

Industrial Water Systems Virtual INPLT Training & Assessment

Session 1 Tuesday – June 15th, 2021

10 am – 12:30 pm

1111/1/1

Welcome

- Welcome to the first Water Virtual INPLT training series
- Eight, 2-1/2 hour webinars, focused on Industrial Water Systems, Water Assessment and Optimization
- These webinars will help you gain a significant understanding of your industrial water system, undertake a water assessment, evaluate and quantify water and cost-saving opportunities using US DOE tools and resources
- Thank you for your interest!

Kiran Thirumaran, Oak Ridge National Lab

Education

North Carolina State University– M.S. (Mech. Eng.)

Experience

- R&D Staff, Oak Ridge National Laboratory, Nov 2015 Present
 - Technical Account Manager for 20 companies through the Better Plants Program
 - Developed the water INPLT training and piloted it at multiple facilities
 - Lead ORNL's effort in supporting DOE National Alliance for Water Innovation
 - Developed tools to model the energy/water consumption in industrial systems
- Energy Engineer, CLEAResult Consulting, June 2014 Oct 2015
- Graduate Research Assistant, Industrial Assessment Center (IAC-NCSU), Dec 2012 May 2014.

Safety and Housekeeping

- You are welcome to ask questions at any time during the webinar
- When you are not asking a question, please <u>MUTE</u> your mic and this will provide the best sound quality for all participants
- We will be recording all these webinars and by staying on-line and attending the meeting you are giving your consent to be recorded

 $\circ~$ A link to the recorded webinars will be provided, afterwards

It's Great to Meet You!

Let's get to know each other so please....

- State your name, company, position and
- What are you looking to take away from the class?

This Photo by Unknown Author is licensed under CC BY-SA-NC

Industrial Water INPLT: Goals

- Train INPLT participants to conduct a facility level water use assessment
 - Conduct water use assessment to establish baseline water use and true cost for the host facility
- Identify measures for achieving water and cost savings
- Replicate INPLT results in other facilities

Water Virtual INPLT Agenda

- Week 1 (June 15) Introduction to Industrial Water Assessment and Plant Water Profiler
- Week 2 (June 22) Understanding System Level Water use
- Week 3 (June 29) True Cost of Water
- Week 4 (July 6) Plant Water Profiler Working Session
- Week 5 (July 13) Identifying Water Savings Opportunity
- Week 6 (July 20) Virtual Treasure Hunt
- Week 7 (July 27) Estimating Water Savings Opportunities
- Week 8 (August 3) Industrial Water System VINPLT Wrap-up Presentations

Agenda – Session ONE

Today's Content:

- Introduction
 - Overview of Industrial Water Use
 - Water Risks
 - Water-Energy Nexus
- Components of an Industrial Water Assessment
- Getting Started with Water assessment
 - Plant Water Flow diagram
 - Plant Water Profiler Tool
- Kahoot Quiz Game
- Q&A

Setter

'lants

U.S. DEPARTMENT OF

Industrial Water Use: Overview

Industrial Water Use: Snapshot

- Industrial water use
 ~ 5 6 % U.S. Total
- Most self-supplied
- Small fraction of total operational costs

400 billion gal/day Thermoelectric cooling U.S. industrial water use **25 Bgal/day Public Use Agriculture**

U.S. Water Use

Estimated sources of manufacturing water use

 Only 15% of total water intake in industries is consumptive • Self supplied water: 94% fresh and 6% saline

Breakdown of water use by industry

US Manufacturing Estimated Water Intake by Sector (MGD)

Breakdown of water use by application

Process water includes,

- Washing/Cleaning
- Direct contact cooling
- Diluting (e.g., paint shop)
- Transporting a product
- Fabrication
- Bleaching
- Lubrication
- Sterilizing..

Polling Question 1

1) Which category best describes your facility?

