

Pumping System Assessment

Week 4: Finding Data and Case Studies

An effective way to measure flow rate in parallel pumping applications: use Bernoulli

Parallel Pump System – Flow Estimating

- A very common pump configuration is to have several parallel pumps fed from a large common header, tank or reservoir. In most cases, one or more of the parallel pumps is normally idle.
- The total hydraulic head, including pressure, elevation, and velocity should be the same in the suction pipes of running and idle pumps. But since there is no velocity in the idle pumps, the pressure would be higher than in those that are running. By measuring the differences in pressures, the velocity head in the suction of a running pump can be deduced.

Parallel Pump System – Flow Estimating

Of course, a difficulty with this approach is the fact that there are frictional effects. In the example shown above, there are losses across the suction valves, as well as other pipe fittings (elbows/tees). But using nothing other than typical values for these components, it is often possible to estimate velocity to within an accuracy of a few percent. In some cases, this may be the best estimate that can be made. It also provides an independent means of estimation that can either corroborate or bring into question other flow measurements or estimates.

How about power estimating?

- MEASUR estimates of power from current have proven to be reasonably accurate
- Linear current ratio (measured amps divided by full load amps = fraction of rated load) is a very poor second choice
- MotorMaster algorithms
- Speed not recommended unless a speedpower calibration curve for the specific motor and for the specific power supply conditions is in hand (i.e., almost never)

MEASUR - example 1

Application: >40 years old, 200-hp, 4-pole motor, unknown repair history

Comparison of electric power estimated from current and voltage and actual electric power

Measure motor current & power & compare

FIELD DATA

RESULTS

Percent Savings (%)

hrs/yr \$/kWh

ft

× kW V Baseline

Operating Hours	8760	hrs/yr
Electricity Cost	0.08	\$/kWh
Flow Rate	2000	gpm
Head Calculate Head	277	ft
Load Estimation Method	Current	~
Motor Current	215.5	A
Measured Voltage	472	V

Power estimated from motor current, voltage

FIELD DATA

Operating Hours	8760
Electricity Cost	0.08
Flow Rate	2000
Head Calculate Head	277
Load Estimation Method	Power
Motor Power	156.3
Measured Voltage	472

Annual Savings	_	
Annual Cost	\$106,687	
Annual Energy Savings (MWh)	_	
Annual Energy (MWh)	1,334	
Motor power (kW)	152.2	
Motor current (amps)	216	
Drive efficiency (%)	100	
Percent Loaded (%)	96	
Motor power factor (%)	86.4	
Motor efficiency (%)	94	
Pump shaft power (hp)	191.8	
Motor shaft power (hp)	191.8	
Motor rated power (hp)	200	
Pump efficiency (%)	73.1	

RESULTS	
	Baseline
Percent Savings (%)	
Pump efficiency (%)	71.2
Motor rated power (hp)	200
Motor shaft power (hp)	196.8
Pump shaft power (hp)	196.8
Motor efficiency (%)	<mark>93.</mark> 9
Motor power factor (%)	86.6
Percent Loaded (%)	98
Drive efficiency (%)	100
Motor current (amps)	221
Motor power (kW)	156.3
Annual Energy (MWh)	1,369
Annual Energy Savings (MWh)	_
Annual Cost	\$109,535
Annual Savings	_

Power measured

A caution about clamp-on current measurements: CT jaw closure is critical

Piece of tie wrap < 0.05 in thick

Jaws fully closed - 114.2 amps

<0.05 inch gap: 78.5 amps

Note: CT scaling is 1 mV/amp

If possible, measure all three phases

Currents

<0.9% voltage unbalance => 3.3% current unbalance

A final, most important consideration: Demand and Supply - in the engineering domain

- There is often a difference between what the pump is providing the system and what the system really needs
- Try to think in terms of demand, not supply

To illustrate, let's consider a real-world chilled water pumping application

We're only going to look at a part of the system: the part surrounding secondary pump J106

Nameplate data

1750

Water

68

1

1

1

Direct Drive

End Suction ANSI/API

PUMP & FLUID

Pump Type
Pump Speed
Drive
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages

