

Today's Agenda

Welcome and Introductions

Opportunity Register Report Outs

Optimizing RAS Rate

Statepoint Analysis

Tools of the Trade – Part 2

Closing Remarks

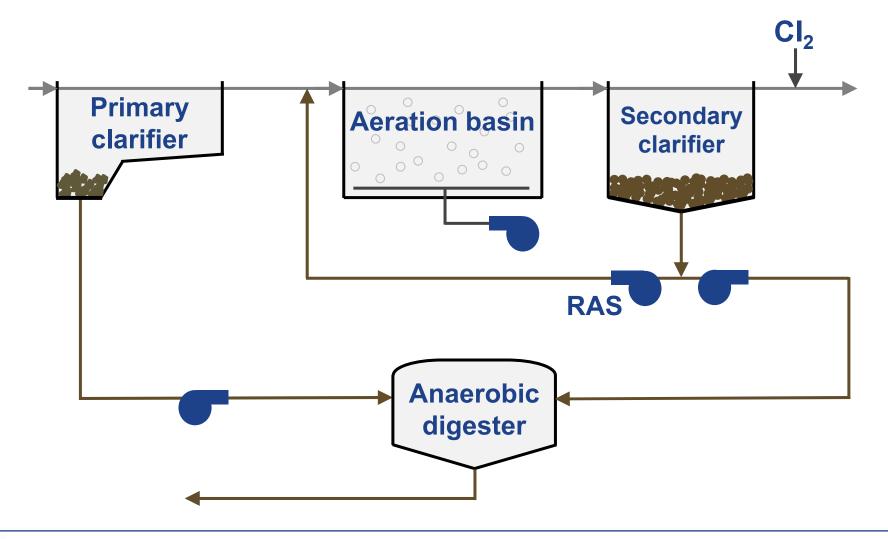
Opportunity Register

Energy Projects

	Energy Project	VALUE MATRIX		Step	Identify					
				1						
Opportunity #	Opportunity Name	Savings (1-10)	Cost/Effort (1-10)		Opportunity Description	Location	System*	Date Submitted	Capital or O&M	Submitted By
1	Lower W3 Pressure	3	2							
2										
3										
4										
5										
6										
7										

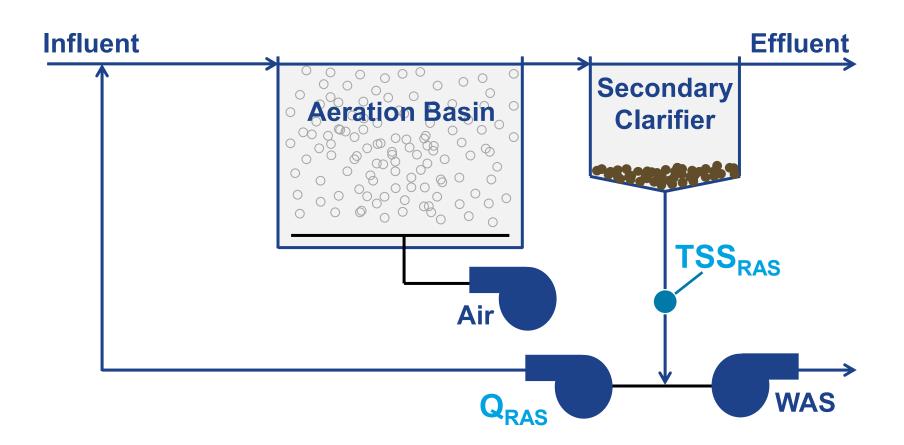
We Operate Multi-Million Dollar Facilities with Someone Else's Money

"You can make good wine with good grapes, you can make bad wine with good grapes, but you can never make good wine with bad grapes."

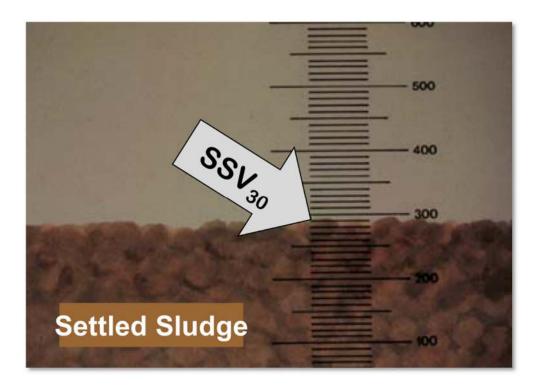

In the Business of Treating Wastewater with the Activated Sludge Process

"You cannot have good effluent quality without good sludge quality."

To Talk About RAS Flow, We Need to Talk About the Secondary Clarifier

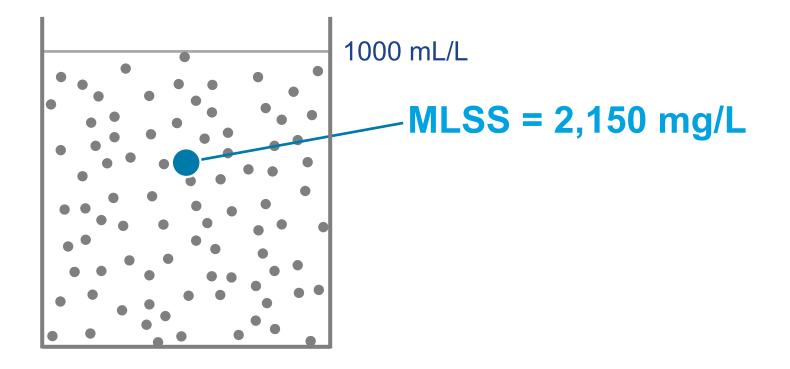

Why We Care: Low-Head-High-Flow RAS Pumps Require Big Electric Motors

Two Reasons for Confusion Around RAS Flow (Q_{RAS}) and RAS TSS Concentration (TSS_{RAS})