- A. Heavy water user e.g., Petrochemicals, Refineries, Forest Products, Primary Metals, Food and Beverage, Textiles
- B. Medium water user e.g., Non-Metallic Minerals, Transportation equipment, Fabricated Metals, Plastics and Rubber etc.
- C. Small water user e.g., Electronics, Specialty manufacturing, etc.
- D. Not a water user

Why should manufacturers consider water efficiency

	 Cost of purchasing water for facility 							
Cost savings and	 Cost of material for water and wastewater treatment 							
operational	 Cost of discharging wastewater 							
improvements	Cost of energy for heating and cooling water							
	Cost of energy for pumping water							
Business risks	 Scarcity – Risk of disruption of water supply to plant due to drought conditions, regional scarcity etc. Regulatory – Risk of increased government regulation on water use and pollution regulations Disruption of water supply in supply chain 							
Reputation risks	 Sustainability strengthens public trust and helps create better relationship for business 							

Water - Energy Nexus : Interdependence at facility level

Even if water is cheap, the correlating impact water use has on energy can make it expensive

Industrial water supply is affected by external factors

Local water availability is the predominate factor that determines the business risk related to water

Water risks in your region

Physical Risks – Quantity

Measure's risk related to too little or too much water Eg. Water Stress

Physical Risk – Quality Measure's risk related to water that is unfit for use. Eg. Untreated Connected Wastewater

Regulatory and Reputation Risks

Measures risk related to uncertainty in regulatory change and perception with the public. Eg. Environmental, social, and governance risk

Water Stress - Business as usual

Water stress is an indicator of competition for water resources and is defined informally as the ratio of demand for water by human society divided by available water.

Aquaduct Water Risk Atlas – World Resource Institute (WRI)

WRI's tool for measuring and mapping water risks worldwide.

	AQUEDUCT [™]								
Home Map How-To Downloads Publications Blog Abo	Home	Мар	How-To	Downloads	Publications	Blog	About		

Measuring, mapping, and understanding water risks around the globe

https://www.wri.org/data/aqueduct-water-risk-atlas

Physical Risks – Quantity

- Water Stress
- Water Depletion
- Interannual Variability
- Seasonal Variability
- Groundwater Table Decline
- Riverine flood risk
- Coastal flood risk
- Drought Risk

Physical Risk – Quality

- Untreated Connected Wastewater
- Coastal Eutrophication Potential

Regulatory and Reputation Risks

- Unimproved/No Drinking Water
- Unimproved/No Sanitation
- Country ESG Risk Index

Risk ► Indicators Measured

U.S. DEPARTMEN

Aquaduct Water Risk Atlas – Overall Water Risk Index

Overall Water Risk Index: Measures all water-related risks, by aggregating all selected indicators from the Physical Quantity, Quality and Regulatory & Reputational Risk categories.

Overall Risk Index for a Food and Beverage manufacturer in the Houston, TX area.

the overall risk metric

Polling Question 2

Polling Question

1) Why is water efficiency important to you?

- A. Cost Savings
- B. Reducing risk and improve resilience
- C. Corporate Image
- **D.** Product Quality improvement
- E. Others

Barriers to Industrial Water Use Reduction

- Lack of reliable data of industrial water use -- the extent of water-use related risks is unknown
- Lack of understanding of hidden costs of water use
- Lack of incentives from utility & state government

Reduced justification for potentially expensive water use reduction projects

This is changing ...

Introduction to Industrial Water Assessment

Conducting a Water Use Assessment

- Step 1. Baselining water use
- Step 2. Quantify true cost of water
- Step 3. Identifying Water savings opportunity

Step 1. Baselining water use

Step 1. Baselining water use

Significance to the facility

- Establishes baseline to track water use over time
- Allows comparison with other industries (motivation)

Water Balance

 Total of all water used by individual Systems should equal Plant Water Intake

 Plant Water Intake should equal Plant Water outflows

A "Water Balance" helps baseline water consumption

Why to Conduct a Water Balance?

- Accurate water accounting is the key to true cost determination
- Water balance gives the opportunity to
 - Perform sanity check on water estimates
 - Reduce uncertainty in baseline water use and associated true cost components
 - Quantify unaccounted water use or unknown water loss
 - Better accuracy in estimating water and true cost savings from waterefficiency measures

Step 2. True Cost of Water

Significance to finding True Cost of Water

- Reveals hidden costs of using water
- Identifies water use-intensive versus cost-intensive systems to help prioritize measures

Water efficiency can reduce cost, improve resilience and reduce environmental impacts.

