

Pumping System Assessment

Week 3: MEASUR and Field Measurements

Accessing pump head calculator in MEASUR

System Setup – Calculate Pump Head

MEASUR							
Example Pump Assess Last modified: Apr 9, 2021	ment	System Setup Assessment Dia					
1 Assessment Settings 2 Pur	np & Fluid 3 Motor	4 Field Data					
FIELD DATA							
Operating Hours	8760	hrs/vr					
Electricity Cost	0.08	\$/kWh					
Flow Rate	2000	gpm					
Head Calculate Head	277	ft					
Load Estimation Method	Power	~					
Motor Power	135	kW					
Measured Voltage	460	V					
Go to the pump head							

System Setup – Pump Head Calculator

System Setup – Pump Head Calculator

Two Different Geometries: Suction Tank

Loss Coefficients

An important

note on loss

coefficients!

PUMP HEAD TOOL

 ${\sf K}_{\sf s}$ represents all suction losses from the tank to the pump

 K_d represents all discharge losses from the pump to the gauge P_d

Fluid Specific Gravity			1						
Flow Rate			2000	gpm					
Suction			Discharge						
Pipe diameter (ID)	0	in	Pipe diameter (ID)	0	in				
Gauge pressure (Pg)	0	psi	Gauge pressure (P _d)	0	psi				
Gauge elevation (Z _s)	0	ft	Gauge elevation (Z _d)	0	ft				
Line loss coefficients (K_s)	0		Line loss coefficients (K_d)	0					

Important note about loss coefficients

The loss coefficients used here apply to the velocity head in the line size represented by the suction and discharge pipe diameters at the points of pressure measurement.

If the loss elements are in different size lines than the points of pressure measurement, they need to be appropriately scaled. It is generally suggested that the losses be scaled in proportion to the 4th power of the diameter ratio. For example, if the discharge pressure is measured in a 12-inch header, and there is a 6-inch check valve with a nominal loss coefficient of 2 (applied to the 6-inch valve size), the K factor to use for the valve would be 2 x (12/6) to the 4th power, or 32. The reason for this 4th power scaling is that the velocity varies with the square of the pipe diameter, and the velocity head (to which the loss coefficients apply) is proportional to the velocity squared.

🛅 MEASUR

Add New -

Home

Welcome to the most efficient way to manage and optimize your facilities' systems and equipment.

Create an assessment to model your system and find opportunities for efficiency or run calculations from one of our many property and equipment calculators.

Get started with one of the following options.

Select the Pump Calculators

Pump Calculators

System Curve Data

System Curve	
Fluid Specific Gravit	y

System Loss Exponent, C

Point 1

Flow Rate

Head

Point 2

Flow Rate

Head

1.0	
1.9	

0	gpm
65	ft

Fill in the required information

Get the System Curve Equation & Graph

Pumping tool before MEASUR was PSAT

- The first Pumping System Analysis Tool developed by US DOE was PSAT
- PSAT download comes with another program, <u>Valve</u> <u>Tool</u>, that is very useful
- Valve Tool has not been added to MEASUR yet
- PSAT and Valve Tool can be downloaded from the following website
- https://www.energy.gov/eer e/amo/downloads/pumpingsystem-assessment-toolpsat

Better Plants

A valve tool is included in the PSAT2008 package

				Palm Desktop	۲		
				Plot Digitizer	Þ	5	PSAT2008
		Windows Update WinZip Microsoft Update Rhapsody		WINDAQ WS_FTP Professional Adobe Acrobat 5.0 Convert Microsoft Streets & Trips 2007 PROS+ SE Launchpad Fairbanks-Morse Pumps)		Valve tool System curve from At coeffs Motor data - Don or Location: C:\Proc V
=		Fouritor		×			
ssiona		Documents					
rofe	2	Settings	1				
ā.	2	Search	*				
ХP	0	Help and Support					
SWC	T	Run	100				
inde	2	Log Off Don Casada					
3	0	Turn Off Computer					