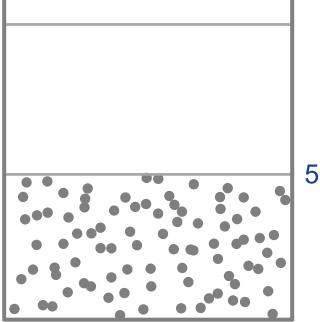

1. Thickening is **NOT** a Process Objective of the Secondary Clarifier

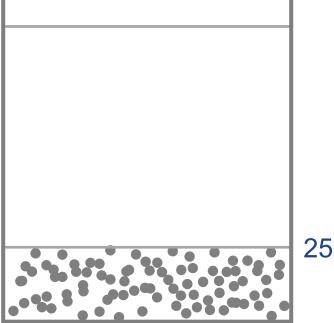
To remove settleable solids (biomass).

Activated Sludge Does Not **Appreciatively** Settle/Thicken/Compact More After 30 min

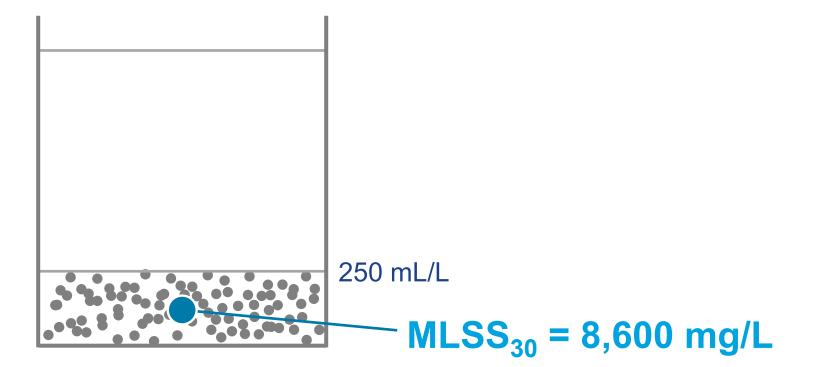


SSV₆₀, SSV₁₂₀ not much different

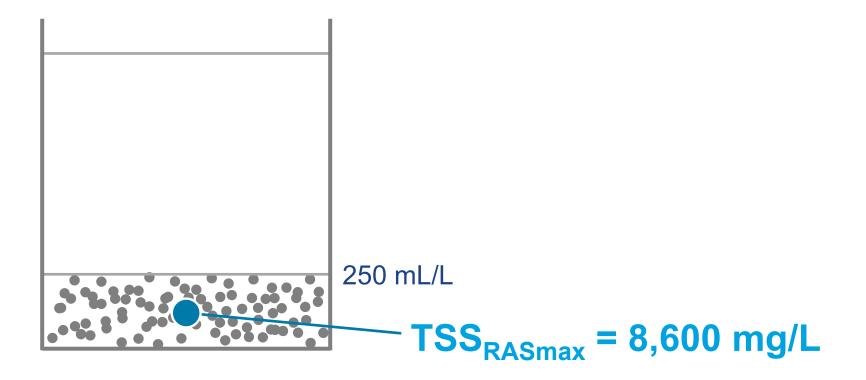

Measure MLSS on Sample Used In Settleometer Test

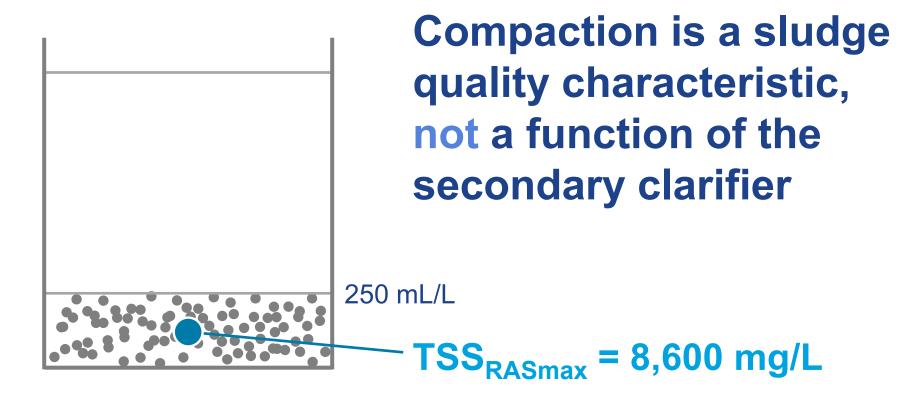


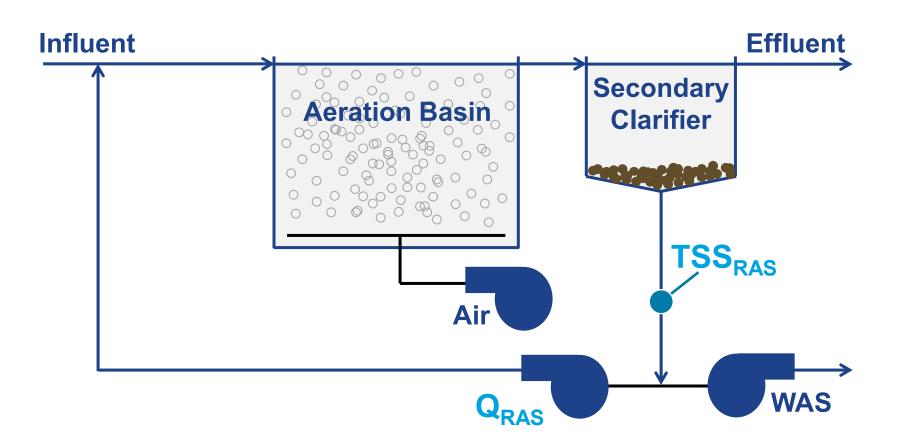
500 mL/L


MLSS₃₀ = Sludge Blanket TSS Concentration After 30 min In Settleometer

$MLSS_{30} = \frac{MLSS \times 1,000}{SSV_{30}}$




For All Intents and Purposes, $MLSS_{30}$ is Max Possible RAS Concentration (TSS_{RASmax})