MOTOR

Line Frequency
Rated Motor Power

The Field Data Motor

Motor RPM Efficiency Class Rated Voltage Full-Load Amps Estimate Full-Load Amps

Plants®

- + 1	
60 Hz	~
20	hp
1760	rpm
Standard Efficiency	~
460	V
25.2	A

×

×

×

°F

cSt

rpm

Pump data: 115.5 feet head, 450 gpm

The combined pump and motor are good: about 87% of optimal for this size, class of equipment

Operating Hours § 9760 brsyr Electricity Cost 0.054 SixWh Flow Rate 450 gpm Head 115.55 T Calculate Head Load Estimation Method Current 23.6 Measured Voltage 473 Percent Savings (%) Pump efficiency (%) Motor rated power (hp) Motor shaft power (hp) Motor efficiency (%) Motor efficiency (%) Motor power factor (%) Percent Loaded (%) Drive efficiency (%) Motor current (amps) Motor power (kW) Annual Energy (MWh)	
Operating Hours Image 8760 Image Mark Electricity Cost 0.054 \$ikWh Flow Rate 450 gpm Head 115.55 It Calculate Head Its.55 It Load Estimation Method Current RESULTS Motor Current 23.6 Percent Savings (%) Measured Voltage 473 Percent Savings (%) Optimum pump efficiency = 78.6% Pump efficiency (%) Motor rated power (hp) Motor shaft power (hp) Motor efficiency (%) Motor power factor (%) Percent Loaded (%) Drive efficiency (%) Motor current (amps) Motor power (kW) Annual Energy (MWh) Annual Energy (MWh)	
Electricity Cost 0.054 \$/kWh Flow Rate 450 gpm Head 115.55 it Calculate Head It RESULTS Load Estimation Method Current 23.6 Measured Voltage 473 Percent Savings (%) Pump efficiency (%) Motor rated power (hp) Motor shaft power (hp) Optimum pump efficiency = 78.6% Pump shaft power (hp) Motor efficiency (%) Ratio = (68.4/78.6)100 = 87% Motor current (amps) Motor current (amps) 20 Annual Energy (MWh) Annual Energy (MWh)	
Flow Rate 450 gpm Head 115.55 it Calculate Head It RESULTS Load Estimation Method Current 23.6 Measured Voltage 473 Percent Savings (%) Pump efficiency (%) Motor rated power (hp) Motor shaft power (hp) Motor shaft power (hp) Pump shaft power (hp) Motor efficiency (%) Ratio = (68.4/78.6)100 = 87% Motor current (amps) Motor current (amps) 20 Z0 Annual Energy (MWh) Annual Energy (MWh)	
Head Calculate HeadIts.55Load Estimation MethodCurrentR E S U L T SMotor Current23.6Percent Savings (%)Measured Voltage473Percent Savings (%)Optimum pump efficiency = 78.6% Ratio = (68.4/78.6)100 = 87%Pump efficiency (%)Motor rated power (hp)Motor shaft power (hp)Motor power factor (%)Motor refficiency (%)Drive efficiency (%)Motor current (amps)Motor power (kW)Motor power (kW)20Annual Energy (MWh)	
Load Estimation MethodCurrentRESULTSMotor Current23.6Image: Percent Savings (%)Image: Percent Savings (%)Measured Voltage473Percent Savings (%)Image: Pump efficiency (%)Motor rated power (hp)Motor rated power (hp)Image: Pump shaft power (hp)Motor shaft power (hp)Pump shaft power (hp)Ratio = (68.4/78.6)100 = 87%Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Drive efficiency (%)Drive efficiency (%)Motor current (amps)Motor power (kW)20Annual Energy (MWh)	
Motor Current23.6Measured Voltage473Percent Savings (%)Pump efficiency (%)Motor rated power (hp)Motor shaft power (hp)Motor shaft power (hp)Pump shaft power (hp)Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Drive efficiency (%)Motor current (amps)Motor power (kW)Annual Energy (MWh)	
Measured Voltage473Percent Savings (%)Pump efficiency (%)Pump efficiency (%)Motor rated power (hp)Motor shaft power (hp)Motor shaft power (hp)Pump shaft power (hp)Ratio = (68.4/78.6)100 = 87%Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Drive efficiency (%)Drive efficiency (%)Motor power (kW)Motor power (kW)20Annual Energy (MWh)	Baseline
Pump efficiency (%)Motor rated power (hp)Motor shaft power (hp)Motor shaft power (hp)Pump shaft power (hp)Pump shaft power (hp)Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Drive efficiency (%)Motor current (amps)Motor power (kW)Annual Energy (MWh)	
Motor rated power (hp)Optimum pump efficiency = 78.6%Ratio = (68.4/78.6)100 = 87%Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Drive efficiency (%)Motor current (amps)Motor power (kW)Annual Energy (MWh)	8.4
Optimum pump efficiency = 78.6% Ratio = (68.4/78.6)100 = 87%Motor shaft power (hp)Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Percent Loaded (%)Drive efficiency (%)Motor current (amps)Motor power (kW)Motor power (kW)20Annual Energy (MWh)	0
Optimum pump efficiency = 78.6% Pump shaft power (hp) Ratio = (68.4/78.6)100 = 87% Motor efficiency (%) Motor power factor (%) Percent Loaded (%) Drive efficiency (%) Drive efficiency (%) Motor current (amps) Motor power (kW) 20 Annual Energy (MWh)	9.2
Ratio = (68.4/78.6)100 = 87%Motor efficiency (%)Motor power factor (%)Percent Loaded (%)Drive efficiency (%)Motor current (amps)Motor power (kW)20Annual Energy (MWh)	9.2
Motor power factor (%) Percent Loaded (%) Drive efficiency (%) Motor current (amps) Motor power (kW) 20	8.9
Percent Loaded (%) Drive efficiency (%) Motor current (amps) 20 Annual Energy (MWh)	3.2
Drive efficiency (%) Motor current (amps) 20 Annual Energy (MWh)	6
20 Motor current (amps) Motor power (kW) Annual Energy (MWh)	00
20 Motor power (kW) Annual Energy (MWh)	4
20 Annual Energy (MWh)	6. <mark>1</mark>
	41
Better Annual Energy Savings (MWh)	-
Annual Cost	7,614