The valve tool works from the fundamental valve relationships

$$\mathbf{Q} = \mathbf{F}_{p} \mathbf{C}_{v} \sqrt{\frac{\Delta \mathbf{P}}{\mathrm{s.g.}}}$$

In U.S. units:

- Q = Flow rate (gpm)
- F_p = Geometry factor
- C_v = Valve flow coefficient
- ΔP = pressure drop, psi

s.g. = specific gravity

ENERGY

Valve Tool has four possible modes of operation

- There are four parameters that control the analysis
 - Valve upstream pressure, P_{up}
 - Valve downstream pressure, P_{down}
 - Valve C_v
 - Flow rate, Q
- Four modes of operation
 - Know: P_{up} P_{down} and Q. Solve for C_v
 - Know: P_{up} P_{down} and C_v . Solve for Q
 - Know: P_{up} C_v and Q. Solve for P_{down}
 - Know: P_{down} C_v and Q. Solve for P_{up}

Example exercises, using Valve Tool and MEASUR's pump head, and system curve tools

Valve Tool example 1

Find: Valve flow coefficient, loss K, power loss, annual energy cost

Valve Tool example 1 results

Valve Tool example 2

P1 = 93 psig P2 = 75 psig Fluid = Water, 70° F Electricity cost rate = 5 cents/kWh System operates continuously Valve position indication = 60% open Valve generic flow coefficient curve is available

Find: Estimated flow rate, power loss, annual energy cost

Valve flow coefficient curve

U.S. DEPARTMENT OF

Valve Tool example 2 results

An important applicability caveat

Pressure drop

Flowrate

Developing system performance curves from field measurements

But first things first : Develop a simplified flow diagram

- Capture the critical elements of the system
- How do you do that?
 - Review P&ID and piping isometrics
 - Talk with operators
 - Walk the system down (nice to have a P&ID with you)
- Note 1: one of the reasons for talking with operators and walking the system down is to correct outdated P&ID's
- Note 2: Complex systems with multiple sources and/or delivery points cannot be modeled with a simple system curve (but field data is still invaluable)

Simple type of system curve basics

- Requires a pair of head and flow conditions
- One of the pair can be static head (flow rate = 0)

The static head is made up of elevation, and sometimes pressure components

Sources of static head data

- Pressure gauges
- Elevation:
 - Level (or pressure) gauges
 - Drawings

Elevation head estimating example: counting steps

Another quick and simple method: count ladder rungs (standard ladder rung spacing = 1 ft)

Tanks, chests, etc. often use steel sheets or tiles that can be individually measured and counted; marks on concrete from plywood forms may also be useful

Example static head calculation

Example static head calculation

Or.... use the MEASUR pump head calculator

The head calculator determines the head difference between two points, so it can do a static head calculation for you.

PUMP H	IEAD TOOL			RESULTS	HEL	
				Result Data		
				Differential Elevation Head	40.0 ft	
	Suction tank elevation	Suction gauge elevation		Differential Pressure Head	23.11 ft	
	(P)	P		Differential Velocity Head	0.0 ft	
				Estimated Suction Friction Head	0.0 ft	
		-		Discharge Friction Head	0.0 ft	
	1			Pump Head	63.11 ft	
Kd	represents all discharge loss	es from the pump to the gaug	je P _d	Copy Tab	le	
Fluid Specific Gravity		1			_	
Flow Rate		0	gpm			
Suction		Discharge				
Pipe diameter (ID)	10 in	Pipe diameter (ID)	10 in			
Gauge pressure (Pg)	10 psi	Gauge pressure (Pd)	20 psi			
Gauge elevation (Z_s)	0 ft	Gauge elevation (Z _d)	40 ft			
Line loss coefficients (K_s)	0	Line loss coefficients (K_d)	0			

For a second system head/capacity point, we can always use the pump head

- Simplest approach: measure <u>pump</u> head at the operating flow rate and let MEASUR do the rest of the work for you
- Why does this work on a <u>system</u> curve? Because pump head and system head at the operating condition are, by definition, equal