Thickening is **NOT** a Process Objective of the Secondary Clarifier

2. Q_{RAS} Controls TSS_{RAS} *NOT* the Other Way Around

Solids Mass Balance Around Secondary Clarifier Gives This Result

TSS_{RAS} ≈ (1 + $\frac{Q}{Q_{RAS}}$) × MLSS

A Mass Balance is *FUNDAMENTAL* it Must Be True; it is Non-Negotiable

Example

Q = 1.2 Mgal/d **Q**_{RAS} = 375 gal/min = 0.54 Mgal/d **MLSS** = 2,000 mg/L

$$TSS_{RAS} \approx (1 + \frac{1.2 \text{ Mgal/d}}{0.54 \text{ Mgal/d}}) \times (2,000 \text{ mg/L})$$

TSS_{RAS} ≈ 6,444 mg/L

Some Plants Have Proportional RAS Flow Control (r is Constant)

$$TSS_{RAS} \approx (1 + \frac{Q}{Q_{RAS}}) \times MLSS$$

TSS_{RAS} is a Fixed Multiple of MLSS and Does NOT Change with Q and Q_{\text{RAS}}

TSS_{RAS} ≈ (1 +
$$\frac{1}{r}$$
) × MLSS

A Mass Balance is *FUNDAMENTAL* it Must Be True; it is Non-Negotiable

Example

r = 85% = 0.85

MLSS = 3,500 mg/L

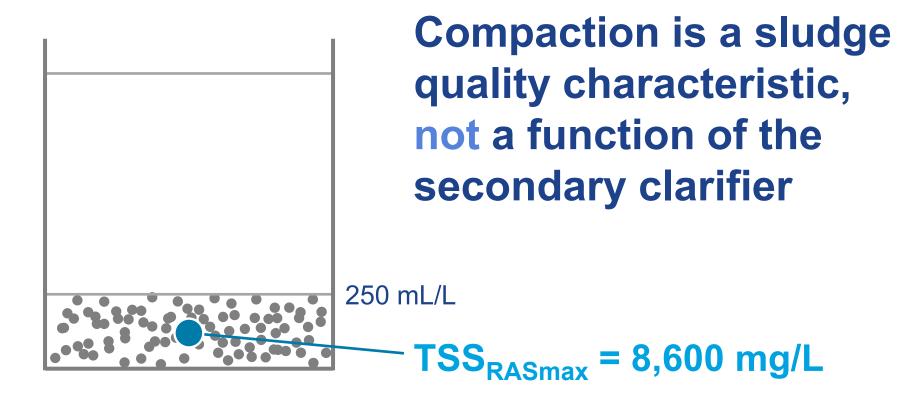
$$TSS_{RAS} \approx (1 + \frac{1}{0.85}) \times (3,500 \text{ mg/L})$$

TSS_{RAS} ≈ 7,618 mg/L

So, What Should My RAS Flow be

Two Reasons to Run Q_{RAS} as Low as Possible

- 1. Higher RAS flows than necessary waste electricity (and ratepayer money)
- 2. Due to turbulence in the secondary clarifier, high RAS flows can deteriorate performance by increasing TSS_{SCE}


This Shows TSS_{RAS} Concentration Increases With Decreasing Q_{RAS}

$TSS_{RAS} \approx (1 + \frac{Q}{Q_{RAS}}) \times MLSS$

Suggested Here $TSS_{RASmax} = MLSS_{30}$, Calculated Using SSV_{30} from Settleometer

Resulting Equations Set Eqns. 1 and 2 Equal, Solve for Q_{RASmin}

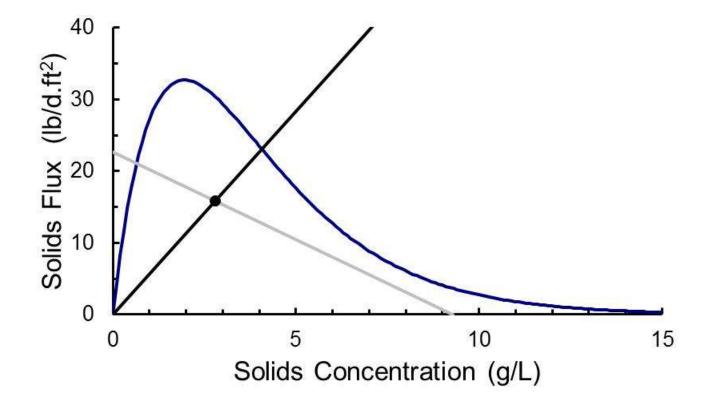
$$TSS_{RASmax} \approx (1 + \frac{Q}{Q_{RASmin}}) \times MLSS (Eqn. 1)$$

Optimum RAS Flow (Q_{RASmin}) or Percentage (r_{min}) Fixed by Extent of Compaction

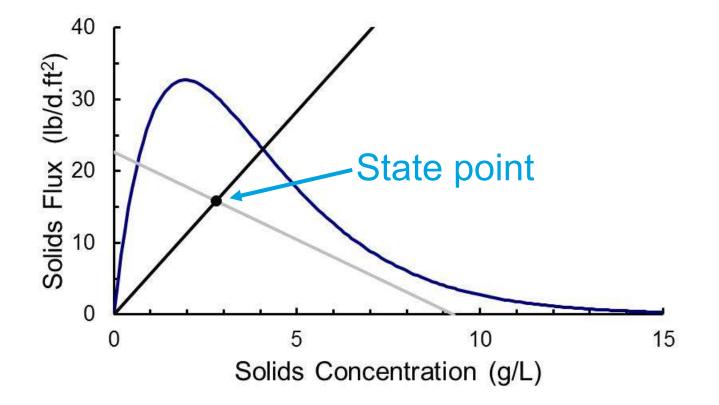
$$r_{min} = \frac{SSV_{30}}{1,000 - SSV_{30}}$$