But supply and demand are unbalanced

There is > 23 psig pressure drop across the throttled valve; the downstream pressure was measured to be 55 psig (10 feet above floor)

Applying MEASUR to the REQUIREMENTS - the picture of opportunity is quite different

TRIM IMPELLER & OPEN PINCHED VALVE

Plants®

Opera	ting Hours	8760	hrs/yr			
Electri	city Cost	0.054	\$/kWh	RESULTS	HELP	NOTES
Flow F	Rate	450	gpm	KESSETS	in e en	TIL
Head Calculat	te Head	61.2	ft		Baseline	Trim Impeller & Open Pinched Valve
Implen	nentation Costs	2000	\$	Percent Savings (%)		47.0%
	This analysi	s assumes the		Pump efficiency (%)	68.4	68.4
	nump officio	noviatova		Motor rated power (hp)	20	20
	pump enicie	ncy stays		Motor shaft power (hp)	19.2	10.2
constant at 68.4%. If this is not true, must run under		Pump shaft power (hp)	19.2	10.2		
		Motor efficiency (%)	88.9	88.3		
		Motor power factor (%)	83.2	69.8		
			Percent Loaded (%)	96	51	
		new as a vru		Drive efficiency (%)	100	100
retrofit Project.			Motor current (amps)	24	15	
				Motor power (kW)	16. <mark>1</mark>	08.6
				Annual Energy (MWh)	141	75
22				Annual Energy Savings (MWh)		66
Better		Annual Cost	\$7.614	\$4,060		

Annual Savings

\$3,553

Example System for Field Investigation and Analysis

A Flow Control System

Some systems operate continuously, but need to have their flow regulated. The flow requirements are dictated by the process, and one would not attempt to maximize the pump efficiency by valve operation. However, operating pump efficiency could be deduced using system measurements. An example process pumping system with a flow control valve is shown in below.