Measured data in the example system

MEASUR-calculated pump head = 94.7 ft

PUMP HEAD TOOL

Ks represents all suction losses from the tank to the pump

 K_d represents all discharge losses from the pump to the gauge P_d

Fluid Specific Gravity			1				
Flow Rate			3000	gpm			
Suction			Discharge				
Pipe diameter (ID)	15.25	in	Pipe diameter (ID)	13.25	in		
Gauge pressure (Pg)	12.6	psi	Gauge pressure (P _d)	53	psi		
Gauge elevation (Z _s)	0	ft	Gauge elevation (Z _d)	1	ft		
Line loss coefficients (K_s)	0		Line loss coefficients (K_d)	0			

RESULTS	HELP				
Result Data					
Differential Elevation Head	1.0 ft				
Differential Pressure Head	93.36 ft				
Differential Velocity Head	0.33 ft				
Estimated Suction Friction Head	0.0 ft				
Discharge Friction Head	0.0.0				
Pump Head	94.68 ft				

Copy Table

Final step – plug the two values into the MEASUR system curve calculator

System Curve Data		-			10.10				
Suctom Curvo		- 2-		System	Curve				
System Curve				Head =	63.1 + (0.0	000078	32 × flov	v ^{1.9})	
Fluid Specific Gravity	1			-					
System Loss Exponent, C	1.9								-
Point 1					1.1			. 88.	이 좀
Flow Rate	0 gp	m	80						
Head	63.1	ft			Syste	m Curve H	ead: 69 ft		
Point 2		(£)	60		1				
Flow Rate	3000 gp	Hea	40						
Head	94.7	ft	20						
			20						
			00	500	1000	1500	2000	2500	3000
					Flow	(gpm)	111		
				Current Point	Data Flow (gpm) Head (ft) Fluid Powe	er (hp)	
38				Baseline	<u> </u>		20.	8	
		-		Modification				-	
				System Curve	1,200	69			

Resulting system curve and table from an Excel spreadsheet

This is very easy to program in Excel!

System curve with pump curve added

The system loss exponent can have a small impact; use care if extrapolating

Remember that there are process factors that can affect the system curve - some examples

- Static head variables
 Gas overpressure
 Level
 Density
- Dynamic loss coefficient variables
 Valve position
 Viscosity
 Age (corrosion, scale)
 Filter or strainer cleanliness
- The system itself Changes in process flow path(s)

Why is development of a field measurementbased system curve important?

- The system curve is fundamental to everything we do in pumping systems
- The first thing we should do in ANY pumping system optimization is to ask whether we can either change the system curve or change where we're operating on it
- The real world is often SIGNIFICANTLY different than the picture painted by designers using generic loss characteristics

An example: comparing design-based head calculations with field data

- What the designer expected vs.
- How the system actually operates!

Small section of a system - from pump flange through expander

Design organization loss calculation:

<u>Element</u>	<u>Loss K</u>
18" 90 degree elbow:	0.103
18" check valve:	2.000
18-24" expander:	0.400
Knife gate valve:	0.228
????	
Total K:	2.731

Q = 11,400 gpm (15.7 ft/s in 17.25" ID line), for a velocity head of 3.81 ft

 $K \ge \frac{V^2}{2g} = 10.4$ ft calculated head loss at 11,400 gpm (design flow rate for the system)

Measured data provide a better perspective (or we would hope it would)

	Actual head loss at 12,000 g	pm:	
	∆P : (54.3 - 51.6) x (2.31/0.985)	=	6.3 ft
+	∆Z : (4.5 – 8.5)	=	-4.0 ft
+∆	$\frac{V^2}{2q}$: (4.3 – 1.3)	=	3.0 ft
	Measured head loss	=	5.3 ft
	$\frac{V_1^2}{2q} + \frac{2.31 P_1}{s.q.} + Z_1 = \frac{V_2^2}{2q} + \frac{2.31 P_2}{s.q.} + Z_1 = \frac{V_2^2}{s.q.} + \frac{2.31 P_2}{s.q.} + 2.3$	Z₂+⊦	f _{f1-2}