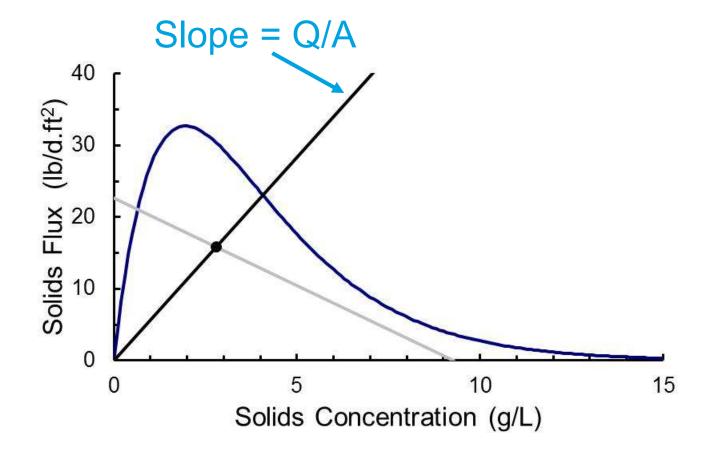
Good Sludge Quality Saves Ratepayer Money HUGE!

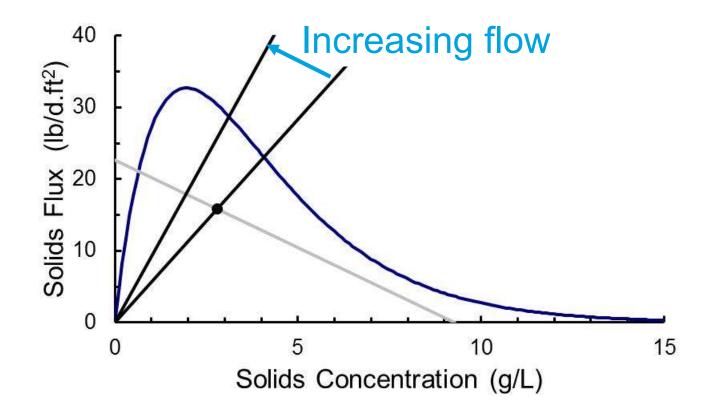
SSV ₃₀ (mL/L)	r _{min} (%)
150	18
250	33
350	54
450	82
550	122
650	186
750	300