Measured data at the pump

Measured conditions

Water at ambient temperature

P0: 4.3 psig, 7 ft. above floor level; pipe ID = 19.5 inches
P1: 81.2 psig, 12.4 ft above floor level; pipe ID = 12.25 inches
Measured flow rate, using temporary ultrasonic flow meter: 6100 gpm
Motor nameplate data: 2300 volts, 1180 rpm, 80 amps (rated load)
Measured current and voltage: 77 amps, 2320 volts
Pump style: End suction
Observed rotational speed: 1190 rpm
Pump operates about 90% of the time; electricity cost is 13 cents/kWhr

Calculate pump head

Ks represents all suction losses from the tank to the pump

 K_d represents all discharge losses from the pump to the gauge P_d

Fluid Specific Gravity Flow Rate		1			
		6100		gpm	
Suction			Discharge		
Pipe diameter (ID)	19.5	in	Pipe diameter (ID)	12.25	in
Gauge pressure (Pg)	4.3	psi	Gauge pressure (P_d)	81.2	psi
Gauge elevation (Z _s)	7 ft		Gauge elevation (Z_d)	12.4	ft
Line loss coefficients (K _s)	0.5		Line loss coefficients (K_d)	1.5	
Result Data					
Differential Elevation Head				5.4 ft	
C	ifferential Pressure Hea	ad		177.7 ft	
				2 62 6	

Differential Velocity Head	3.62 ft
Estimated Suction Friction Head	0.33 ft
Discharge Friction Head	6.43 ft
Pump Head	193.48 ft

Pump head calculation from MEASUR

As a first check of the pump operation, the hydraulic and electrical data were plugged into the MEASUR software. The results, shown below, indicate that the pump is very near the optimum commercially available equipment for the noted conditions. MEASUR estimates the pump efficiency to be 87.8%.

Evaluate pump operating efficiency

BASELINE

r unip rype	Pump	Туре
-------------	------	------

Pump Speed

Drive

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

9	la	9	C	5	

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

API Double Suction	~
1190	rpm
Direct Drive	~
Water	~
58	°F
1	
1	cSt
1 - + 1	(

60 Hz	~	
350	hp	
1180	грт	
Energy Efficient	~	
2300	V	
80	A	

OPTIMAL PUMP

Pump Efficiency Optimize Pump

00.0			
09.9			

%

rpm

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

1190

Pump Speed
Drive
Drive Efficiency
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages
Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps Estimate Full-Load Amps

Specified Efficiency v % 100 Water v °F 68 cSt - + 1 60 Hz v 350 hp 1180 rpm Energy Efficient v V 2300 80 A

Evaluate pump operating efficiency

BASELINE

Measured Voltage

Operating Hours	78
Electricity Cost	0.13
Flow Rate	6100
Head Calculate Head	193
Load Estimation Method	Curre
Motor Current	77

7884	hrs/yr
0.13	\$/kWh
6100	gpm
193	ft
Current	~
77	A
2320	V

OPTIMAL PUMP

Operating Hours	7884
Electricity Cost	0.13
Flow Rate	6100
Head Calculate Head	193
Implementation Costs	

7884	hrs/yr
0.13	\$/kWh
6100	gpm
193	ft

\$	

Evaluate pump operating efficiency

RESULTS		SANKEY	HELP
	Baseline	O	otimal Pump
Percent Savings (%)			3.0%
Pump efficiency (%)	87.6	89).9
Motor rated power (hp)	350	35	0
Motor shaft power (hp)	339.2	33	0.6
Pump shaft power (hp)	339.2	33	0.6
Motor efficiency (%)	95.6	95	5.6
Motor power factor (%)	85.6	84	.2
Percent Loaded (%)	97	94	l.
Drive efficiency (%)	100	10	0
Motor current (amps)	77	76	;
Motor power (kW)	264.7	25	8
Annual Energy (MWh)	2,087	2,0	034
Annual Energy Savings (MWh)	-	53	;
Annual Cost	\$271,327	\$2	64,429
Annual Savings	-	\$6	,899

Check the manufacturer's data

To provide an independent check on the measured data, the manufacturer's pump performance curves, adjusted for the observed speed (using the pump affinity laws) were consulted. The head-capacity curve is shown below.

Pump head-capacity curve

Check the manufacturer's data

The efficiency-capacity curve is shown below.

Pump efficiency-capacity curve

A happy pump!

The calculated head and flow rate match the manufacturer's curve; furthermore, the MEASUR-estimated efficiency is consistent with the manufacturer's curve.