- Recycle and Reuse Water
- Efficient Design
- Implementing new technologies
- Optimized Operations
- Behavioral Improvements
- Proper Maintenance

Examples

New Technology PepsiCo switched to purified air for cleaning Gatorade® bottles, achieving a **20 percent** reduction in water consumption throughout the process

New technology

Canola Processor uses RO system to treat incoming water **saving 965,000 gallons of water** used for softener regeneration

Recycle and Reuse Water

Nissan installed an automated water filtration system to eliminate the once-through rinse water, saving **48.6 million gallons** of water annually.

Plant Water Flow Diagram

A water flow diagram helps understand the water users in a facility and its components intuitively and makes performing a water balance easier.

Typical water using systems in industries: Cooling Tower, Boilers, Humidifiers, Direct

(contact) and Indirect (non-contact) process water users.

Direct Process Water Users

- Product cooling by contact (plastic extrusion, metal annealing ..)
- Paint mix (auto, appliances ...)
- Washing...

Indirect Process Water User

- Indirect product Cooling (via a heat exchanger and cooling tower ...)
- Hot water-based heating applications
- Once through indirect cooling system (inefficient)

Indirect or non-contact water that does not touch any raw material, intermediate product, waste product, or finished product. They are typically part of a closed loop system and connected to a cooling tower or boiler.

Water Flow Diagrams can be complex

[1] Poddar, Pradeep & Sahu, Omprakash. (2015). Quality and management of wastewater in sugar industry. Applied Water Science.
 [2] EPA fact Sheet - National Pollutant Discharge Elimination System (NPDES) Permit Program

An ideal water flow diagram makes baselining simpler

For a baseline assessment and water balance, water flow across each system or group need to be known

Creating a diagram optimized for water assessment

- Define appropriate plant and system boundaries:
 - Depending on the size of the plant, plant boundary may be the entire facility or only include specific parts of a plant
 - System Boundaries are defined by segregating or combining processes/systems into manageable groups such that you can quantify water flows across each group
- Trade-off between <u>System Resolution</u> and <u>Data Availability</u>
 - While consider each water users separately (e.g. every quench tank in each production line) will give more insight and resolution into water consumption, it would need more effort to collect the data
 - Start of with a basic water flow diagram that consolidates as many water users as possible, complexities can be added after

Some Guidelines for defining system boundary

- Step 1: Identify all water using systems
 - Define the cooling towers and boilers separately from the processes
 - Separate direct and indirect process water users
 - Indirect process water users need to considered separately only if water is consumed or gained in the process e.g., partially open loop and requires water makeup.
- Step 2: For each system that uses water directly, understand the water intake sources, wastewater discharge outlets, water treatment processes, and wastewater treatment processes
- Step 3: Group systems based on if water consumption and discharge is easier to estimate as a group
 - Each group should draw water from the same intake source, have similar water treatment steps and discharge to the same outlet.
 - Multiple cooling towers/boilers can be combined if needed
 - Combine all sanitary water use (kitchen, restrooms, laundry, etc.) into a single group

Creating Master Table and Water Flow Diagram

Plant Boundary:	Water Intake Source	Wastewater Discharge Outlets	Water Treatment Process	Wastewater Treatment Process	ithin a	.드			
Water-Using System					Water Recirculation w System	Water recycled for us other systems	Water used in product	Evaporative loss	Other loss

Master Table helps compile all information needed to draw a water flow diagram optimized for water assessment

Example Facility – Water Users

A metal finishing facility has following operations that use water

- There are 4 steel surface treatment lines, line 1 and 2 served by the lake water after being chemically treated and lines 3 and 4 are served by untreated city water. The discharge needs to be treated for oil contaminates before being discharged to industrial sewer.
- An annealing furnace that uses cooling tower water for furnace cooling (closed loop system via a heat exchanger)
- A hot dip galvanization line (HDGL) that uses reverse osmosis (RO) treated lake water as make up for diluting its chemical bath and cooling tower water to remove heat from the gears and other mechanical equipment via a heat exchanger. The discharge needs to be treated for metal contaminates before being discharged to industrial sewer
- The cooling tower that serves annealing furnace and the HDGL line gets its water from the nearby lake which must be chemically treated before being used as makeup. Blowdown is sent to industrial sewer.
- The restrooms in the location use city water and drains to domestic sewer.