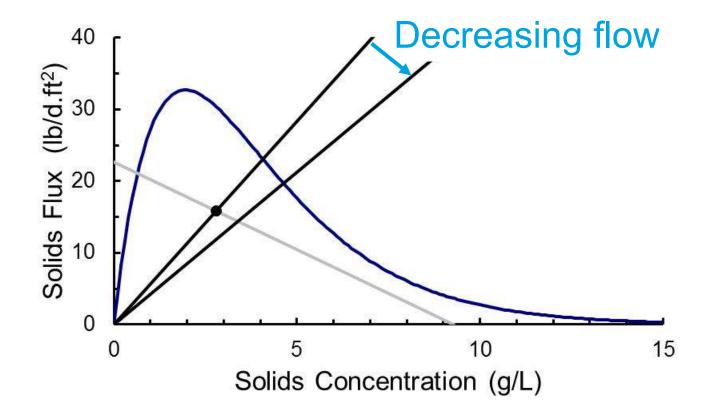
INTRODUCTION TO STATE POINT ANALYSIS

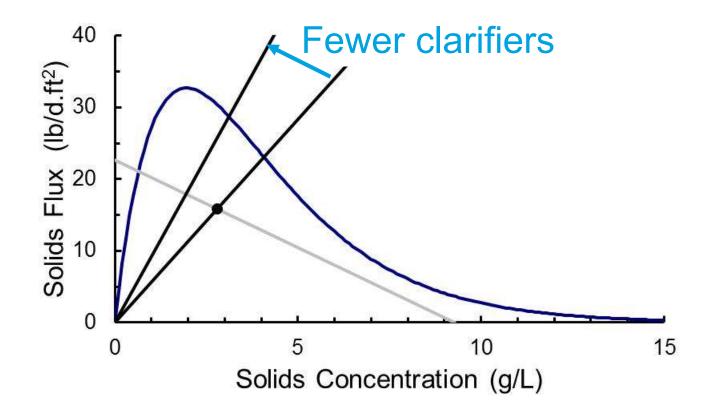

Introduction to State Point Analysis

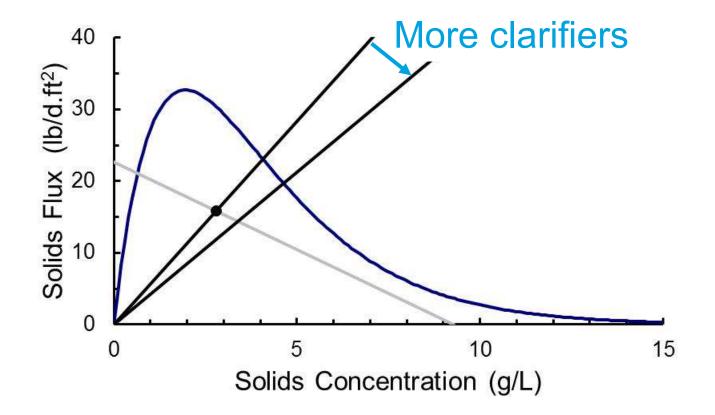

The State Point Is At the Intersection of the Two Operating Lines

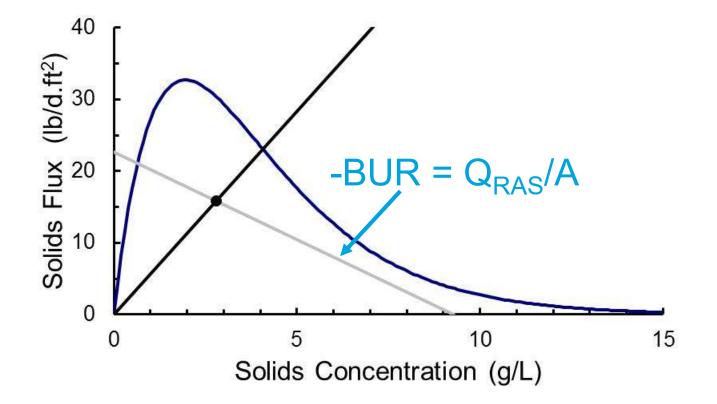


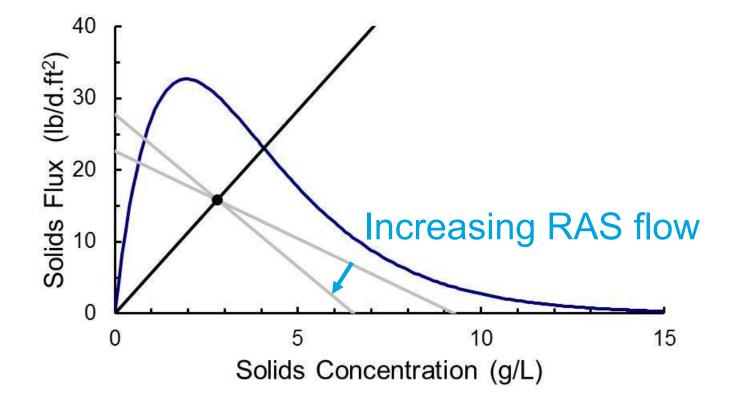
The Line Going Up From Left to Right is the Overflow Rate Operating Line