System curves: design-based, normal operating, and unthrottled

Let's talk about getting the data needed by MEASUR

D MEASUR								– 0 ×
Example Pur Last modified: A	np Assessment pr 17, 2021		System Setup Assessme	<mark>nt</mark> Diagram Report Sa	nkey Calculators			 5- *
Explore Opportunities Novice View	Modify All Conditions					Trim Impeller Selected Scenar	and Open Throttled \ ^{io}	View / Add Scenarios
Pump Fluid	Motor •	Field Data 🗢						
BASELINE			TRIM IMPELLER A	ND OPEN THROTT	LED VALVE	RESULTS	HELP	NOTES
Operating Hours	8760	hrs/yr	Operating Hours	8760	hrs/yr		Baseline	Trim Impeller and Open Throttled Valve
Electricity Cost	0.054	\$/kVVh	Electricity Cost	0.054	\$/kWh			
Flow Rate	450	apm	Flow Rate	450	map			
Head Calculate Head	61.2	ft	Head Calculate Head	50	ft	Percent Savings (%)		66.0%
Load Estimation Method	Current	~		· · · · · · · · · · · · · · · · · · ·		Pump efficiency (%)	36.2	87
Motor Current	23.6	A	Implementation Costs		\$	Motor rated power (hp)	20	20
Measured Voltage	473	V				Motor shaft power (hp)	19.2	06.5
						Pump shaft power (hp)	19.2	06.5
						Motor efficiency (%)	88.9	90.4
						Motor power factor (%)	83.2	58
						Percent Loaded (%)	96	33
						Drive efficiency (%)	100	100
						Motor current (amps)	24	11
						Motor power (kW)	16.1	05.4
						Annual Energy (MWh) Annual Energy Savings (MWh)	<u> </u>	94
						Annual Cost	\$7,614	\$2,553
						Annual Savings	-	\$5,060

A motor nameplate

lants

Another motor nameplate

488 amps x 460 volts x 3 x 0.905 x 0.954 746 watts/hp

Note: some published motor data is internally inconsistent

= 450 hp

Pump nameplate data (goes with first motor)

Nameplate speed here (1800 rpm) is the nominal synchronous speed

Another pump nameplate (goes with 2nd motor)

Again, the nameplate shows nominal synchronous speed

Pressure and flow measurements:

Instruments and miscellaneous considerations

There are several types of pressure transducers

Bourdon tube (most common for gauges)

Bellows

Diaphragm

Piezoresistive

The C-type Bourdon tube is by far the most common industrial pressure gauge

Some practical considerations

- Service environment, history
 - Water hammer
 - Calibration
- Instrument range
 - Accuracy
 - Overpressure capability
- Physical location, setup
 - Process connection point
 - Accounting for sensing element elevation
 - Proper instrument line fill & vent

What do you think the system pressure is? (Note the angle from which the picture is taken)

Would a little larger picture change your mind?

Calibrated, but...maybe not quite accurate

Note: this gauge was removed from system to install a test gauge.

(poor camera work by a yokel from Diagnostic Solutions failed to show the end of the threads)

Picture taken on 10/15/2004; note the calibration sticker was applied only three months before.

The use of portable test instrumentation is advisable when accurate data is needed

Break

There are a host of flow meter types

- Differential pressure orifice, venturi, nozzle, elbow
- Velocity magnetic, ultrasonic, turbine, vortex shedding, variable area (rotameter), pitot tube
- Open flow Weir
- Positive displacement gear, nutating disc
- Mass

Some important flow meter considerations

- Proper flow profile and installation
- Range
- Calibration
- Wear
- Corrosion, scale, foreign material
- Sensing line issues (similar to pressure)

Some all too often found field configurations...