In summary, the observed measurements and subsequent analysis suggests that the pump:

- is operating very near its BEP (best efficiency point)
- is operating consistent with the manufacturer's performance curves, indicating minimal wear along with the motor, is operating near the PSAT-calculated optimal condition (note that the Optimization Rating is 97.6.

The Optimization Rating in MEASUR is a measure of the combined motor and pump performance relative to the optimal commercially available equipment, expressed as a percentage (equivalent to a grade on an exam).

As will be shown, these observations, while true, are very misleading. They apply to the motor and pump *only*.

Moving downstream a little we find.....

As noted above, the pump and motor are operating very efficiently, as judged by the head and flow rate output compared with the electrical power input. But it should always be the goal to judge how well the system as a whole is functioning, not just the individual components. Below, a slightly broadened view of the system is shown. A portion of the flow handled by the pump is diverted and recirculated back to the suction tank. This recirculated flow represents wasted energy.

Process system, including recirculation line

The recirculation line control valve

Flow rate was not measured in the recirculation line, but valve V2 position was noted to be full open. A picture of a valve similar to the recirculation valve, and valve flow coefficient vs. position are shown below.

Control valve (similar design to recirculation valve) and flow coefficient vs. position

Pumping 2940 gpm around in a circle!

Using the valve performance data, pipe and component geometric data, and measured pressures, the flow rate through the recirculation line was estimated to be 2940 gpm. Thus, the net flow rate is 3160 gpm. The flow distributions are illustrated below.

Process system flow distribution

Gaining A System Perspective

Recognizing that only a little more than half the pump flow rate (3160 gpm) is going to the intended target, a revised MEASUR analysis can be performed using this net flow value. The result is shown below.

MEASUR analysis

BASELINE

Pump Type Pump Speed Drive

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

Line Frequency Rated Motor Power Motor RPM Efficiency Class Rated Voltage Full-Load Amps

API Double Suction	~
1190	rpm
Direct Drive	~
Water	~
68	۴
1	
1	cSt
- + 1	

60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	A

USEFUL FLOW IS 3160 GPM

Pump Efficiency Optimize Pump

45.3906

%

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed Drive Drive Efficiency Fluid Type Fluid Temperature Specific Gravity Kinematic Viscosity Stages Line Frequency Rated Motor Power Motor RPM Efficiency Class Rated Voltage Full-Load Amps Estimate Full-Load Amps

1190	rpm
Specified Efficiency	*
100	%
Water	~
68	°F
1	
1	cSt
- + 1	
60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	А

MEASUR analysis continued,

BASELINE

Operating Hours	7884	hrs/yr
Electricity Cost	0.13	\$/kWh
Flow Rate	6100	gpm
Head Calculate Head	193	ft
Load Estimation Method	Current	~
Motor Current	77	A
Measured Voltage	2320	V

USEFUL FLOW IS 3160 GPM

Operating Hours	
Electricity Cost	
Flow Rate	
Head Calculate Head	

Implementation Costs

7884	hrs/yr
0.13	\$/kWh
3160	gpm
193	ft

\$

Gaining A System Perspective

RESULTS	SANKEY	HELP
	Baseline	Useful Flow is 3160 gpm
Percent Savings (%)	<u> </u>	
Pump efficiency (%)	87.6	45.4
Motor rated power (hp)	350	350
Motor shaft power (hp)	339.2	339.2
Pump shaft power (hp)	339.2	339.2
Motor efficiency (%)	95.6	95.6
Motor power factor (%)	85.6	84.4
Percent Loaded (%)	97	97
Drive efficiency (%)	100	100
Motor current (amps)	77	78
Motor power (kW)	264.7	264.7
Annual Energy (MWh)	2,087	2,087
Annual Energy Savings (MWh)	_	
Annual Cost	\$271,327	\$271,327
Annual Savings	_	\$00

There is a dramatic effect on the outcome; the Optimization Rating dropped from 97.7 to 51.6. Significantly, the annual cost, estimated to be \$271,300, could be reduced by \$131,000 with a pump selected to deliver the net flow only (i.e., with the bypass or recirculation valve closed).

