

Pumping System Assessment

Week 5: Expanded Discussions

- Centrifugal pump with 8" suction and 6" discharge pipe
- On discharge there is a 6" check valve (k = 2)
- Downstream of the check valve the pipe expands to 12" diameter
- Discharge pressure gauge is located in the 12" diameter piping
- Flow rate is 2000 gpm

- Friction loss for the check valve is = k(V²/2g) where k = 2 and V is the average velocity in the 6" diameter pipe
- Use the pump head calculator to calculate the velocity head

2000 gpm in a 6" pipe: $V^2/2g = 8.00$ ft Check valve k = 2: valve friction loss = 2 x 8.00 = 16.00 ft

2000 gpm in a 12" pipe: $V^2/2g = 0.50$ ft Check valve k = 2 (in 6" pipe) valve friction loss = 2 x (12/6)⁴ x 0.50 = 16.00 ft

2000 gpm in a 12" pipe: $V^2/2g = 0.50$ ft Check valve k = 2 (in 6" pipe) valve friction loss = 2 x (12/6)⁴ x 0.50 = 16.00 ft

Finish water pump layout - NPSHA

- Want the total head at location 2
- Don't know P₂ and V₂, typically
- Easier to start at location 1, know P₁ = atmospheric pressure and V₁ = 0
- Then, $P_2 = P_1 + 10.5$ feet

Calculate NPSHA

Water saturation vapor pressure at 60 F= 0.26 psia

Reference location for suction head determination is the water surface

NPSHA =
$$\frac{V_s^2}{2g} + \frac{2.31 (P_s + P_a - P_v)}{s.g.} + Z_s$$

NPSHA = $\frac{0^2}{64.352} + \frac{2.31 (0 + 14.7 - 0.26)}{1.00} + 10.5 = 43.9 \text{ ft}$

Answer: NPSHR would exceed NPSHA at just over 2500 gpm

Flow estimation from suction pressure measurements

Using velocity and friction head components - two approaches

- 1. On-off transition
- 2. Comparison between running and non-running pump

A standard wastewater lift station

Incoming fluid spilling into the wet well

Pump 1 suction pressure measurement point

Total head (including friction) is the same at two points

... if we can measure elevation and pressure, we can estimate velocity

An alternative perspective: If level doesn't change instantaneously on pump start/stop.....

... if we observe the step pressure change, we can estimate velocity

Pump suction pressure over two fill and drain cycles

Pump suction pressure over two fill and drain cycles

Pressure depression is the combination of velocity head and frictional head losses between the wet well and pump suction

3.86 ft =
$$\frac{V_2^2}{2g} + K\left(\frac{V_2^2}{2g}\right) = \frac{V_2^2}{2g}(1 + K)$$

For bell-mouth reducer:K = 0.05For long radius 6-in. elbow:K = 0.18Overall loss coefficient:K = 0.23

$$3.86 \text{ ft} = \frac{V_2^2}{2g} (1 + \text{K})$$
$$\Rightarrow \frac{V_2^2}{2g} = 3.14 \text{ ft}$$
$$\Rightarrow \text{V} = 14.2 \text{ ft/s}$$

 \Rightarrow calculated flow rate = 1209 gpm

An effective way to measure flow rate in parallel pumping applications: use Bernoulli

An alternative method: compare suction pressures for the pump that is on with a parallel one that is off

Suction pressures on both pumps were monitored during drawdown (Instrument scaling: 1 mV = 1 kPa)

Pump 1 suction pressure (Pump on) Pump 2 suction pressure (Pump off)

Differential = 11.453 kPa = 1.66 psig = 3.84 ft (again, this is combined velocity head and friction loss)