Magnetic flow meter

Insertion-type meter

Another less-than desirable arrangement

venturi flow meter

A good configuration

Magnetic flow meter

Another good arrangement

Flow nozzle _____ with upstream flow straightener ____ (compressed air service)

NT OF

ENER

Electrical measurements: Instruments and considerations

The most important consideration in electrical measurements:

SAFETY

Strongly recommended reading for those planning to make electrical measurements

- NFPA* 70E, Standard for Electrical Safety in the Workplace
- 29CFR 1910.335, Safeguards for personnel protection (OSHA)

* NFPA – National Fire Protection Association, which also publishes the National Electrical Code

Fundamental electrical power relationships: Single phase power

$$P_{avg} = I_{rms} \cdot V_{rms} \cdot power factor$$

note: the V_{rms} above is line to neutral voltage

or
$$P_{avg}$$
 = Average ($I_{inst} \cdot V_{inst}$)

Three phase portable power meters have become common in recent years

Three phase portable power meter in application

Estimating things you can't measure

Reviewing: Important parameters to be read, measured, or estimated for pumping system analysis

- Flow rate
- Head
- Motor input power
- Rotating speed
- Nameplate information:
 - Motor rated speed, hp, full load amps, nominal efficiency
 - Pump gpm, head, speed

But in many cases, it isn't feasible to measure one or more of these parameters - for example, the flow rate, and for voltages above 600 V, the power.

What do we do then?

Estimating flow rate when it isn't permanently metered

- Portable flow meter
- Special test
- From pump head measurement and pump curve
- From other process parameters (sanity check)
- From component(s) pressure drop

Portable ultrasonic flow meter

Special test example - tank drain or fill (also a standard way to calibrate flow meters)

Estimating flow rate from pump head measurements and the pump curve

Step 1: Estimate head from test gauges at the P_2 and P_3 gauge locations

Step 2: retrieve the manufacturer's generic pump head curve and make initial flow estimate

Calculate pump head and use pump curve to predict flow rate

If suction and discharge line sizes are different or loss elements are present, it is necessary to iterate between the pump head curve and the head calculation, since the pump head is affected by flow rate. Guess a reasonable flow rate and calculate the pump head. Then check the pump curve for agreement.

Result Data	
Differential Elevation Head	-4.0 ft
Differential Pressure Head	93.36 ft
Differential Velocity Head	5.21 ft
Estimated Suction Friction Head	0.0 ft
Discharge Friction Head	18.17 ft
Pump Head	112.74 ft

A few possible gotcha's

- Pump head-capacity curve was developed at a different speed
- Pump performs differently in the field than at the test facility
- Inaccurate pressure gauges
- Pump specific curve ≠ pump generic curve
- Impeller, other pump parts have worn
- We don't know the impeller diameter
- The manufacturer exaggerated (nah, couldn't be)

Pump rotational speed can usually be easily and accurately measured with a strobe light

It is *very* common to find pumps operating at greater than the speeds at which they were rated

Accounting for actual vs. rated speed IS important (using the measured head of 166 ft)

Measured speed is 1780 rpm. The difference is 8% in this case

Calculations from previous slide

- To make a one-point estimate of flow rate when the pump is operating at a different speed than that at which the performance curve was developed, it isn't necessary to develop an entirely new curve. Instead, you can simply use the affinity laws for the single measured point.
- In this case, the 1750 rpm head corresponding to 166 ft at 1780 rpm, per the affinity laws, is:
 - 166 ft x $(1750 \div 1780)^2 = 160.5$ ft
- Now find the flow rate at 160.5 ft on the 1750 rpm curve it is about 2390 gpm.
- Finally, the 2390 gpm at 1750 rpm converts to, by the affinity laws is:
- 2390 gpm x (1780 ÷ 1750) = 2430 gpm at 1780 rpm

What if you have manufacturer's generic curve set, and aren't sure of the impeller diameter?