Example Facility – Draft Flow Diagram

Identify all water using systems

Plant Boundary – Entire Facility

System Boundary

List of Direct Water Use System

Cooling Tower Makeup

List of in-direct Water Use System

(cooling loads)

- Furnace Cooling (Annealing)

Equipment Cooling (HDGL)

Water Treatment System

- Chemical Treatment
- RO System

Wastewater Treatment System

- Metal Treatment
- Oil Treatment

Understand the water flows and group systems

- Cooling Tower
 - Make up from chemically treated city water
 - Blowdown to industrial sewer
- Steel treatment Line 1 and 2
 - Make up from lake water after chemical treatment
 - Discharge to industrial sewer after oil removal
- Steel treatment Line 3 and 4
 - Make up from City water
 - Discharge to industrial sewer after oil removal

- Hot Dip Galvanization Line
 - Make up from RO treated lake water
 - Discharge to industrial sewer after metal removal
- Sanitary
 - Make up from city water
 - Discharge to domestic sewer

Master Table to compile information

Plant Boundary:	Water Intake Source	Wastewater Discharge Outlets	Water Treatment Process	Wastewater Treatment Process	ithin a	.⊑			
Water-Using System					Water Recirculation wi System	Water recycled for use other systems	Water used in product	Evaporative loss	Other loss

List out the water users in your facility, think through their water flows and based on the guidelines discussed identify how they can be grouped together for water baselining/water balance.

Master Table for example facility

Plant Boundary:	Water Intake Source	Wastewater Discharge Outlets	Water Treatment Process	Wastewater Treatment Process	vithin a	e in	x		
Whole Facility Water-Using System	1 Lake Water 2. City Water	1 Industrial Sewer 2. Municipal Sewer	 Chemicals for Cooling Tower Chemicals for Steel Lines Reverse Osmosis 	1. Oily Removal 2. Metals Removal	Water Recirculation v System	Water recycled for us other systems	Water used in produc	Evaporative loss	Other loss

Master Table for example facility

Plant Boundary:	Water Intake	Wastewater	Water Treatment	Wastewater	ກ				
	Source	Discharge Outlets	Process	Treatment	.E	c			
Whole Facility	1 Lake Water 2. City Water	1 Industrial Sewer 2. Municipal Sewer	 Chemicals for Cooling Tower Chemicals for 	1. Oily Removal 2. Metals Removal	culation with	aled for use ms	Water used in product	s loss	
Water-Using System			Steel Lines 3. Reverse Osmosis		Water Recir System	Water recyc other syster		Evaporative	Other loss
Cooling Tower									
Steel treatment 1 & 2									
Steel treatment 3 & 4									
Hot Dip Galvanization Line									
Sanitary									

Master Table for example facility

Plant Boundary:	Water Intake Source	Wastewater Discharge Outlets	Water Treatment Process	Wastewater Treatment	na	_			
				Process	i <u>÷</u>	⊒. [
Whole Facility	1 Lake Water	1 Industrial Sewer	1. Chemicals for	1. Oily Removal		nse	luct		
Water-Using System	2. City Water	2. Municipal Sewer	Cooling Tower 2. Chemicals for Steel Lines 3. Reverse Osmosis	2. Metals Removal	Water Recirculatio System	Water recycled for other systems	Water used in prod	Evaporative loss	Other loss
Cooling Tower	2	1	1	-	x	-	-	x	-
Steel treatment 1 & 2	1	1	2	1	-	-	-	X	-
Steel treatment 3 & 4	2	1	-	1	-	-	-	x	-
Hot Dip Galvanization Line	1	1	3	2	-	-	-	x	-
Sanitary	2	2	-	-	-	-	-	X	x

Creating Plant Water Flow Diagram

- List all water discharge outlets (on the left)
 - Example : Municipal Water, River or Lake, Ocean or Tide, Groundwater, Rainwater, Other.
- List all wastewater discharge outlets (on the right)
 - Example : Municipal Sewer, Third-party Disposal, River or Lake, Ocean or Tide, Groundwater, Onsite Disposal, Stormwater
- List all system boundaries identified for water balance in the middle
 - Example : Direct water users , Cooling towers , boilers etc.
- List all water treatment processes and wastewater treatment processes between the systems are the inlet/discharge
- Mark the appropriate water flows including water recycle, recirculation, losses etc.