Optimum pump is 88.5% efficient

RESULTS		SANKEY	HELP
	Baseline	O	ptimized Pump at 3160 gpm
Percent Savings (%)			48.0%
Pump efficiency (%)	87.6	88	3.5
Motor rated power (hp)	350	35	60
Motor shaft power (hp)	339.2	17	'4
Pump shaft power (hp)	339.2	17	/4
Motor efficiency (%)	95.6	94	1.7
Motor power factor (%)	85.6	74	1.9
Percent Loaded (%)	97	50)
Drive efficiency (%)	100	10	00
Motor current (amps)	77	45	;
Motor power (kW)	264.7	13	37
Annual Energy (MWh)	2,087	1,	080
Annual Energy Savings (MWh)	_	1,	007
Annual Cost	\$271,327	\$1	40,397
Annual Savings	—	\$1	30,930

Going further downstream.....

Expanding the view to include the entire system shows that the flow rate to the receiver, or discharge tank, is controlled by another valve, V1, whose position is controlled by a signal from an in-line magnetic flow meter.

Complete process system diagram

There is this pinched flow control valve

A picture of the flow meter and control valve is provided below.

Magnetic flow meter and control valve (valve labeled V1), close-up of valve position, and valve flow coefficient vs. position plot

Using the valve equation

Based on the calculated valve flow coefficient of 476 from the valve indicator and valve flow coefficient plot, the pressure drop across the control valve can be estimated. The fundamental equation relating the valve flow coefficient, flow rate, and pressure drop is:

$$Q = C_v \sqrt{\frac{\Delta P}{s.g.}}$$
 or $\Delta P = \frac{s.g. \times Q^2}{C_v^2} \rightarrow \Delta P = \frac{1.0 \times 3160^2}{476^2} = 44 \text{ psig}$

where Q is the flow rate in gpm, Cv is the valve flow coefficient, DP is the pressure drop across the valve in psig, and s.g. is the specific gravity. The pressure drop across the valve was actually measured to be 39 psig.

The pressure drop across the valve represents head developed by the pump that exceeds that necessary to deliver the required flow rate to the discharge tank. This pressure drop can be subtracted from the pump head to calculate the head actually required. The PSAT analysis was re-run after subtracting the measured head loss (39 psig * 2.31 ft/psig = 90 ft) from the calculated pump head (193.2 ft) previously used.

Downsize pump and motor

BASELINE

Pump Type	
Pump Speed	
Drive	

Fluid Type

Fluid Temperature

Specific Gravity

Kinematic Viscosity

Stages

API Double Suction	~
1190	rpm
Direct Drive	~
Water	~
68	F
1	
1	cSt

Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

60 Hz	~
350	hp
1180	rpm
Energy Efficient	~
2300	V
80	A

OPTIMIZED PUMP AT 3160 GPM @ 103 FT

Pump Efficiency **Optimize Pump**

_	
225	
0.0	

The efficiency of your pump has been calculated based on your system setup. Either directly modify your efficiency or click "Optimize Pump" to estimate your pump efficiency based on a different pump type.

Pump Speed
Drive
Drive Efficiency
Fluid Type
Fluid Temperature
Specific Gravity
Kinematic Viscosity
Stages
Line Frequency
Rated Motor Power
Motor RPM
Efficiency Class
Rated Voltage
Full-Load Amps

Estimate Full-Load Amps

1190	rpm
Specified Efficiency	~
100	%
Water	~
68	°F
1	
1	cSt
- + 1	
60 Hz	~
100	hp
1180	rpm
Energy Efficient	~
2300	V
23.79	А