A couple of options

- Measure shutoff head (for low energy pumps and quickly at that)
 - What if wear ring clearance has opened?
 - Does speed change when dead-headed?
- For pumps with rising power curves:
 - Measure electrical power
 - Use MEASUR to estimate shaft power
 - Compare the estimated shaft power with the manufacturer's power curve

Use the measured power to estimate the flow rate

Some related good general practices*

- Request (pay for) a certified test curve for the specific pump
- When possible, have tested with the motor that will be used in actual service
- After installation, benchmark field performance against test facility data
- Do regular hydraulic performance tests
- For pumps that are important energy users; you wouldn't want to do this for 5-hp pumps unless there were other reasons for doing so.

A case study to illustrate flow estimation from pressure measurements

Pump discharge: permanently installed gauge reads 2.5 psig low

Pump suction: permanently installed gauge reads 1.3 psig high

Comparing permanent and test pressure gauge-indicated flow rates

As a sanity check - use other process parameters

Using valve differential pressure to estimate flow rate

Create Retrieve new log log entry 5.630 K_reducer & expander 48.19 K_valve 53.82 K_total

Important: valve characteristic must be known; this is <u>not</u> a precision flow measurement

An effective way to measure flow rate in parallel pumping applications: use Bernoulli

Parallel Pump System – Flow Estimating

- A very common pump configuration is to have several parallel pumps fed from a large common header, tank or reservoir. In most cases, one or more of the parallel pumps is normally idle.
- The total hydraulic head, including pressure, elevation, and velocity should be the same in the suction pipes of running and idle pumps. But since there is no velocity in the idle pumps, the pressure would be higher than in those that are running. By measuring the differences in pressures, the velocity head in the suction of a running pump can be deduced.

Parallel Pump System – Flow Estimating

Of course, a difficulty with this approach is the fact that there are frictional effects. In the example shown above, there are losses across the suction valves, as well as other pipe fittings (elbows/tees). But using nothing other than typical values for these components, it is often possible to estimate velocity to within an accuracy of a few percent. In some cases, this may be the best estimate that can be made. It also provides an independent means of estimation that can either corroborate or bring into question other flow measurements or estimates.

How about power estimating?

- MEASUR estimates of power from current have proven to be reasonably accurate
- Linear current ratio (measured amps divided by full load amps = fraction of rated load) is a very poor second choice
- MotorMaster algorithms
- Speed not recommended unless a speedpower calibration curve for the specific motor and for the specific power supply conditions is in hand (i.e., almost never)

MEASUR - example 1

Application: >40 years old, 200-hp, 4-pole motor, unknown repair history

Comparison of electric power estimated from current and voltage and actual electric power

Measure motor current & power & compare

FIELD DATA

RESULTS

Percent Savings (%)

hrs/yr \$/kWh

ft

× kW V Baseline

Operating Hours	8760	hrs/yr
Electricity Cost	0.08	\$/kWh
Flow Rate	2000	gpm
Head Calculate Head	277	ft
Load Estimation Method	Current	~
Motor Current	215.5	A
Measured Voltage	472	V

Power estimated from motor current, voltage

FIELD DATA

Operating Hours	8760
Electricity Cost	0.08
Flow Rate	2000
Head Calculate Head	277
Load Estimation Method	Power
Motor Power	156.3
Measured Voltage	472

	Annual Savings	_
	Annual Cost	\$106,687
	Annual Energy Savings (MWh)	_
	Annual Energy (MWh)	1,334
	Motor power (kW)	152.2
	Motor current (amps)	216
	Drive efficiency (%)	100
	Percent Loaded (%)	96
	Motor power factor (%)	86.4
	Motor efficiency (%)	94
	Pump shaft power (hp)	191.8
	Motor shaft power (hp)	191.8
	Motor rated power (hp)	200
	Pump efficiency (%)	73.1

RESULTS	
	Baseline
Percent Savings (%)	
Pump efficiency (%)	71.2
Motor rated power (hp)	200
Motor shaft power (hp)	196.8
Pump shaft power (hp)	196.8
Motor efficiency (%)	<mark>93.</mark> 9
Motor power factor (%)	86.6
Percent Loaded (%)	98
Drive efficiency (%)	100
Motor current (amps)	221
Motor power (kW)	156.3
Annual Energy (MWh)	1,369
Annual Energy Savings (MWh)	_
Annual Cost	\$109,535
Annual Savings	_