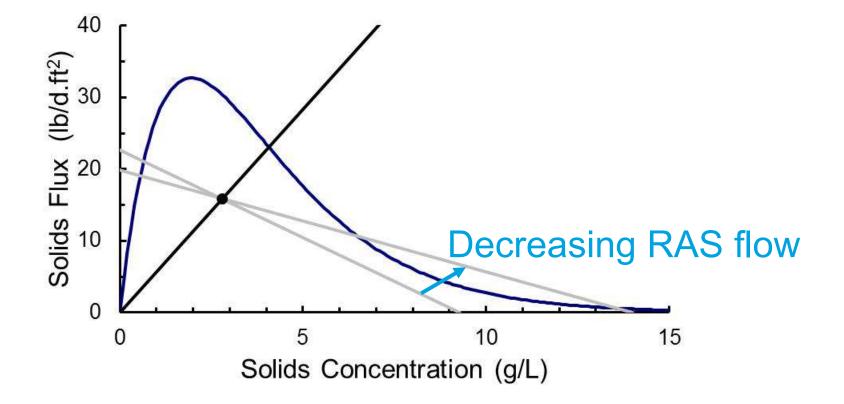


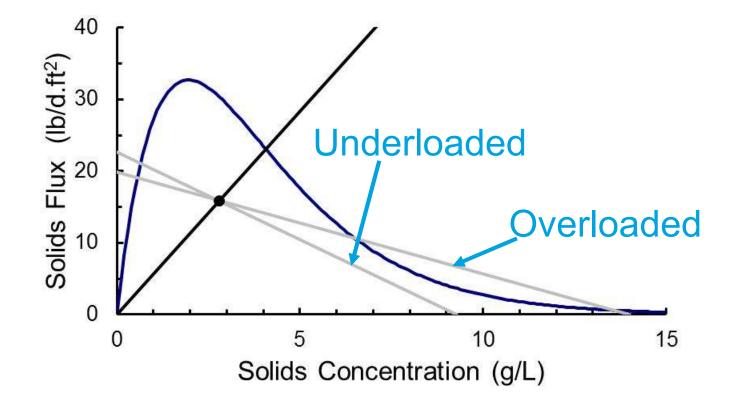


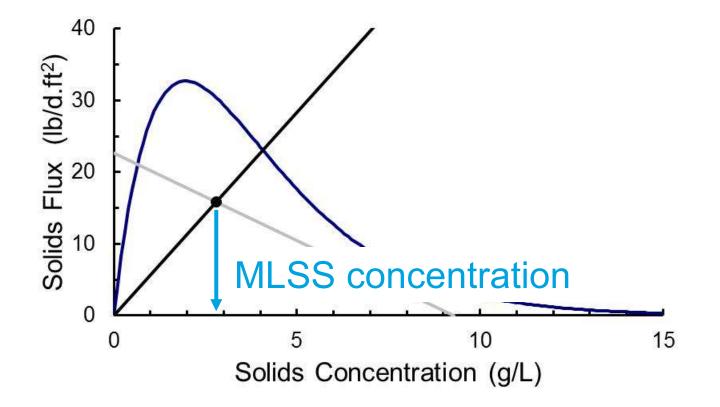


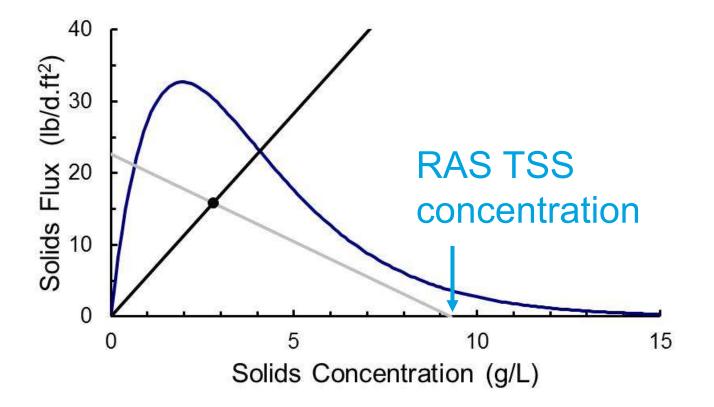


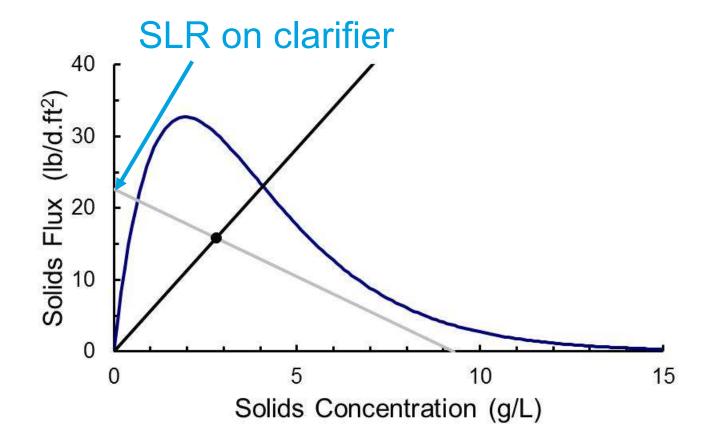

Line Going Down Left to Right is Bottom Underflow Rate Operating Line (BUR)