%

Downsize pump and motor

BASELINE

Operating Hours	
Electricity Cost	
Flow Rate	
Head	

Calculate Head

Load Estimation Method

Motor Current

Measured Voltage

7884	hrs/yr
0.13	\$/kWh
6100	gpm
193	ft
Current	~
77	A
2320	V

OPTIMIZED PUMP AT 3160 GPM @ 103 FT

Operating Hours Electricity Cost

Flow Rate

Head

Calculate Head

Implementation Costs

7884	hrs/yr
0.13	\$/kWh
3160	gpm
103	ft

	\$
--	----

Downsize pump and motor

RESULTS		SANKEY	HELP
	Baseline	C 1	Optimized Pump at 3160 gpm @ 03 ft
Percent Savings (%)			72.0%
Pump efficiency (%)	87.6	8	8.5
Motor rated power (hp)	350	1	00
Motor shaft power (hp)	339.2	9	2.8
Pump shaft power (hp)	339.2	9	2.8
Motor efficiency (%)	95.6	9	4.8
Motor power factor (%)	85.6	8	2.7
Percent Loaded (%)	97	9	3
Drive efficiency (%)	100	1	00
Motor current (amps)	77	2	2
Motor power (kW)	264.7	7	3.1
Annual Energy (MWh)	2,087	5	76
Annual Energy Savings (MWh)	-	1	,511
Annual Cost	\$271,327	\$	74,888
Annual Savings	—	\$	196,439

Gaining A System Perspective

Thus, when viewed from a component perspective, the pump and motor operate very efficiently; however, when viewed from a system perspective, the pump is significantly oversized for the job at hand. Note that in the MEASUR analysis, the optimal pump could be powered by a 100 hp motor instead of the 350 hp motor required for the existing pump. Also note that the annual energy cost could be reduced by almost \$200,000 if the optimal pump and motor were employed.

This article has demonstrated two important perspectives related to valve control of pumping systems:

Throttling values to achieve improved pump efficiency in systems whose function is to deliver a given volume is almost never a good idea,

Efficient pump and/or motor operation is decidedly not an indication of effective or efficient system operation.

Cavitation

Water Boils at:

- 212 F when the pressure is 14.70 psia
- 203 F when the pressure is 12.27 psia
- 60 F when the pressure is 0.26 psia
- 250 F when the pressure is 28.84 psia

Net Positive Suction Head

Net Positive Suction Head

NPSHA = *Total suction head (absolute)* – *fluid vapor pressure (absolute)*

$$NPSHA = \frac{V_s^2}{2g} + \frac{2.31(P_s + P_a)}{s.g.} + Z_s - \frac{2.31P_v}{s.g.}$$
$$V_s^2 = 2.31(P_s + P_a + P_v)$$

- V_s = pump suction velocity (ft/s)
- P_s = suction gauge pressure (psig)
- P_a = atmospheric pressure (psia)
- P_v = fluid vapor pressure (psia)
- g = gravitational constant (32.174 ft/s^2)
- s.g. = fluid specific gravity (dimensionless)
- Z_s = suction gauge elevation above pump suction datum (ft)

Net Positive Suction Head Required

- NPSHR is, by long-term accepted practice, the available suction head at which the developed pump head has dropped by 3% from the head that it produced with bountiful available suction head
- By definition, then, the pump performance is already degraded due to cavitation-related flow disturbance
- The actual point when cavitation actually begins can be with significantly greater available head than the pump supplier's NPSHR curve
- Two accepted approaches for developing the NPSHR curve:
 - Establish a fixed suction head, then increase flow rate until a 3% reduction in head at a particular flow rate is observed
 - Maintain a constant flow rate and gradually decrease the suction head until the developed head drops by 3%

NPSHR: Available suction head with 3% degradation in developed head

Finish water pump layout

NPSHR Curve for pump on previous slide

At what flow rate would NPSHR exceed NPSHA? (Assume $P_s = 14.7$ psia and water temperature = 60 degrees F)

Calculate NPSHA

Water saturation vapor pressure at 60 F= 0.26 psia

Reference location for suction head determination is the water surface

NPSHA =
$$\frac{V_s^2}{2g} + \frac{2.31 (P_s + P_a - P_v)}{s.g.} + Z_s$$

NPSHA = $\frac{0^2}{64.352} + \frac{2.31 (0 + 14.7 - 0.26)}{1.00} + 10.5 = 43.9 \text{ ft}$

Answer: NPSHR would exceed NPSHA at just over 2500 gpm

Actual Pump Data for VSD Operation

Variable Speed Pumping

Parallel Pumping Example

RTMENT OF

Parallel Pumping Example

Parallel Pumps

Flow (GPM)

Parallel Pumping Example

Parallel Pumps

ENERC

Parallel Pumps: Header Pressure

V8 B2 Coolant Header Pressure North Side

The End for Session 4