Example Facility – Flow Diagram Optimized for Water Balance

Steps to Water Flow Diagram

- Understand where water is used the facility and list them
- Group water end users to make water assessment easier
- Determine the water flows including recirculation and create a master table
- Draw a schematic easy to follow water flow diagram

Next Step

Put together a data collection strategy

Example Facility – Water Flow Diagram

Plant Water Profiler Tool - Overview

Session 1.3 Outline

- PWP tool concept
- Calculation approach
- PWP output report
- Facility water use assessment using PWP Tool

Plant Water Profiler (PWP) Tool

The Plant Water Profiler (PWP) tool is a comprehensive excel-based tool designed for use by manufacturing plants to help perform a facility level water assessment

https://www.energy.gov/eere/amo/plant-water-profiler-tool-excel-beta-version-pwpex-v01

Plant Water Profiler Tool

Language:	English	Nato, The Direct Weter Duckley Teol is surroutly surifield in the Earlich language only. It
Water Measurement Unit:	Million Gallons	Note: The Plant water Profiler 1001 is currently available in the English language only. It
Currency:	USD	uses only without Galons for water use calculations and 050 for cost calculations.

Disclaimer

This tool was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PWP Tool Concept

GY

PWP Tool – Map

Step 1. Baselining water use

Step 1 - Baseline Water Use and Water Balance

Tab 3 provides calculators to estimate system water consumption

Tab 2 – Plant Water Intake Table

Part 2.1 - Plant's So	urce Water Intake	2			Municipal Wate	er (6		Municipal Sewer Third-party Dispo
Please select the dat	ta interval (i.e., m	onthly or annual) a	ind provide an estin	nate of water	River/Lake Wate	E AT		To Diver
ntake in your plant	from applicable w	ater sources. You r	nay also select a wa	iter source that is	Ocean/Tide Wate	PL N N	ANT	TO RIVEL
not listed in the tabl	le, such as rainwa	ter, desalinated wa	ter, or other. Select	the quality of	C 1.1	NIN NI		To Ocean
vater from the drop	D-down list.				Groundwate	20		To Ground
/ear	2018				Othe	er		Onsite Disposal
Data Interval	Monthly		-)
-			Pla	nt's Source Water	Intake (Million Galle	on)		
Month	Municipal Water	Municipal Water	Municipal Water	River or Lake	Ocean or Tide	Groundwater	Other	Total
	Potable	Nonpotable		Nonpotable				
lanuary	0.95			0.15				1.1
ebruary	0.95			0.15				1.1
March	0.95			0.15				1.1
April	0.95			0.15				1.1
May	0.95			0.15				1.1
June	0.95			0.15				1.1
July	0.95			0.15				1.1
August	0.95			0.15				1.1
September	0.95			0.15				1.1
October	0.95			0.15				1.1
November	0.95			0.15				1.1
December	0.95			0.15				1.1
Annual								-
ANNUAL TOTAL	11.4	-	-	1.8	-	-	-	13.2

Tab 3 – Example System Level Calculator

Yellow	Please input data ONLY in the yellow cells.
Orange	Please select from the drop-down menu in the orange cells.
Tan	Please DO NOT enter any data or delete values in the tan cells. They contain formulae.
Purple	Please DO NOT enter any data in the purple cells. They show values calculated elsewhere for guiding user input and cross-checking results.
Gray	Please DO NOT enter any data in the gray cells. They are not applicable to your plant.

Part 3.2 - Cooling Tower Water Use

This table calculates cooling tower water use in the plant. Please select the applicable cooling/condensing system and enter required data in the highlighted cells. For "Load (Fraction of Chiller Tonnage)," the typical range is 0.5-0.8. For "Evaporation Rate per 10°F Temp. Drop," 0.85% is a typical value, and the typical range is 0.65% for Conductivity moist climate to 1.0-1.2% for dry climate. For "Temp. Drop Across Cooling Tower," typical range is 10-15°F. For conductivity, first select "Conductivity Unit" from the dropdown list on the right and then enter data below.