Flow rate was calculated from differential pressure at several points during wet well drawdown

pipe diameter	5.895	(6.02"	' pipe v	vith non	ninal 1/	'16" cement	-mortar	liner)
Area, sq ft	0.190							
estimated K	0.23							
		P1	P2	delta		Vhead =	Vel,	
	Event	(kPa)	(kPa)	kPa	dH, ft	dH/(1+K)	ft/s	gpm
	1	6.69	17.5	10.80	3.62	2.94	13.76	1170
	2	5.98	16.8	10.86	3.64	2.96	13.80	1174
	3	5.08	16.5	11.45	3.84	3.12	14.17	1205
	4	1.82	13.4	11.60	3.89	3.16	14.26	1213
	5	1.48	12.9	11.44	3.83	3.12	14.16	1205
	6	0.72	11.8	11.04	3.70	3.01	13.91	1183
	7	-0.1	11.2	11.32	3.79	3.08	14.09	1198
	8	-0.7	10.6	11.26	3.77	3.07	14.05	1195
			A	/erage	3.76	3.06	14.02	1193

Flow rate was calculated from differential pressure at several points during wet well drawdown

pipe diameter	5.895	(6.02"	' pipe v	vith non	ninal 1/	'16" cement	-mortar	liner)
Area, sq ft	0.190							
estimated K	0.23							
		P1	P2	delta		Vhead =	Vel,	
	Event	(kPa)	(kPa)	kPa	dH, ft	dH/(1+K)	ft/s	gpm
	1	6.69	17.5	10.80	3.62	2.94	13.76	1170
	2	5.98	16.8	10.86	3.64	2.96	13.80	1174
	3	5.08	16.5	11.45	3.84	3.12	14.17	1205
	4	1.82	13.4	11.60	3.89	3.16	14.26	1213
	5	1.48	12.9	11.44	3.83	3.12	14.16	1205
	6	0.72	11.8	11.04	3.70	3.01	13.91	1183
	7	-0.1	11.2	11.32	3.79	3.08	14.09	1198
	8	-0.7	10.6	11.26	3.77	3.07	14.05	1195
			A	/erage	3.76	3.06	14.02	1193

An independent method of estimating flow rate in level-controlled operations

- Measure time between on and off events
- Calculate the volume between level switches
- Incoming flow rate with pump off = volume/time
- Assume that the incoming flow rate when the pump is running is equal to that calculated from before and after pump off periods

$$Q = \frac{t_{on} \left(\frac{V_w}{t_{off}}\right) + V_w}{t_{on}} = \left[\left(\frac{V_w}{t_{off}}\right) + \left(\frac{V_w}{t_{on}}\right)\right] = V_w \left(\frac{t_{off} + t_{on}}{t_{off} \times t_{on}}\right)$$

- $Q = Pump flow rate, gpm t_{on} = Pump run time, min t_{off} = Pump off time, min$
- Vw = Well volume, gallons
- Estimated flow rate at the lift station using this method was 1161 gpm

Manometers – even the home made kind – provide excellent accuracy

An exercise: estimate the flow rate for the previous slide

Suction header: 18" standard (17.25-inch ID) Individual pump suction lines: 16" standard (15.25-inch ID) Suggested loss assumptions:

Branch tee:	0.45			
18-16 reducer:	0.11			

16-inch gate valve: 0.04

$$z_1 - z_2 = \frac{V_2^2}{2g} (1+K)$$

gpm= 2.448 V d²

Where z is elevation in feet, g is 32.174 ft/s², V is velocity in ft/s, and d is the pipe inside diameter in inches

An exercise: estimate the flow rate for the previous slide

16" standard (15.25-inch ID)

Branch tee: 0.45

18-16 reducer: 0.11

16-inch gate valve: 0.04

0.60

 $z_1 - z_2 = \frac{V_2^2}{2g} (1+K) = \frac{17.5}{12} = \frac{V_2^2}{2 \times 32.174} (1.6) \implies V = 7.66 \text{ ft/s}$

 $gpm= 2.448 \text{ V d}^2$ 2.448 x 7.66 x 15.25² = 4360 gpm

Where z is elevation in feet, g is 32.174 ft/s², V is velocity in ft/s, and d is the pipe inside diameter in inches