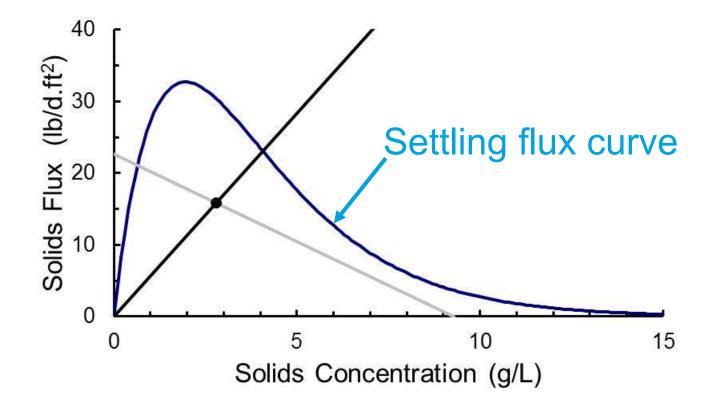

The Slope Changes With Changes in Q_{RAS}

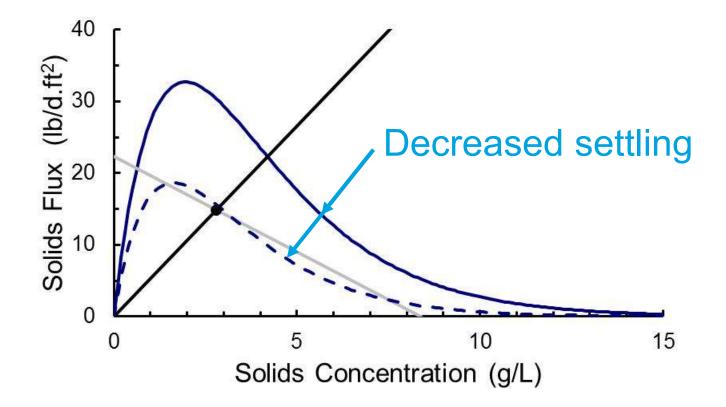

The Slope Changes With Changes in Q_{RAS}

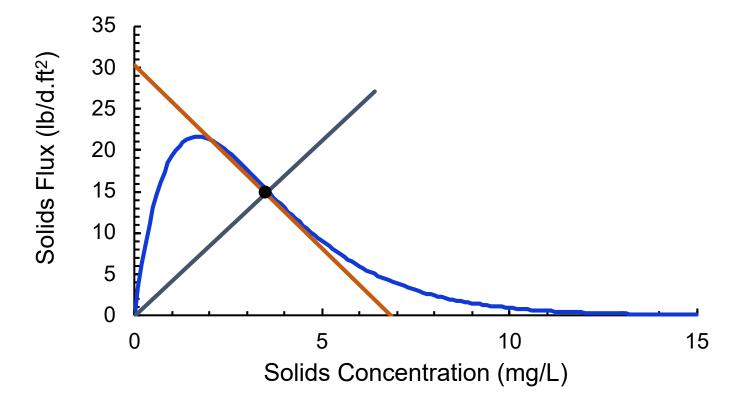

This is Important

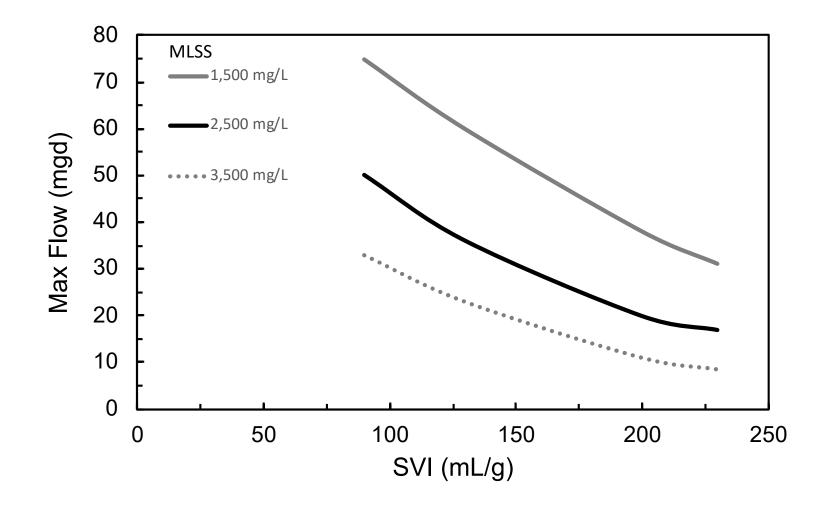

The Two Lines Intersect at the MLSS Concentration

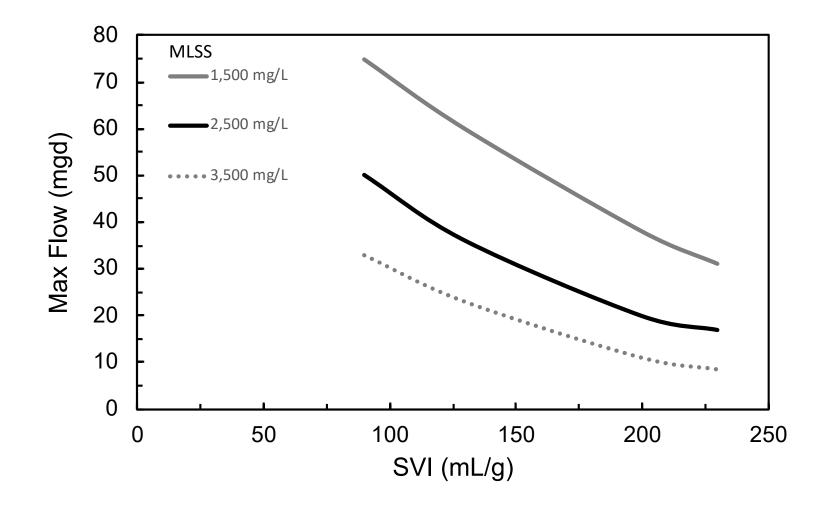

Underflow Rate Operating Line Intersects x-axis at TSS_{RAS} (when passing below curve)


And the y-axis at Solids Loading Rate (regardless where it is relative to curve)

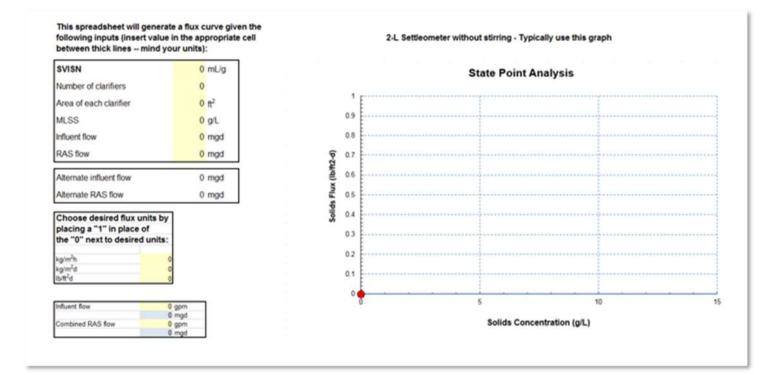

The Settling Flux Curve is Defined by Sludge Settleability


The Settling Flux Curve is Defined by Sludge Settleability


An Extremely Powerful Tool


Sludge Quantity (MLSS) and Quality (SVI) Have Huge Impact on Capacity

It's Elementary My Dear Watson: Minimize Sludge Quantity, Maximize Sludge Quality


Final Takeaways to Save Energy in the Liquid Treatment Train

- 1. Remove as much as possible in the primaries
- 2. Implement SRT control following guidelines given (best sludge quality!)
- 3. Optimize, by minimizing, RAS flow
- 4. Know the statistical accuracy of all data used to make process control decisions

State Point Exercise

TEM 5-ELI	ECTRIC SERVICE						Historical Data -	ITEM 5	-
METER NUMBER	SERVICE PERIOD From To	ELAPSED DAYS	METER READINGS Previous	Current	METER MULTIPLIER	AMOUNT USED THES MONTH	19 12	the second	
28819932	Feb 24, 2010 Mar 25, 2010	29	10344	10669	1,200.0	390,000 kwh	j ;	+++++++	
28819932	Demand Mar 25, 2010			0.615	1,200.0	738 kw	3 11111		
28819932	Reactive Mar 25, 2010			0.413	1,200.0	496 kvar	2000 MAMJJ	A S O N D J F M 2010 kwh Usage by Month	
Demand Charo Base Supply D Delivery Charo Dregon Tax Cl Reactive Powe Supply Enroy Supply Enroy Public Purpos Energy Conse Low Income A Jo Boyle Dam Copcoliron Ga	3P Pri Delivery pe Pri - Min 100 Kw lemand Charge e Primary harge tr Charge Pri Pri 1st 20000 Kwh Pri > 20000 Kwh e rvation Charge		0000 kwh 390,000 kwh 390,000 kwh 201 kvar 20,000 kwh 370,000 kwh 390,000 kwh 390,000 kwh 107,586 kwh		COST PER UNIT 0.6000000 3.8900000 1.0000000 0.0012200 0.0012200 0.0012200 0.0012200 0.0012200 0.0455400 0.0404500 0.0300008 0.0015700 0.0005000 0.0003200 0.0009500	CHARGE 782.20 2,870.82 738.00 475.80 553.80 120.60 910.80 14,966.50 642.56 612.30 195.00 34.43 102.21 23,005.02	Avg Daily Temp. Total kwn Avg kwh per Day Cost per Day Total r	47 45 390000 231609 13448 7986 \$793.28 \$517.00	/kV

Header Pressure

Distance from diffuser to water surface in feet divided by 2.31 = minimum header pressure in PSIG to form a bubble.