Makeup Million Gallon per Year (% of Gross Water Use) Evaporation Temp. Drop Blowdown Water Hours of Cooling Load Factor Rate per Conductivity Across Incoming Outgoing Tower (Fraction of Conductivity **Cooling Tower** Operation **Gross Water** Recirculated 10°F Temp. Cooling per Year Tonnage) Tonnage Makeup Use Water Drop (%) Tower (°F) μS/cm Blowdown Evaporation μS/cm Water 0.446 0.891 Cooling Tower for: Process 1 250 0.8 0.85% 600 105 (100%) 1.34 (1.28%) 103 (98.7%) 2,912 10 1,800 (0.425%) (0.85%)0.269 0.0895 0.179 Cooling Tower for: Air Conditioning 75 0.78 0.85% 600 1,800 21.1 (100%) 20.8 (98.7%) 2,000 10 (0.425%)(1.28%)(0.85%)

μS/cm

Unit:

Step 2. Determine True Cost of Water

Tab 5 - Define Unit Cost of all components – Typical Valuesare Provided

Tab 6 & 7 -Match unit cost with water flow volumes identifiedthrough water baselining

Tab 8 - Define the embodied energy components – Pumps,Fans and Heating

64

Tab 7 – Cost of Water and Wastewater Treatment

Recirc. within System

Part 7.1 - Onsite Water Treatment Please select water treatment processes from plant. Enter a percent estimate of water that incoming water categories. For example, if " "River," all of which undergoes "Water Treat Treatment Process 2," enter 100% in both ce	Municipa River/Lake Ocean/Tide Groun Wat fro Oth Syster	Water Water Water dwater Other water mer ms	Red	WATER-USING SYSTEM	Wastewater Treatmen	Municipal Sewer Third-party Disposal To River To Ocean To Ground Onsite Disposal	
Water-Using System	Water from:		Quantity (Mil Gallon per Ye	llion- ear)	% of Water Use Underg Water Treatn Reverse Osmosis	goir nen	ig Water Treatment t Process Lime Softening
	Municipal Water: Potable		6.8		100%		
Process: Product Cooling	River or Lake: Nonpotable		-				
	Water from Other Systems		-				
	Recirc. within System		-		100%		
	Municipal Water: Potable		-				
Cooling Tower for: Process 1	River or Lake: Nonpotable		1.3				100%
Cooling tower lor. Flocess I	Water from Other Systems		-				

100.0

Step 3. Identify water opportunities – Tab 9 & 10

Checklist of plant and system level measures

User answers questions to evaluate water efficiency status on system-level and to identify potential opportunities.

System Water Efficiency Status	Response
Process	
Cooling/condensing for process	
Has once-through cooling water been eliminated with the use of chillers, cooling towers, or air-cooled equipment?	No
Has blow-down/bleed-off control on cooling towers been optimized?	No
Is treated wastewater (or other sources of water for cooling tower make-up) reused where possible?	No
Are cycles of concentration for cooling towers maximized through efficient water treatment?	No
Cooling/condensing for air conditioning	
Boiler for Facility	
Kitchen and Restrooms	
Landscaping	0.8

66

PWP results

THE COST OF Water

Comparison with Industry Average

Million Gallon

Water Imbalance by System

	Incoming Wate	Incoming Water Outgoing Water		Water Imbalance		
Water-Using System	Million Ga	allon per Year	Million Gallon Per Year	% of Incoming Water	% of Total Loss	
Process: Process 1	6.8	6.405	0.395	5.8%	87.2%	
Cooling Tower for: Process 1	1.3	1.3	-	-	-	
Cooling Tower for: Air Conditioning	0.3	0.27	0.03	10.0%	6.6%	
PLANT TOTAL	15.5	15.047	0.453	16.5%	100.0%	

67

er Intaké by System

Homework #1

- 1. Use the WRI Aqueduct tool to identify the overall water risk for your location. Change the weighting of the risk indicators according to your industry, you can create a custom weightage as your see appropriate if your sector does not have default indicator weights.
- 2. What will be the water stress in your area under a Business-as-Usual Scenario in 2030 and 2040?
- 3. Draw a water flow diagram for your facility based on the guidelines discussed you can make use of the master table template provided as needed
- 4. Mark the points where metered data is available.

Thank You all for attending today's webinar.

See you all on next Tuesday – June 22, 2021 – 10 am ET

If you have specific questions, please stay online and we will try and answer them.

Alternately, you can email questions to me at thirumarank@ornl.gov

