data needed to estimate Water Flows from PWP calculators

Process	Cooling System	Boiler System	Domestic	Landscaping
Number of Units Processed per Year	Annual Hours of Operation	Annual Hours of Operation	Number of Employees	Area of Land Irrigated
Water Required for Processing	Chiller Tonnage	Boiler Horsepower	Workdays per Year	Inches of Irrigation Water
Fraction of Water Recirculated	Load Factor	Load Factor	Water Use/ Employee	
Water Used in Products (consumed)	Evaporation Rate	Steam Generation Rate		
	Temp. Drop Across Cooling Tower	Feedwater Conductivity		
	Makeup Water Conductivity	Makeup Water Conductivity		
	Blowdown Conductivity	Blowdown Conductivity		

Some of the Lessons Learned from the field

- Lack of metering and sub-metering at the system-level makes it difficult to determine system level water usage.
- Water infiltrations and precipitation are difficult to estimate and cause errors in water balancing as they are typically drained to the same facility outlet.
- Individual system level discharges are difficult to meter as they usually drain to the facility outlet by gravity via underground channels which are hard to access.
- Behavior driven water consumption (e.g. open spraying) can vary significantly between shifts making it hard to accurately estimate without continuous monitoring.

Data Collection Tools

The information required to complete the water baseline can come from the following

- Metering (ideal)
- Engineering estimates (when metering is not feasible)

The Water Balance activity can also be used to determine the water flow when appropriate

Determining flow from Water Balance

Steel Treatment (line 1 & 2) = Lake Intake – HDGL_meter

Determining flow from Metering

Permanent Metering

Using facility meters, submeters and utility bills (most reliable data)

Short-Term Monitoring

 Data logging for few weeks (estimates depend on how well the monitoring period represents annual operation)

Instantaneous Measurements

Spot measurements using hand-held devices (estimates may have high uncertainty)

Metering Challenges

Water flows typically not metered:

- Water intake from sources other than municipality
- Effluent (treated wastewater) discharge to outlets other than municipal sewer
- Water use by subprocesses

 Finding the right location to install strap-on ultrasonic flow meters for spot measurement can be challenging.

Short Term Monitoring

Water flow in a system can be known from the short-term monitoring of different equipment/flow parameters

- Water Flow Rate
- Water Quality
- Pressure
- Electricity Measurements
- Other

Diagnostic Equipment

Instruments and data loggers for onsite data collection

Clamp-on Ultrasonic Flow Meters

- Nonintrusive way to measure flowrate
- Transducers available for pipe sizes from 2inch to 10 inches

Portable Ultrasonic Flow Meter for Liquids -Panametrics PT 900

Flow Transmitter

Tablet/phone

Transducers with clamping fixture

Few Tips for Clamp-on Ultrasonic Flow Meters

Demo: Courtesy <u>TechRentals</u> <u>https://www.youtube.com/watch?v=zXiYDtchLGM</u>

- The flow should be fully formed for the flow meter to work properly
 - Measuring spot should be few feet away from bends, elbows etc.
 - Pipe fittings or valves too close upstream or downstream of the transducers
 - Too-short runs of straight piping upstream & downstream of the orifice
- Cleaning the pipe surfaces dry and adding lubricant to the transducer enables proper contact, critical for error free measurement
- Adjusting transducer position can help troubleshoot a not signal error

Conductivity Meter – Water Quality Meter

- A water quality meter measures the conductivity and Total Dissolved Solids (TDS) of the liquid along with its temperature.
- Recommended maximum TDS levels depends on the type of boiler - normally ranging 2000 - 10000 ppm.
- AMPROBE WT-60 measures Conductivity up to 199.9 mS/cm and TDS up to 199.9ppt

Copyright Hach Company, Loveland, CO

Current and Pressure Transducers

Knowing the pressure and/or power drawn at a pump, the water flow through a system can be estimated using engineering principles

Pressure Transducers

- Pressure Ranges: 30 to 20,000 psi
- Operating pressure can be corelated to the power drawn to determine flow

Clamp-on Current Transducers

 Current measurements can be used to deduce the power drawn by a motor

Data Loggers

 Used to collect data over an extended period

 Can be interfaced with most current and pressure transducers

Digital Multimeters

- Multimeters can be used to get the instantaneous current, energy and power quality.
- Limited logging capability and used primarily for spot measurements

Run time Loggers

- Used to collect the run time of a motor system over a period
- Simple to setup and use and provides the operating hours of a system

Example Facility – Water Flow Diagram

Example Facility – Data Collected

The following information was collected at our example facility

From 2020 Utility Bills

- The city water use is 171.7 million gallons
- Industrial sewer was charged for 299.8 million gallons
- Municipal sewer was charged for 2.1 million gallons

From Onsite meters

 The onsite lake water meter logs indicate consumed 202.2 Million gallons of lake water was used in 2020

Short term Monitoring

The facility engineers installed a meter on the cooling tower makeup and the intake to the HDGL line for 2 weeks. The meter values are annualized to get the following values

- The cooling tower makeup is 49.2 mgy
- The hot dip galvanization line intake 76.1 mgy

Other systems level information gathered from the facility

- 5% of the intake water is estimated to be lost due to splash of in HDGL
- All 4 steel treatment lines have the same product throughput and water spray configurations and will consume the same amount of water – The intake quantity was not determined however 10% of the intake water is estimated to lost due to evaporation in these lines
- The cooling tower is a 5000-ton unit and operates at 60% its load on an average. The unit runs throughout the year and has a temperature drop of 10 F. The conductivity readings measured 100 µS/cm at the makeup and 525 µS/cm at blowdown
- The facility has 150 employees at any given time

U.S. DEPARTMENT

Example Facility – With Data

Review your data - How can we refine the numbers?

- Any additional place we can submeter?
 - The Steel Treatment Lines can be metered
- Can we better estimate the losses in the process?
 - Meter the water inflow to the wastewater treatment trains
 - Consider the losses in the treatment processes
- Compare engineering estimates and metered data for cooling tower

Data Collection Sheet

Helps collect all the necessary data to complete the Plant Water Profiler Tool

Homework #2

- 1. Collect the necessary facility level and system data needed to perform water balance for the facility
 - Complete sections 3, 4 and 5 in the data collection sheet provided. Section 5 can be skipped for systems for which measured data is available.
 - Annualize all measured data and mark it in the plant flow diagram

Revisiting Water flow Diagram

Thank You all for attending today's webinar.

See you all on next Tuesday – June 29, 2021 – 10 am ET

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at thirumarank@ornl.gov