Power measured

A caution about clamp-on current measurements: CT jaw closure is critical

Piece of tie wrap < 0.05 in thick

Jaws fully closed - 114.2 amps

<0.05 inch gap: 78.5 amps

Note: CT scaling is 1 mV/amp

If possible, measure all three phases

Currents

<0.9% voltage unbalance => 3.3% current unbalance

A final, most important consideration: Demand and Supply - in the engineering domain

- There is often a difference between what the pump is providing the system and what the system really needs
- Try to think in terms of demand, not supply

To illustrate, let's consider a real-world chilled water pumping application

We're only going to look at a part of the system: the part surrounding secondary pump J106

121

Nameplate data

PUMP & FLUID

Pump Type	End Suction ANSI/API	~	
Pump Speed	1750	rpm	
Drive	Direct Drive	~	
Fluid Type	Water	~	
Fluid Temperature	68	°F	
Specific Gravity	1		
Kinematic Viscosity	1	cSt	
Stages	- + 1		
MOTOR			

Line Frequency Rated Motor Power

60 Hz hp

The Field Data Motor he Rated Motor Power, please adjust the input values.

20

Motor RPM	1760	rpm	
Efficiency Class	Standard Efficiency	~	
Rated Voltage	460	V	
Full-Load Amps	25.2	A	
Estimate Full-Load Amps	1		

122

Pump data: 115.5 feet head, 450 gpm

123

The combined pump and motor are good: about 87% of optimal for this size, class of equipment

FIELD DATA				
			-	
Operating Hours	8760	hrs/yr		
Electricity Cost	0.054	\$/kWh		
Flow Rate	450	gpm		
Head	115.55	ft		
Load Estimation Method	Current		RESULTS	
Motor Current	23.6			Baseline
Measured Voltage	473	Percent Sa	avings (%)	
		Pump effic	ciency (%)	68.4
		Motor rate	d power (hp)	20
		Motor sha	ft power (hp)	19.2
		Pump sha	ft power (hp)	19.2
		Motor effic	iency (%)	88.9
		Motor pow	ver factor (%)	83.2
		Percent Lo	baded (%)	96
		Drive effic	iency (%)	100
		Motor curr	ent (amps)	24
		Motor pow	ver (kW)	16. <mark>1</mark>
124		Annual E	nergy (MWh)	141
Better Plants [®] U.S. DEPARTMENT OF ENERGY		Annual E	nergy Savings (MWh)	
		Annual C	ost	\$7,614

But supply and demand are unbalanced

There is > 23 psig pressure drop across the throttled valve; the downstream pressure was measured to be 55 psig (10 feet above floor)

Applying MEASUR to the REQUIREMENTS - the picture of opportunity is quite different

TRIM IMPELLER & OPEN PINCHED VALVE

Plants

Opera	ting Hours	8760	hrs/yr			
Electri	city Cost	0.054	\$/kWh	RESULTS	HELP	NOTES
Flow Rate		450	gpm			NOTES
Head Calculat	te Head	61.2	ft		Baseline	Pinched Valve
Impler	nentation Costs	2000	\$	Percent Savings (%)		47.0%
	This analysis assumes the pump efficiency stays constant at 68.4%. If this is not true, must run under		el	Pump efficiency (%)	68.4	68.4
			Motor rated power (hp)	20	20	
			Motor shaft power (hp)	19.2	10.2	
			Pump shaft power (hp)	19.2	10.2	
			Motor efficiency (%)	88.9	88.3	
			Motor power factor (%)	83.2	69.8	
			Percent Loaded (%)	96	51	
		e view as a VFL	'	Drive efficiency (%)	100	100
	retrofit Project			Motor current (amps)	24	15
				Motor power (kW)	16.1	08.6
				Annual Energy (MWh)	141	75
126)			Annual Energy Savings (MWh)		66
	Retter			Annual Cost	\$7 614	\$4.060

Annual Savings

\$3,553

The End for Session 3