Aeration Savings & the Fact Sheet

3 IMPACT OF BLOWER PRESSURE ON ENERGY

Disch.		Reduction	in pressure	of psig	
pressure	-0.2	-0.4	-0.6	-0.8	-1.0
12	1.3%	2.7%	4.0%	5.4%	6.7%
11	1.5%	2.9%	4.4%	5.9%	7.4%
10	1.6%	3.3%	4.9%	6.6%	8.3%
9	1.8%	3.7%	5.5%	7.4%	9.3%
8	2.1%	4.2%	6.3%	8.4%	10.6%
7	2.4%	4.8%	7.3%	9.7%	12.2%

PSIG

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 PSI = 2.31 feet of water 1 foot of water = 0.43 PSI

IN H₀

2.8

5.5

8.3

11.1

13.8

16.6

19.4

22.1

24.9

*Assumes 70% blower eff & 92% motor/drive eff

Reduce pressure across blower by

- Clean inlet air filter
- Clean the aeration basin diffusers (which also improves OTE = reduces air demand)
- Use most open valve control strategies
- Reduce or eliminate throttling
- Hold return stream flows (e.g. centrate) until low load conditions at night (lower airflow lowers friction losses)

2 IMPACT OF DO LEVELS ON ENERGY

Saturated DO

DO in basin = driving force for oxygen transfer Driving force UP means Energy goes DOWN

DO rule of thumb

0.5 mg/l reduction creates ~ 6% energy savings

DO calibration & cleaning

A probe that reads 10% low (e.g. 2.0 when actual is 2.2) is costing you 2.4% at the blower.

DO level increases

As mixed liquor temp increases, the impact of elevated DO levels increases.

Mixed liquor temp		DO sat	Energy savings potential if D0 reduced from to 2.0 mg/l				
°C	٩F	mg/l	2.5	3	4	5	
0	32	14.6	4.0%	7.9%	15.9%	23.89	
2	36	13.8	4.2%	8.5%	16.9%	25.49	
5	41	12.8	4.6%	9.3%	18.5%	27.89	
10	50	11.3	5.4%	10.8%	21.5%	32.39	
15	59	10.1	6.2%	12.3%	24.7%	37.09	
20	68	9.1	7.0%	14.1%	28.2%	42.39	
25	77	8.2	8.1%	16.1%	32.3%	48.49	

Exercise - Aeration Pressure

C) Impact of Blower Pressure on Energy

Impact of	f Discharge	Pressure F	Reduction o	n Blower	Energy
Discharge	F	Reduction in	n pressure of	psig.	
Pressure	-0.5	-1	-1.5	-2	-4
12	3.3%	6.7%	10.1%	13.4%	26.9%
11	3.7%	7.4%	11.1%	14.8%	29.6%
10	4.1%	8.3%	12.4%	16.5%	32.9%
9	4.6%	9.3%	13.9%	18.5%	37.0%
8	5.2%	10.6%	15.8%	21.0%	42.1%
7	6.1%	12.2%	18.3%	24.3%	48.6%
Example: 12 psig discharge lowered by 2 psig saves 13.4% at blower.					
Assumes 70	% blower eff.	& 92% driv	ve eff.)		

1.	How much energy is saved if this 50 hp blower's discharge pressure is reduced from 7 psig to 5.5 psig?	kWh/year	
2.	What if it's a 150 hp blower, and the pressure is lowered from 10 psig to 9.5 psig. What percentage of energy is saved?	%	
3.	If a 75 hp blower is turned down from 11 psig to 9 psig, how much money is saved (if energy costs 6¢ per kWh)?	\$ /year	
4.	If a 40 hp blower is turned down from 8 psig to 7 psig, how much energy is saved, and what percentage does that represent?	kWh/year	%

DO Residual Aeration Tool

B) Impact of DO Levels on Energy

Saturated DO minus DO in basin = driving force for oxygen transfer; Driving force UP means Energy goes DOWN

	Impact of Average DO Level on Blower Energy							
Mixed Lic	quor Temp	DO Sat	Energy Savings Potential if DO Reduced from to 1.0 mg/l					
°C	°F	mg/l	2	3	4	5		
0	32	14.6	7.4%	14.7%	22.1%	29.4%		
2	36	13.8	7.8%	15.6%	23.4%	31.3%		
5	41	12.8	8.5%	16.9%	25.4%	33.9%		
10	50	11.3	9.7%	19.4%	29.1%	38.8%		
15	59	10.1	11.0%	22.0%	33.0%	44.0%		
20	68	9.1	12.3%	24.7%	37.0%	49.4%		
25	77	8.2	13.9%	27.8%	41.7%	55.6%		

How much could my plant benefit from reducing DO to 1.0 mg/l?

100	hp, blower
68	°F, mixed liquor temp
9.1	mg/I, DO Sat
4	current DO level
37.0%	%, potential energy savings
212,779	kWh annual energy savings
\$12,767	annual cost savings @ \$0.06/kWh

Note: Higher impact as elevation increases.

1.	What percentage of energy could be saved if an aeration basin holding 25°C mixed liquor lowered its DO residual from 2 mg/L to 1 mg/L?	%
2.	If a plant is running 200 hp of blowers, and it has 59 °F mixed liquor, how many kWh/y of energy might it save by lowering its DO from 3 mg/L to 1 mg/L?	kWh/year
3.	In b) how much cost is saved (at \$0.06/kWh)?	\$ /year
4.	How much total money can be saved if a plant running 100 hp of blowers in 20 °C mixed liquor reduces their DO residual from 5 mg/L to 1 mg/L?	kWh/year
5.	Your plant runs (on average) what total horsepower of blower? What is the approximate temperature of your plant's mixed liquor? What is the DO residual setpoint at your plant?	hp °F mg/L
6.	How much total money is saved if your plant reduces DO residual to 1 mg/L?	\$ /year

Thanks to the following partners for their support in developing this curriculum

WasteWater Technology TRAINERS

